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Abstract

One of the key tasks of a seismic interpreter is to map lateral changes in surfaces, not only including faults,
folds, and flexures, but also incisements, diapirism, and dissolution features. Volumetrically, coherence pro-
vides rapid visualization of faults and curvature provides rapid visualization of folds and flexures. Aberrancy
measures the lateral change (or gradient) of curvature along a picked or inferred surface. Aberrancy comple-
ments curvature and coherence. In normally faulted terrains, the aberrancy anomaly will track the coherence
anomaly and fall between the most positive curvature anomaly defining the footwall and the most negative
curvature anomaly defining the hanging wall. Aberrancy can delineate faults whose throw falls below the seis-
mic resolution or is distributed across a suite of smaller conjugate faults that do not exhibit a coherence anomaly.
Previously limited to horizon computations, we extend aberrancy to uninterpreted seismic data volumes.We apply
our volumetric aberrancy calculation to a data volume acquired over the Barnett Shale gas reservoir of the Fort
Worth Basin, Texas. In this area, the Barnett Shale is bound on the top by the Marble Falls Limestone and on the
bottom by the Ellenburger Dolomite. Basement faulting controls karstification in the Ellenburger, resulting in the
well-known “string of pearls” pattern seen on coherence images. Aberrancy delineates small karst features, which
are, in many places, too smoothly varying to be detected by coherence. Equally important, aberrancy provides the
azimuthal orientation of the fault and flexure anomalies.

Introduction
Well-known to mathematicians (Schot, 1978), aber-

rancy has only recently been applied to 3D seismic sur-
veys. Gao (2013) defines aberrancy as a measure of
the deformation of a surface. Aberrancy measures the
lateral change (or gradient) of the curvature of a picked
or inferred surface. In 3D, aberrancy is a vector de-
scribed by its magnitude and azimuth. The magnitude
defines the intensity of surface deformation, whereas
the azimuth indicates the direction in which the curva-
ture decreases in signed value. This positive-to-negative
definition provides as azimuth consistent with that of
fault-plane azimuths.

Gao and Di (2015) find aberrancy to be complemen-
tary to curvature. In normally faulted terrains, the aber-
rancy anomaly will track the coherence anomaly and
fall between the most positive curvature anomalies
defining the footwall and the most negative curvature
anomalies defining the hanging walls (Chopra and
Marfurt, 2007b). Unlike coherence, which measures lat-
eral changes in waveform and/or amplitude, aberrancy
measures lateral changes in curvature, and as such pro-
vides not only an indication of the strength of the nor-
mal faulting (the magnitude of the vector), but also the
direction of the downthrown side (the azimuth of the

vector). The value of aberrancy is that it may delineate
faults whose throw falls below seismic resolution, or is
distributed across a suite of smaller conjugate faults,
which do not exhibit a coherence anomaly (Di and
Gao, 2016) (Figure 1). For this reason, we hypothesize
that aberrancy will be quite useful in correlating surface
seismic data to fractures associated with faults that are
commonly seen in image logs from horizontal wells.

Because aberrancy measures the changes in curva-
ture, it characterizes third-order surface behavior
(Joshi and Séquin, 2010). Calculation of aberrancy in-
volves two main challenges: the robustness of high-
order derivatives and computational efficiency. Di and
Gao (2014) introduce a horizon-based aberrancy calcu-
lation based on first computing third derivatives at
equal azimuthal intervals. They then search these val-
ues for extrema. More recently, Di and Gao (2016) show
how rotating the coordinate system can simplify the
equations. We build on this latter innovation and gener-
alize it to compute aberrancy volumetrically. We com-
pute second derivatives of vector dip in the x-, y-, and
z-directions, rotate the calculations about the local vec-
tor dip to simplify the computation, compute aberrancy,
and then rotate the aberrancy vectors back the original
coordinate system. In general, there are three roots to
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the third-order differential equation (Di
and Gao, 2016), which we define as the
maximum aberrancy, the minimum aber-
rancy, and the intermedium aberrancy.

We begin this paper by summarizing
the theory of aberrancy. Then, we apply
our volumetric aberrancy calculation to
two synthetic models: a 3D synthetic
of a circular sinkhole model and a 3D
synthetic consisting of an east–west-
trending flexure and three north–south-
trending flexures. Next, we apply our
volumetric aberrancy algorithm to a
data volume acquired over the Barnett
Shale gas reservoir of the Fort Worth Ba-
sin (FWB), Texas. We conclude with a
summary of interpretational value of
the attribute as well as the computational
cast mathematical details for those wish-
ing to implement such an algorithm are
provided in the appendices.

Theory
Apparent dip, curvature, and aberrancy

Geoscientists define a locally planar surface by its dip
magnitude θ and dip azimuth ϕ, where θ is sometimes
called the true dip to distinguish it from the apparent
dip at an azimuth β. Introducing the dip vector p, mea-
sured in dimensionless units of km∕km or kft∕kft, the
components of the true dip along the x1- and x2-axes are

p1 ¼ tan θ cos φ; p2 ¼ tan θ sin φ; (1)

whereas the apparent dip component pβ and apparent
dip angle θβ along the azimuth β are

pβ ¼ tan θ cos β; θβ ¼ tan−1 pβ: (2)

Most geoscientists are also familiar with the two princi-
pal (most positive and most negative) curvature values
k1 and k2 and their corresponding strikes γ1 and γ2,
which Rich and Marfurt (2013) show are the eigenvalues
and eigenvectors of a solid geometry problem. Some-
what less known is the apparent curvature at a given azi-
muth, or Euler curvature kβ, at strike β, defined as

kβ ¼ k1 cos2ðβ − γ1Þ þ k2 sin2ðβ − γ1Þ: (3)

Di and Gao (2014) show that one can compute the
most positive and most negative principal curvatures
by searching for extrema of the Euler or apparent cur-
vatures. This search is significantly simplified if one
first locally flattens the data about the vector dip at
the analysis point. Although this approach is somewhat
less efficient than the more commonly used eigenvector
curvature solution, it provides not only physical insight
into the meaning of the principal curvatures, but also a
means to compute the extrema of aberrancy.

Figure 1. Cartoons of two different fault models, (a) a model in which finite off-
set across a fault results in a strong coherence anomaly but no curvature or aber-
rancy anomaly. (b) A model in which the offset is distributed over a zone of
conjugate faults, such that the now-continuous reflector no longer gives rise to
a coherence anomaly. Positive curvature anomalies on the footwall are indicated
by red circles, whereas negative curvature anomalies on the hanging wall are in-
dicated by the blue circles. Aberrancy measures the change in curvature, which in
this example is toward the east, and it is displayed as a magenta-red aberrancy
anomaly.

Figure 2. The internal steps of aberrancy computation. The
first step is to compute the inline and crossline dip, which in-
cludes the first and second derivatives of inline and crossline
dip. The second step is to rotate the original coordinate sys-
tem, x0-y0-z0, to the new coordinate system,x1-y1-z1 by using
the dip magnitude and dip azimuth. The third step is to find
extrema of a cubic function, which compute the magnitude
and azimuth of aberrancy. The final step is rotate the new
coordinate sytem back to original coordinate system to get
the correct aberrancy azimuth value.
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Because the vector dip at any voxel can be different
from its neighbors, a direct implementation of Di and
Gao’s (2014) algorithm would require rotating an analy-
sis window of volumetric dip values p, followed by the
computation of its derivatives using a convolution op-
erator. In our implementation, this convolution opera-
tor typically uses 121 traces and 50 vertical samples,
or a computational stencil of 6050 points, which would
not be amenable to vector-computing strategies. There-
fore, we compute the required derivatives in the original
unrotated coordinate system, and then we obtain the

corresponding derivatives in the locally rotated coordi-
nate system through three cascaded rotation operators
applied to the 3 × 3 × 3, or 27-element second derivative
operators applied to the three vector dip components
(Figure 2). These details are important to those who
wish to implement aberrancy, but they provide only
limited insight into its use and are thus relegated to
Appendix A.

After rotation, one can compute the apparent
aberrancy at any azimuth ψ in the rotated plane, using
the following equation:

Figure 3. (a) Mesh grid showing a simple synthetic model in depth consisting of a circular sinkhole embedded in a planar reflector
dipping 2° to the northeast. (b) Vector dip computed from the synthetic model shown in (a). The maximum dip of the sink is 2°,
such that the edge dips 4° to the northeast in the southwest portion of the sinkhole and dips 0° or is nearly flat in the northeast
portion of the sinkhole. (c) Alternative means of displaying the two extreme curvature values computed from the synthetic shown
in the previous figure. In this image, the minimum curvature carries little information because the input model consists of parallel
rather than crossing flexures. (d) Time slices through the aberrancy volumes corresponding to the synthetic dip and curvature
images shown in the previous two figures. The total aberrancy is the vector sum of the maximum, intermediate, and minimum
aberrancy vectors.
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f ψ ¼ ∂3z 0

∂x 0
1∂x 0

1 0∂x 0
1
cos3 ψ þ 3

∂3z 0
∂x 0

1∂x 0
1∂x 0

2

cos2 ψ sin ψ

þ3
∂3z 0

∂x 0
1∂x 0

2∂x
0
2

cos ψ sin2 ψ

þ ∂3z 0

∂x 0
2∂x

0
2∂x

0
2

sin3 ψ ; (4)

where the primes indicate the surface z 0ðx 0
1; x

0
2Þ in

the rotated coordinate system. For volumetric aber-
rancy, one does not explicitly pick surfaces, but rather
computes the first derivatives of the assumed surfaces,
resulting in the volumetric dip component volumes p1
and p2 defined in equation. Equation 4 then becomes

Figure 4. (a) Mesh grid showing a simple synthetic model in depth consisting of an east–west-trending flexure and three north–
south-trending flexures. (b) Vector dip computed from the synthetic model is shown in (a). The east–west-trending flexure dipping
to the north appearing as blue, and three north–south-trending flexures dipping toward the east and appearing as magenta-red. The
maximum dip for each of the north–south flexures is 1°, 2°, and 4°, crossing the east–west flexure with maximum dip of 2°. (c) Al-
ternative means of displaying the two extreme curvature values computed from the synthetic shown in the previous figure. (d) Time
slices through the aberrancy volumes corresponding to the synthetic dip and curvature images shown in the previous two figures.
The total aberrancy is the vector sum of the maximum, intermediate, and minimum aberrancy vectors.
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f ψ ¼ ∂2p 0
1

∂x 0
1∂x 0

1
cos3 ψ þ 3

2

�
∂2p 0

1

∂x 0
1∂x 0

2

þ ∂2p 0
2

∂x 0
1∂x 0

1

�
cos2 ψ sin ψ

þ 3
2

�
∂2p 0

1

∂x 0
2∂x

0
2

þ ∂2p 0
2

∂x 0
1∂x 0

2

�
cos ψ sin2 ψ

þ ∂2p 0
2

∂x 0
2∂x

0
2

sin3 ψ : (5)

The extrema of the aberrancy are computed by mini-
mizing the value of f ψ with respect to ψ . Recall that the
vector dip is computed using the first derivative of the
surface z and has one extrema, the dip magnitude and
the dip azimuth, which define a single dip vector. Cur-
vature is computed using the second derivatives of the
surface z and has two extrema, the most positive and
most negative principal curvatures and their strikes.
Aberrancy is computed using the third derivatives
(equation 4) of surface z, and therefore will have in
general three extrema. We will call these extrema the
maximum, intermediate, and minimum aberrancy vec-
tors expressed by its magnitude f ψ and its azimuth ψ
(Borwein and Erdélyi, 2012). The numerical roots of

Figure 5. Index map of FWB and major tectonic units (modi-
fied after Khatiwada et al., 2013) corresponding to the gray
square in the map of Texas.

Figure 6. Generalized stratigraphic column
(modified from Montgomery et al., 2005).
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the minimization problem are in terms of tan ψ (equa-
tion B-1), such that initially ψ ranges between �90°.
Inserting these roots into equation 5 may provide neg-
ative values of aberrancy f ψ . It is obvious that a nega-
tive flexure to the north is equivalent to a positive
flexure to the south. For this reason, in our implemen-
tation, we define our resulting maximum, intermediate,
and minimum aberrancy magnitudes, fmax, f int, and
fmin, to be strictly positive, with the corresponding
azimuths ψmax, ψ int, and ψmin ranging between ±180°.
The analysis and display of three roots can be cumber-
some, although we hypothesize nonzero values of f int,
and fmin, represent intersecting flexures, which may be
indicators of increased shear strain. We leave such
quantitative analysis to future work, which will require

image logs calibration. In this paper, we will examine
the total vector aberrancy vector ftot, which is simply
the sum of the three aberrancy vectors:

ftot ¼ fmax þ f int þ fmin: (6)

Synthetic calibration
A 3D synthetic of a circular sinkhole model

Figure 3 shows a simple 3D synthetic circular model
used to validate the aberrancy calculation. The syn-
thetic consists of a circular sinkhole embedded in a
planar reflector dipping 2° to the northeast. In this
example, the intermediate and minimum aberrancy vec-
tors are near zero. Note that, the total aberrancy vector
is oriented inwards toward the center of the sinkhole.
Also, note that the maximum and total aberrancy vec-
tors sit in the approximately middle of the most positive
curvature and the most negative curvature (Figure 3b),
where we observe the largest changes in the magnitude
of curvature (Figure 3c).

A 3D synthetic consisting of an east–west-trending flexure
and three north–south-trending flexures

To calibrate how aberrancy works when two flex-
ures cross each other, we built the simple synthetic
model shown in Figure 4a, consisting of an east–west-
trending flexure (dipping to the north and appearing as
blue), and three north–south-trending flexures (dipping
toward the east and appearing as red-magenta). The
maximum dip of north–south flexures increases from
1° to 3° from left to right.

Rich and Marfurt (2013) show how the principal cur-
vatures are the solution of an eigenvector problem. The
first eigenvalue corresponds to the eigenvector that
best represents the deformation at any voxel, and thus
it is the one exhibiting the largest absolute value kmax.
The second eigenvector represents the deformation
in the orthogonal direction and is denoted as kmin. Note
that the patterns exhibited by the weaker flexures (the
north–south one on the left, and the east–west one
on the right) are broken by the locally larger flexures
(Figure 4b). Such images make it more difficult to track
weak faults cut by stronger faults. In contrast, the most
positive and most negative principal curvatures k1 and
k2 exhibit more continuous pattern. The blue arrow in-
dicates a bowl-shaped anomaly in the most positive cur-
vature slice, whereas the red arrow indicates a dome-
shaped anomaly in the most-negative curvature image
(Figure 4b).

After examining the maximum, intermediate, and
minimum aberrancy vectors, we find that the total
aberrancy vector provides a single vector volume ap-
propriate for structural interpretation (Figure 4c).
However, the intermediate and minimum aberrancy in-
dicate zones of conflicting flexure, and, depending on
the tectonic model, may potentially show areas of more
intense natural fracturing.

Figure 7. (a) Time structure maps of the top Marble Falls and
(b) Ellenburger horizons with three crosslines AA′, BB′, and
CC′. Vertical slices AA′, BB′, and CC′ will be discussed in sub-
sequent figures.
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Application
Geologic background

The FWB is a shallow, north–south-elongated fore-
land basin extending 38;100 km2 (15;000 mi2) in north-
central Texas (Montgomery et al., 2005). The Ouachita

thrust-fold belt, Llano uplift, Bend arch, and the Muen-
ster arch bound the basin to the east, south, west, and
north, correspondingly (Figure 5). Preserved fill in the
FWB reaches a maximum of approximately 3660 m
(12,000 ft) in the northeast corner, adjacent to the

Figure 8. Vertical slices AA′ and BB′ through
the Barnett Shale interval through the coren-
dered seismic amplitude and coherence vol-
umes. Time slice at the Barnett Shale level
(t ¼ 0.726) through the coherence volume.
Yellow arrows indicate two faults delineated
on lines AA′ and BB′ that continue into the
time slice. Even though the seismic amplitude
data have been preconditioned, there are sev-
eral strata-bound low-coherence anomalies
(cyan arrows), some of which are associated
with deeper collapse features (white arrows),
and others with low signal-to-noise ratio.

Figure 9. The same slices shown in the pre-
vious figure, but now through the corendered
most-positive and most-negative curvatures
with seismic amplitude on the vertical slices
and with coherence on the time slice. The
yellow arrows indicate the same faults shown
indicated in the previous image. The white ar-
row points at the deeper collapse features.

Figure 10. The same slices shown in the pre-
vious two figures through the total aberrancy
volume. Note the continuous flexures cutting
through the time slice. Orange arrows indicate
couplets, defining the edges of small grabens
by a northwest-oriented (cyan) flexure on one
side and a southeast-oriented (orange) flexure
on the other. The green arrow indicates a gra-
ben delineated by a northeast-oriented (ma-
genta) on one side and a southwest-oriented
(lime green) flexure on the other. Several of
the collapse features exhibit flexures that
cycle the color wheel (white arrows).
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Muenster arch (Montgomery et al., 2005).
Deposits consist of approximately 1200–
1500 m (4000–5000 ft) of Ordovician-
Mississippian carbonates and shales,
1800–2100 m (6000–7000 ft) of Pennsyl-
vanian clastics and carbonates, and, in
the eastern parts of the basin, a thin layer
of Cretaceous rocks (Montgomery et al.,
2005).

The structures in the FWB include
major and minor faulting, local folding,
fracturing, and karst-related collapse
features (Montgomery et al., 2005; Qi
et al., 2014). Thrust-fold structures are
more common in the easternmost parts
of the basin. Studies have shown that
the major fault exerted significant con-
trol on the depositional patterns and
thermal history of the Barnett (Qi et al.,
2014). The small-scale faulting controls
karstification in the Ellenburger, result-
ing in the well-known “string of pearls”
pattern seen on seismic coherence im-
ages (Schuelke, 2011).

Figure 12. Horizon slices along the top Marble Falls through the aberrancy volumes. The total aberrancy is the vector sum of the
maximum, intermediate, and minimum aberrancy vectors. We find the total aberrancy vector to be most useful for structural
interpretation; however, the intermediate and minimum aberrancy indicate zones of conflicting flexure, and depending on the
tectonic model, they may potentially indicate areas of more intense natural fracturing.

Figure 11. The same slices as the previous four figures, but now with the time
slice through corendered aberrancy vector and coherence volumes. The magenta
arrows indicate the same two faults shown in the previous image. The flexures
indicated by the black arrows exhibit a different azimuth, suggesting transten-
sional deformation. In this example, coherence is complementary to aberrancy,
providing additional insight into the interpretation.White arrows indicate the same
two collapse features shown in previous images. In this example, aberrancy con-
firms an interpretation already made by examining coherence alone.
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The Barnett Shale of the FWB, Texas, has played an
important role in a gas-shale play in North America. Re-
cent studies estimate that the Barnett Shales may hold
as much as 39 trillion cubic feet of gas undiscovered
(Bruner and Smosna, 2011). The Barnett Shale of the
FWB, Texas, formed during the late Paleozoic Ouachita
Orogeny, generated by the convergence of Laurasia
and Gondwana (Bruner and Smosna, 2011). Figure 6
provides a generalized stratigraphy column of the
FWB. The Barnett Shale is an organic-rich, petroliferous
black shale of middle-late Mississippian age, bound
in the survey between the Lower Marble Falls and
Ellenburger Group (Figure 6). The Marble Falls Forma-
tion is conformably overlying the Barnett Shale on
top. It typically includes two parts, an upper limestone
interval and a lower member of interbedded dark lime-
stone and gray-black shale (Montgomery et al., 2005).
The top of the Ellenburger Group is an erosional sur-
face (second-order Sauk-Tippecanoe erosional uncon-
formity) commonly characterized by solution-collapse
features (Montgomery et al., 2005). We expect to see
major and/or minor faulting, local folding, fracturing,
and karst-related collapse features within our study
area.

Seismic data
In 2006, Marathon Oil Company acquired a 3D

wide-azimuth seismic survey to image the Barnett Shale
using 16 live receiver lines with a nominal 16 × 16 m
(55 × 55 ft) CDP bin size (Khatiwada et al., 2013). The
overall data quality is excellent, with a poststack data-
conditioning workflow, including edge-preserving struc-
ture oriented filtering and spectral balancing performed
by Qi et al. (2014), further improving the continuity and
vertical resolution. The top Marble Falls Limestone is an
easy-to-pick horizon that lies immediately above the Bar-
nett Shale at approximately 0.7 s two-way time.

Results
Seismic amplitude

Seismic amplitude is the most commonly used
attribute in seismic interpretation. Lines AA′ and BB′
(Figure 8) show two strong reflections, representing
the top of the Marble Falls (Figure 7a) and the top of
Ellenburger Group (Figure 7b). The organic-rich Bar-
nett Shale sits between these two units, with the arrows
indicating karst collapse features. At least two major
faults control the collapse features indicated by yellow
arrows. Several smaller compaction induced sags are

Figure 13. Vertical slice along line AA′ through the seismic amplitude corendered with the inline component of the vector dip at
approximately 1:1 vertical to the horizontal aspect ratio, showing the data quality. The location of the line is shown in Figure 14a.
There is strong acquisition footprint in the shallow section at t ¼ 0.3s, resulting in vertical stripes in the inline dip. In contrast, the
inline dip estimated at the target Barnett Shale level at t ¼ 0.7 s exhibits a high signal-to-noise ratio. The top of the basement is at
t ¼ 0.9 s in this image. Below this level, the reflectors become less continuous, resulting in a noisier estimation of the inline-dip
component. The vertical (left square inset) and inline (right square inset) derivative operators show the extent of what we call a
“long-wavelength” operator. Because the bin size is 33.5 × 33.5 m (110 × 110 ft), the crossline derivative operator (not shown) is a
rotated version of the inline derivative operator for this data volume.
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seen some distance away from the faults. Even though
the seismic amplitude data have been preconditioned,
there are several strata-bound low-coherence anoma-
lies, some of which are associated with deeper collapse
features (cyan arrows), and others are simply due to
areas exhibiting a low seismic signal-to-noise ratio.

Coherence
Coherence measures the similarity between wave-

forms on neighboring traces, and helps to delineate faults
and collapse features in the study area (Figure 9). Fig-
ures 8 and 9 show the same time slices at approximately
t ¼ 0.726 s through coherence volume. Time slices
through the coherence volume show a complex system
of lineaments and collapse features (yellow and white
arrows). Although we do see the vertical trace of several
faults, the most prominent features are the circular col-
lapse features, which are more pronounced at the deeper
Ellenburger level than at theMarble Falls level (Figure 7).

Curvature
When calibrated to image logs, most-negative and

most-positive curvatures can serve as a means of pre-

dicting fractures from surface seismic data (Chopra
and Marfurt, 2007a). Figure 9 shows corendered most-
positive and most-negative curvatures, corendered with
coherence on the time slice and with amplitude on the
same vertical slice. Notice that the major faults exhibit a
positive curvature anomaly on the footwall, which is lat-
erally offset from a corresponding negative curvature
anomaly on the hanging wall. The bowl-shaped collapse
features exhibit a negative curvature value and appear
as blue ellipses (white and yellow arrows).

Aberrancy
Because aberrancy measures the lateral change (or

gradient) of the curvature along a picked or inferred
surface, it not only detects major faults that exhibit fi-
nite displacement, but also more subtle “subseismic-
resolution” faults that appears as flexures referring to
Figure 1. Figure 1a shows a finite offset across a fault,
which results in a strong coherence anomaly (high-
lighted in red). In contrast, in Figure 1b, if the offset
is distributed over a zone of conjugate faults, where the
offsets fall below seismic resolution. The continuous re-
flector no longer gives rise to a coherence anomaly.
Aberrancy measures the change in curvature, highlight-

Figure 14. Time slices at (a) t ¼ 0.3, (b) 0.7, and (c) 1.0 s through the inline component of the dip vector. Line AA′ indicates the
location of the vertical slice through the same volume shown in the previous figure. Time slices through total vector aberrancy at
(d) t ¼ 0.3, (e) 0.7, and (f) 1.0 s. Because aberrancy is the second derivative of the two dip components, the time slice in (d) exhibits
the acquisition footprint, whereas the time slice in (f) is noisy due to the poorly imaged basement reflectors. In contrast, the time
slice in (e) at the target level exhibits a high signal-to-noise ratio and accurately delineates the faulting and karsting.
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ing the zone of conjugate faults area that offset a horst
block to the east (shaded in red). Figure 10 shows the
same slices as in the previous two images, but now
through the total aberrancy volume. Orange and green
arrows indicate small grabens, whereas white arrows
indicate collapse features. Figure 11 shows the same
image, but now with the addition of coherence on the
time slice. In this data volume, the inability of coher-
ence to map subtle featues may be due to geology (a
single fault becoming a flexure, fault splay) or data qual-
ity issues (limit of seismic resolution of a fault offset, or
insufficient statics and velocities limiting the lateral res-
olution of the image). Figure 12 shows
horizon slices along the top Marble Falls
through the maximum, intermediate,
minimum, and total aberrancy vectors.
The total aberrancy vector provides a
single vector volume appropriate for
structural interpretation. Lineaments in
the total aberrancy vector horizon slices
indicate faults or flexures, whereas
flexures that cycle the color wheel (as
in the synthetic example shown in Fig-
ure 1) indicate collapse features. The
intermediate and minimum aberrancy
may indicate zones of conflicting flexure,
and depending on the tectonic model,
may potentially show areas of more in-
tense natural fracturing.

Aberrancy is a function of signal-to-
noise ratio (Figures 13 and 14). Note
the strong northwest–southeast-trend-
ing acquisition footprint in the shallow
slice shown in Figure 14a. Likewise,
the dip estimate in the basement in Fig-
ure 14c is also noisy. In contrast,
the time slice in Figure 14b through the
target Barnett Shale area exhibits a high
signal-to-noise ratio. The accuracy of
the aberrancy estimates are directly
related to the accuracy of the input com-
ponents of the structural dip vector (Fig-
ure 14d–14f). The image in Figure 14a is
contaminated by acquisition footprint,
whereas that in Figure 14c is noisy,
although useful structural lineaments
can still be extracted in total aberrancy
images.

Comparison between aberrancy and
coherence on cross sections

To better understand the collapse
patterns, flexures, faults, and their ex-
pression in the aberrancy attributes, we
display three vertical cross sections
through a seismic survey corresponding
to lines AA′, BB′, and CC′ in Figures 15,
16, and 17. Aberrancy seems to be less
sensitive to the chaotic zones seen in

vertical sections AA′ and BB′, showing flexures that
continue vertically through the section. In cross section
AA′ the anomalies along the top Marble Falls that are
better resolved by aberrancy (Figure 15). From left
to right, aberrancy delineates flexures (indicated by
green arrows), which coherence is unable to resolve.
In cross section BB′, the faults in the aberrancy image
appear as steeply dipping continuous thin lines, but as
stair-step blotches in coherence image (Figure 16). Sim-
ilarly, in cross section CC′, the collapse features are bet-
ter resolved by aberrancy, indicated by green arrows
(Figure 17).

Figure 16. Vertical slices along line BB′ through (a) aberrancy and (b) coher-
ence. Arrows indicate anomalies along the top Marble Falls that are better re-
solved by aberrancy. The faults in the aberrancy image appear as relatively thin,
vertically continuous vertical thin lines, but they appear as less continuous stair-
step blotches in coherence.

Figure 15. Vertical slices along line AA′ through (a) aberrancy and (b) coher-
ence. Arrows indicate anomalies along the top Marble Falls that are better re-
solved by aberrancy.
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Conclusion
Tectonic forces, diagenetic dissolution, diapirism,

and erosion all act to deform stratigraphic layers that
originally may have been deposited with relatively
featureless surfaces. Although coherence measures
disruptions in these surfaces, dip, curvature, and aber-
rancy measure changes in their orientation and mor-
phology. Lateral changes in dip give use to curvature,
whereas lateral changes in curvature give use to
aberrancy.

Positive and negative curvature pairs are commonly
used to map the footwall and hanging wall of normal
faults, bracketing a coherence anomaly. When the fault
offset falls below seismic resolution, and the coherence
anomaly disappears, the curvature pattern can be used
to map the fault further. In general, curvature anomalies
are typically juxtaposed to rather than aligned with a
fault. In contrast, aberrancy anomalies are aligned with
the fault, providing a quantitative measure than can not
only be mapped, but that also can be correlated with
image logs, production logs, chemical trace data, and
other measures of fractures.

Previously limited to computation from picked hori-
zons, we have extended aberrancy to provide volumet-
ric results of uninterpreted seismic data volumes. By
using along-wavelength calculations commonly used
in volumetric curvature computations implemented as
convolution operators in the original unrotated data
volume, we obtain results that are numerically stable,
computationally efficient, and geologically meaningful.

Although we compute the three aberrancy roots, their
value as independent measures has yet to be determined.
In contrast, the vector sum of these three roots is easier
to understand and interpret. Because it is a vector, total

aberrancy images can be azimuthally lim-
ited using to highlight and then numeri-
cally correlate hypothesized fracture
sets to production data.

Although aberrancy will provide supe-
rior images of certain geologic features,
it will complement rather than supplant
other structural attributes such as coher-
ence, curvature, and diffraction imaging.
Indeed, when used together, they pro-
vide deeper insight into the seismic data
volume.
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Appendix A

Computation of derivatives in a rotated coordinate
system

Reflector dip and the unit normal
Seismic interpreters commonly define reflector

dip vector u in terms of an inline dip component p1 and
crossline dip component p2 for time-migrated data in
units of s∕km or s∕kft:

u ¼ x̂1p1 þ x̂2p2 þ 1: (A-1)

We will assume the x1-axis of the survey to be north and
the x2-axis to be east, with all azimuths ϕ measured
clockwise from the north. Other survey orientations
require additional rotations before any of the rotations
described below. Computation of curvature and aber-
rancy requires the conversion of such dips to the depth
domain, either through depth migration, depth conver-
sion of a time-migrated data volume, or more com-
monly, using a single-conversion velocity, resulting in
the units of p1 and p2 being dimensionless (or more
explicitly, in km/km or kft/kft), much as a roofer mea-
sures the pitch when installing a new roof. Thus, p1
measures how many units down the horizon goes for
every unit traversed in the x-direction, and p2 measures
how many units down the horizon goes for every unit
traversed in the y-direction. The definition of a vector
requires a third component, which is a measure of how

Figure 17. Vertical slices along line CC′ through (a) aberrancy and (b) coher-
ence through several collapse features. Arrows indicate anomalies along the top
Marble Falls that are better resolved by aberrancy. The flexure indicated by the
magenta arrow in (b) exhibits a 19 ms offset over a distance of 79.2 m (260 ft),
whereas the more subtle flexure indicated by the white arrow in (a) exhibits only
a 8 ms offset more than 79.2 m (260 ft).
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many units down one goes for every unit traversed in
the x3-direction. This last value, which is not always ob-
vious, is identically 1.0 for all dips.

Given these definitions, the unit normal to the reflec-
tor surface, n ¼ ðn1; n2; n3Þ, where the axes are chosen,
such that n3 ≥ 0 (Figure A-1), is then

n ¼
 n1

n2

n3

!
¼ 1

ðp21 þ p22 þ 12Þ1∕2
 p1
p2
1

!
: (A-2)

After depth conversion of the vector p, the reflector dip
magnitude θ and dip azimuth ϕ are

θ ¼ ACOS

�
1

ðp2 þ q2 þ 12Þ1∕2
�

(A-3a)

and

φ ¼ ATAN2ðp2; p1Þ; (A-3b)

where the result of the function ATAN2 ranges be-
tween �180°.

Derivatives in the original (unrotated) coordinate
system

Using indicial notation, the derivative in the xlðl ¼
1; 2; 3Þ direction of vector dip component pn (n ¼ 1; 2)
in the unrotated coordinate system can be written as

pn;l ¼ ∂lpn; (A-4a)

whereas the second derivatives in the l and mðm ¼
1; 2; 3Þ directions are

pn;lm ¼ ∂m∂lpn: (A-4b)

In terms of implementation, we compute the gradient
of pn numerically, using a convolutional operator de-
scribed by Marfurt (2006). The second derivatives are
computed by cascading two first derivative convolution
derivative operators. The convolution of the more fi-
nally sampled vertical dimension is accelerated by com-
puting the convolution as a multiplication in the vertical
wavenumber domain.

The vector dip and its derivatives in the rotated
coordinate system

Di and Gao (2016) show that the equations for cur-
vature and aberrancy are much simpler if the data are
first flattened about the reflector normal at each voxel.
Such flattening requires a rotation –φ about the original
x3-axis, followed by a rotation −θ first about the new x 0

2
axis. The resulting rotation operator R is then2
64
p 0
1

p 0
2

p 0
3

3
75¼

0
B@
R11 R12 R13

R21 R22 R23

R31 R32 R33

1
CA
0
B@
p1
p2
p3

1
CA

¼

0
B@

cos θ cos φ −cos θ sin φ sin θ

sin φ cos φ 0

−sin θ cos φ sin θ sin φ cos θ

1
CA
0
B@
p1
p2
p3

1
CA; (A-5)

where p3 ¼ 1. Writing equation A-5 in indicial notation
using the Einstein summation convention (Einstein et al.,
1938):

p 0
k ¼ Rknpnðk ¼ 1; 2; 3Þ: (A-6)

The gradient ∂l is a vector operator and can also be
rotated:

∂ 0
j ¼ Rjl∂lðj ¼ 1; 2; 3Þ; (A-7)

whereas the rotated second derivative operator becomes

∂i 0∂j 0 ¼ Rim∂mRjl∂l ¼ RimRjl∂m∂lði ¼ 1; 2; 3Þ: (A-8)

Applying the operator in equation A-8 to the dip compo-
nents in equation A-6, the rotated derivatives of p 0

k are
thus

∂ 0
i∂ 0

j p
0
k ¼ Rim∂mRjl∂lRknpn ¼ RimRjlRknð∂m∂lpnÞ; (A-9)

where the terms in the parentheses are the previously
calculated derivatives in the original, unrotated coordi-
nate system given in equation A-4b. For efficiency, we
compute the required derivatives in the unrotated system
then using equation A-9.

APPENDIX B

Computing the extrema of apparent aberrancy

Derivation of the roots to the cubic equation
Di and Gao (2014) show that the apparent flexure f ψ

at azimuth ψ in the rotated coordinate system to be

Figure A-1. Schematic diagram showing a reflector surface,
zðx; yÞ (in gray) along with dip magnitude, dip azimuth, and the
unit vector n normal to the reflector surface.
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f ψ ¼ ∂3z 0

∂x 0
1∂x 0

1∂x 0
1
cos3 ψ þ 3

∂3z 0

∂x 0
1∂x 0

1∂x 0
2

cos2 ψ sin ψ

þ3
∂3z 0

∂x 0
1∂x 0

2∂x
0
2

cos ψ sin2 ψ þ ∂3z 0
∂x 0

2∂x
0
2∂x

0
2

sin3 ψ ; (B-1)

where z 0ðx 0
1; x

0
2Þ is their rotated picked surface. Com-

puting the derivative of f ψ , with ψ and setting the result
to zero results in an equation for three extrema:

df ψ
dψ

¼ cos3ψ ·

�
−

∂3z 0

∂x 0
1∂x 0

1∂x 0
2

tan3 ψ

−
�
2

∂3z 0

∂x 0
1∂x 0

1∂x 0
2

−
∂3z 0

∂x 0
2∂x

0
2∂x

0
2

�
tan2 ψ

þ
�
2

∂3z 0
∂x 0

1∂x 0
2∂x

0
2

−
∂3z 0

∂x 0
1∂x 0

1∂x 0
1

�
tan ψ þ ∂3z 0

∂x 0
1∂x 0

1∂x 0
2

�
:

(B-2)

Next, Di and Gao (2014) set y = tanψ and define coef-
ficients a, b, c, and d, to obtain a simple cubic equation
in s:

df ψ
dψ

¼ cos3 ψðay3 þ by2 þ cyþ dÞ: (B-3)

The coefficients of equation B-3 are third derivatives of
the rotated surface z 0. In our volumetric implementa-
tion, we do not pick any surfaces. The third derivatives
of z 0 in equation B-2 then become the second deriva-
tives of p 0

1 and p 0
2, resulting in

a ¼ −
1
2
ð∂ 0

2∂
0
2p

0
1 þ ∂ 0

1∂ 0
2p

0
2Þ; (B-4)

b ¼ −ð∂ 0
1∂ 0

2p
0
1 þ ∂ 0

1∂ 0
1p

0
2 − ∂ 0

2∂
0
2p

0
2Þ; (B-5)

c ¼ þð∂ 0
2∂

0
2p

0
1 þ ∂ 0

1∂ 0
2p

0
2 − ∂ 0

1∂ 0
1p

0
1Þ; (B-6)

and

d ¼ þ 1
2
ð∂ 0

1∂ 0
2p

0
1 þ ∂ 0

1∂ 0
1p

0
2Þ: (B-7)

Setting equation B-3 to zero provides the three extrema
of the cubic equation. There are multiple special cases
that would lead to equation B-3 equals to zeros. The first
is the degenerate case, where

cos3 ψ ¼ 0; and df ψ∕dψ ≡ 0:

In this case, ψ ¼ 90°.
For the nondegenerate case, where cos3 ψ ≠ 0, one

solves the cubic equation

ay3 þ by2 þ cyþ d ¼ 0: (B-8)

Computation of the roots to the cubic equation
Following Fan (1989), one defines the following var-

iables to facilitate the computation of the roots of equa-
tion B-3:

A ¼ b2 − 3ac;

B ¼ bc − 9ad;

C ¼ c2 − 3bd; and

Δ ¼ B2 − 4AC: (B-9)

There are several cases:
Case 1: A ¼ B ¼ 0 (three identical roots):

s1 ¼ s2 ¼ s3 ¼ −
b
3a

(B-10)

Case 2: A ≠ 0; B ≠ 0;Δ > 0 (only one real root)
(Figure B-1):

s1 ¼
−b − ðY 1Þ1∕3 þ ðY 2Þ1∕3

3a
; (B-11)

where

Figure B-1. Flexure f ðψÞ showing one independent ex-
tremum. Figure B-2. Flexure f ðψÞ showing two independent extrema.
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Y 1 ¼ Abþ 3a

�
−Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2

�
and

Y 2 ¼ Abþ 3a

�
−B −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2

�
: (B-12)

Case 3: A ≠ 0; B ≠ 0;Δ ¼ 0 (three real roots, two of
which are identical):

s1 ¼ −
b
a
þ B

A

and s2 ¼ s3 ¼ −
B
2A

: (B-13)

Case 4: A ≠ 0; B ≠ 0;Δ < 0 (three independent real
roots) (Figure B-2):

s1 ¼
−b − 2A1∕2 cos Λ

3a
;

s2 ¼
−bþ A1∕2ðcos Λþ ffiffiffi

3
p

sin ΛÞ
3a

; and

s3 ¼
−bþ A1∕2ðcos Λ −

ffiffiffi
3

p
sin ΛÞ

3a
; (B-14)

where

Λ ¼ 1
3
arccos T and

T ¼ 2Ab − 3aB

2A3∕2 : (B-15)

The resulting values of ψ represent an azimuth in the
rotated plane. To compute ψ projected on the x-y plane
of the original unrotated coordinate system, one must
first create a vector q 0

Figure C-1. Horizon slices along the top Marble Falls through the total aberrancy magnitude, dip magnitude, curvedness, and the
coherence volume. The total aberrancy is the vector sum of the maximum, intermediate, and minimum aberrancy vectors.
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0
@ q 0

1
q 0
2

q 0
3

1
A ¼

0
@ cos ψ

sin ψ
0

1
A; (B-16)

and rotate it back using the transpose of R

q ¼ RTq 0: (B-17)

The desired aberrancy azimuth measured from north is
then ATAN2ðq2; q1Þ.

Appendix C

Magnitude of aberrancy
The use of color by interpreters is subjective. Many

interpreters prefer to display just the magnitude of aber-
rancy. We have emphasized the point that aberrancy is
a vector, whereby the azimuth shows the orientation of
the flexure. However, there are applications (e.g., cor-
endering an edge attribute-like aberrancy with imped-
ance inversion or peak frequency), where one would

rather use a gray scale. We have included an additional
figure that shows coherence, dip magnitude, curvedness,
and the magnitude of aberrancy, all plotted against a
gray-scale color bar in Figure C-1.

Appendix D

Apparent aberrancy
The maximum aberrancy is larger in magnitude than

the intermediate and minimum aberrancy. The problem
that we have with aberrancy is that the roots (at least at
present) cannot be organized in a manner that separates
geologic features, such as k1 and k2 do for curvature. As
the crossing flexures become larger and smaller, we will
encounter situations in which the maximum aberrancy
will follow two separate flexures rather than a single
flexure that is losing strength when it crosses a second
one gaining strength. Our current fix for this issue is to
provide a suite of apparent aberrancy images, sorted by
azimuthal windows (Figure D-1).

Figure D-1. Because each aberrancy anomaly is described by a magnitude and an azimuth, one can generate a suite of apparent
aberrancy by either explicitly filtering the attribute volumes, or as shown in this suite of six images at 30° increments, using opacity
resulting in image that show flexure trending at (a) 0° and −180°, (b) 30° and −150°, (c) 60° and −120°, (d) 90° and −90°, (e) 120°
and −60°, and (f) 150° and −30°.
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