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Abstract

Volcanic rocks with intermediate magma composition indicate distinctive patterns in seismic amplitude data.
Depending on the processes by which they were extruded to the surface, these patterns may be chaotic, mod-
erate-amplitude reflectors (indicative of pyroclastic flows) or continuous high-amplitude reflectors (indicative
of lava flows). We have identified appropriate seismic attributes that highlight the characteristics of such pat-
terns and use them as input to self-organizing maps to isolate these volcanic facies from their clastic counter-
part. Our analysis indicates that such clustering is possible when the patterns are approximately self-similar,
such that the appearance of objects does not change at different scales of observation. We adopt a workflow
that can help interpreters to decide what methods and what attributes to use as an input for machine learning
algorithms, depending on the nature of the target pattern of interest, and we apply it to the Kora 3D seismic
survey acquired offshore in the Taranaki Basin, New Zealand. The resulting clusters are then interpreted using
the limited well control and principles of seismic geomorphology.

Introduction
In today’s modern era, the most effective way to gain

knowledge on how a certain geologic feature such as a
lava flow appears in seismic data is to do a Google
search and type a few key words such as “lava flow seis-
mic” then go to the images section and even go through a
couple of scientific publications, until we reach an “aha
moment” when we find patterns that appear similar to
those in our data set. This type of pattern recognition
is easy for a human interpreter but is quite difficult for
computers. The advantage of computers is that once
such a task is well-defined, they can apply the analysis
to every voxel in a large 3D seismic data volume, perhaps
identifying subtle features that may have been over-
looked by an overworked interpreter. Machine learning
pattern recognition of seismic data goes beyond automa-
tion of time-consuming analysis tasks. Specifically, each
prediction can be weighted by a confidence value, which
can be used in subsequent risk analysis.

Machine learning was first used by Alan Turing
to decipher the Nazi “enigma” code (Gunderson, 1964).
Since then, it has branched out to nearly all forms of
language analysis, including voice recognition and
translators, and it has expanded into visual communica-
tion, marketing, and social media. Early machine learn-
ing applications to seismic facies analysis include work
by Meldahl et al. (2001) and West et al. (2002), who use
multilinear feed-forward neural networks with seismic
attributes to produce a probability volume of gas chim-

neys. Linari et al. (2003), Coleou et al. (2003), and Po-
upon et al. (2004) use seismic amplitude waveform and
self-organizing maps (SOMs) to define zones of interest.
Similarly, Verma et al., (2012), Roy et al. (2013), Roden
et al. (2015), and Zhao et al. (2016) use volumetric seis-
mic attributes fed into SOM algorithms to find different
facies in shale resources plays. Qi et al. (2016) and Olor-
unsola et al. (2016) use generative topographic mapping
(GTM) to try to separate salt from clastic, mass trans-
port deposits (MTDs) from layered sediments in the
Gulf of Mexico, and producing from tight facies in
the Granite Wash in the Texas Panhandle, respectively.-
Lubo-Robles (2018) applies independent component
analysis of spectral components to try to predict sandy
facies in the Miocene Moki A Formation in the Taranaki
Basin, New Zealand.

Machine learning techniques are relatively simple
mathematical algorithms that can learn from and gen-
erate clusters/classes based on patterns in (or interre-
lationships between) the data. Depending upon data
availability, we can use either supervised or unsuper-
vised algorithms. In supervised classification, the inter-
preter defines facies of interest, either by selecting
specific voxels (Meldahl et al., 2001) or by drawing pol-
ygons around facies of interest (West et al., 2002; Qi
et al., 2016), which serve as “training data” that are used
to establish the relationship between input and output.
Once trained, the algorithm is then applied to another
subset of “validation data” (interpreted facies not used
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in the training step) to determine if the algorithm is
sufficiently accurate. If the validation is successful, the
algorithm is then applied to the entire seismic data
volume.

In principle, unsupervised classification requires no
interpreter input. In practice, the interpreter strongly
biases the results of the algorithm by choosing a suite
of attributes that best differentiate facies of interest. In
a seismic interpretation context, this machine learning
technique extracts patterns that exhibit a similar attrib-
ute expression for similar geologic facies, displaying
these similar expressions, or clusters, using a 2D
color-coded palette to allow subtle patterns to be iden-
tified by the interpreter (Qi et al., 2016; Zhao et al.,
2016, 2017).

Depending on the objective, supervised and unsuper-
vised techniques use seismic attributes as input, in
which the impedance and anisotropy attributes provide
critical information for geomechanical clustering. In the
absence of sufficient well control, instantaneous, geo-
metric, spectral, and texture attributes provide critical
information for interpreting seismic geomorphology
from clustering (Zhao et al., 2016; Infante-Paez and
Marfurt, 2017; Infante-Paez, 2018).

Most recent studies in seismic interpretation have
been focused on applying and comparing different
machine learning methods, such as the multilayer per-
ceptron network, SOMs, the support vector machine,K-
means, and GTMs (Meldahl et al., 2001; Roy et al., 2013;
Qi et al., 2016; Snyder, 2016; Zhao et al., 2016).

We begin this study by defining the nature of the seis-
mic patterns represented by volcanics in our seismic
volume. We then propose a workflow that will allow in-
terpreters to decide what machine learning algorithm to

use, depending on the nature of the target pattern (TP).
Next, we compute mathematically independent candi-
date attributes that highlight the continuity (such as
gray-level co-occurrence matrix [GLCM] entropy), am-
plitude (peak spectral magnitude), and frequency (peak
spectral frequency) of these TPs, with the goal of deter-
mining which input attributes best differentiate the vol-
canics from the surrounding clastic sediments. Finally,
we input the GLCM entropy, peak spectral magnitude,
and frequency attributes into the SOM, to interpret the
seismic geomorphology of the internal elements of the
Kora volcano.

Methodology
Selection of the TPs

The TPs in our study include some of the internal and
external elements of the Kora volcano, as well as adja-
cent volcanics from the Mohakatino Volcanic Belt
(MVB). These volcanics form potential analogs to the vol-
canics in the Songliao Basin, China (Figure 1) and andes-
ites from the Jatibarang field in Java (Figure 2), which
have produced more than 1.2 billion barrels of oil and
>2.7 trillion cubic feet of gas between 1969 and 1990
(Kartanegara et al., 1996).

Figure 3 displays a vertical slice through the Kora 3D
survey, where multiple TPs are highlighted by yellow
boxes. Seismic-to-well ties indicate that these patterns
have been drilled by exploration wells (Figure 4) vali-
dating the presence of volcanics.

Nature of the TPs
We define our human interpretation patterns as

“monogenetic,” “composite,” and “intricate” patterns in
which the goal is to examine relation-
ships that can be evaluated by a machine.

Monogenetic seismic patterns
We define a monogenetic pattern as

a facies that consists of a single seismic
pattern. This pattern is statistically con-
sistent, translational vertically and hori-
zontally. The pattern is also consistent at
different scales, such as conformal or
chaotic reflectors within a 20 × 20 × 20
versus a 5 × 5 × 5 voxel window. Mono-
genetic seismic patterns are related to
physical self-similarity, where the appear-
ance of objects does not change at dif-
ferent scales of observation (Lam and
Quattrochi, 1992; Dimri et al., 2011; Das-
gupta, 2013; Herrera et al., 2017). Exam-
ples of monogenetic seismic patterns are
shown in Figure 5.

Composite seismic patterns
Composite patterns are those facies

that consist of two or more simpler pat-
terns. Composite patterns do not entirely

Figure 1. (a) Three-dimensional map of buried volcanos in the Xujiaweizi
graben in the Songliao Basin, China, showing several wells targeting the buried
volcanoes (Wang and Chen, 2015). (b) Buried volcanoes in the Taranaki Basin,
New Zealand (after Giba et al., 2013; Bischoff et al., 2017).
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preserve their character laterally, vertically, or at differ-
ent scales, but they can still be distinguished from
surrounding patterns (e.g., Figures 6 and 7).

Intricate seismic patterns
Intricate patterns are those facies that dramatically

change their character with scale and location, and they

Figure 2. Comparison of the size and styles of (a) the Jatibarang field in Java that produced more than 1.2 Bbl. from fractured
andesites (after Kalan et al., 1994) and (b) the Kora and adjacent volcanics. Even though the structural style in the Kora area is not
exactly the same when compared with Jatibarang, the volcanics in Kora can potentially be fractured due to the radial and major rift
faults.

Figure 3. (a) Composite vertical slice through the Kora 3D survey in which multiple patterns associated with the extrusive Kora
volcano are highlighted by yellow boxes. (b) Expanded image of these four patterns and their descriptions. TP, target pattern.
Seismic data courtesy of NZP&M.
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are far from being self-similar; see, for example,
Figure 8.

We hypothesize that using appropriate seismic attrib-
utes as input to a machine learning algorithm (e.g.,
SOM), monogenetic patterns will be represented by a
single cluster. Composite patterns will be represented
by two or more clusters, resulting in a machine learning
classification that requires subsequent human “clumping.”
Intricate patterns are represented by multiple clusters,
providing an image that may offer little value over the
original seismic amplitude volume. Although composite
and intricate patterns may be represented by more than
one cluster, a given “cluster” may also represent more
than one facies. For example, clustering based on reflec-
tor continuity and parallelism might result in marine
shales and deepwater fans clumped together. To separate
them, the interpreter might add energy or peak frequency
as additional input data to break them apart. For this rea-
son, if the multiple clusters representing an intricate pat-
tern are unique, they can be subsequently clumped after
clustering to form a single facies. Such clumping, which is

desired (depending on the pattern of interest) is per-
formed implicitly when computing the Bhattacharya dis-
tance when using generative topologic mapping (Qi et al.,
2016) where a probability density function, rather than a
single prototype vector is computed for each voxel in the
training data set. The sum of these PDFs can then re-
present more intricate patterns.

Convolutional neural network (CNN) may provide
an alternative means to addressing intricate patterns.
In the simplest workflow, the interpreter provides the
original seismic amplitude data. Internally, the machine
convolves adjacent voxels, computing its own attrib-
utes for evaluation. Alternatively, Qi (2018) uses CNN
and a suite of input seismic attributes to predict frac-
tures seen in image logs.

Computers have several advantages over humans:
(1) They can perform repetitive analysis of billions of
voxels without tiring, (2) they can be much more quan-
titative, and (3) they can easily compare similarities and
differences among more than three attributes at the
same voxel. In contrast, humans have advantages over

Figure 4. Wells that penetrate volcanoes and volcaniclastics and their corresponding seismic expression in the Kora 3D seismic
survey. Track 1 displays the caliper log, track 2 displays the gamma ray, and track 3 displays the density porosity log. Note the low
gamma-ray response in all of the wells consistent with intermediate versus felsic-magma composition (after Infante-Paez and
Marfurt, 2017).
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machines in that they can (1) see patterns on a much
larger scale, thereby identifying a pattern in context,
(2) compare patterns to those seen in others seismic

surveys or in outcrop, and (3) integrate patterns as dis-
crete components or elements that result from a geo-
logic process.

Figure 5. Examples of approximately self-similar monogenetic seismic patterns TP 1 and TP 2. Note the scale bar in the expanded
boxes. These patterns are relatively easy for a machine to identify. Seismic data are courtesy of NZP&M.

Figure 6. Example of a composite seismic pattern. Note the different scales in the expanded boxes show TP 3. The black dotted
polygon in the time slice shows the extension of TP 3. TP, target pattern. Seismic data are courtesy of NZP&M.
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Figure 7. Examples of composite seismic pattern. Note the different scales in the magnified boxes. The black dotted polygon in
the time slice shows the extension of TP 4. TP, target pattern. Seismic data are courtesy of NZP&M.

Figure 8. Example of an intricate seismic pattern. Note that the character of the pattern is not the same at different scales. The
pattern also changes laterally form flatter, converging to more steeply dipping, subparallel reflectors. This pattern is more difficult
for a machine to identify. Seismic data are courtesy of NZP&M.
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Seismic attribute selection
Figures 9, 10, and 11 demonstrate the importance of

the input attributes to unsupervised machine learning.
The goal is to try to organize the people in Figure 9a,
who work at a university and determine which of them
perform similar jobs. From the top and moving clock-
wise, we have the dean of the Mewbourne College of
Earth and Energy Dr. J. Mike Stice, Ph.D. candidate
in geophysics Lennon Infante, geophysics professor
Dr. Kurt. J. Marfurt, and geology professor Dr. Roger
Slatt. From their headshots, we can extract additional
information, such as their hair length and smile (happi-
ness). The fact that one of them is dean of the College of
Earth and Energy, two of them are professors, and the
last one is a student, suggest they have different incomes.
These three attributes, the happiness, hair length, and in-
come, provide the means to place the two
professors in the samecluster (Figure 9b).
Although the SOM put these four people
into three different clusters, it cannot tell
which cluster represents which job.

In reality, we cannot measure income
from the input data (headshots). A more
realistic scenario would be the one
shown in Figure 10. Some of the attrib-
utes that can be extracted from the input
data are gender, hair length, clothes type,
and happiness (smile on their faces).
When the gender, clothes, and hair length
attributes are fed into the SOM, we ob-
tain three clusters, which is the correct
number of different jobs. However, one
of the clusters is erroneous because it
groups Professor Marfurt with Dean
Stice, who have different jobs. Selecting
the happiness attribute instead of hair
length produces different clusters (Fig-
ure 11). In this case, the SOM outputs
only one cluster. From this analogy, it
is clear that the input attribute selection
and not the SOM algorithm itself produ-
ces erroneous results.

Voxel-based approach for classify-
ing monogenetic seismic patterns

Given that the approximately self-sim-
ilar TPs of interest (Figure 4) preserve
their character at different scales and dis-
tinct locations, we use the workflow de-
scribed in Figure 12 to select attributes
that differentiate the volcanics from each
other and from the surrounding clastic
sediments.

There are different approaches that a
seismic interpreter can use to select the
input seismic attributes for clustering of
seismic facies. A simple but time-consum-
ing and potentially dangerous approach is
to apply all possible attributes and deter-

mine which combination best correlates with the desired
facies. Kalkomey (1997) warns that this workflow may
lead to false predictions. Principal component analysis
reduces a suite of correlated attributes into a smaller
number of composite attributes. Roden et al. (2015) use
the first principal components to determine which attrib-
utes are most important in representing the seismic data
volume. Unfortunately, such choices do not necessarily
guarantee the differentiation of the pattern of interest,
particularly if one or more of these patterns only re-
present 1%–5% of the data. Moreover, this approach may
be suitable as a first pass for exploring the data, but it
could fail when trying to isolate a specific pattern such
as an MTD or pyroclastic flows. Thus, we recommend
the calculation of seismic attributes based on the qualita-
tive description of the patterns (Figure 13) (analogous to

Figure 9. Headshots of four people who work at a university. (a) The input data
are three attributes that somehow distinguish them — hair length, happiness,
and income. (b) Using this combination of attributes, the machine learning algo-
rithm correctly clusters the two professors into the same group, and the student
and the dean are in their own separate group. Note the three clusters in which the
two professors form one cluster and the student and the dean form two different
clusters.

Figure 10. Headshots of the same four people shown in Figure 9 in which the
input attributes are hair length, gender, and dress code. All four samples are male
and have similar dress code (wearing a tie). For this reason, the clustering is
driven by hair length alone, misclustering one of the professors with the dean.
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how a geologist describes facies in outcrops or in core).
Because most commercial and research software that im-
plement machine learning techniques do what they are
supposed to do, e.g., organize the data into clusters, the
challenge for interpreters in applying SOM and similar al-

gorithms to seismic data is the attribute selection. For ex-
ample, TP 3 in Figure 6 is characterized by semichaotic,
low- to moderate-amplitude reflectors with occasional
isolated continuous, moderate-amplitude reflectors that
are parallel. During the description process, key words

such as “chaotic reflectors” can help us
think of seismic attributes that best high-
light such features (such as the GLCM
texture entropy attribute). TP 1 is charac-
terized by continuous high-amplitude re-
flectors. TP 2 is characterized by chaotic,
moderate-amplitude reflectors, whereas
TP 3 and TP 4 are characterized by semi-
continuous to semichaotic, moderate- to
high-amplitude reflectors with few iso-
lated parallel reflectors. Attributes that
measure such observations include the
amplitude attributes (envelope, root-
mean square [rms] amplitude, energy,
and colored inversion), continuity attrib-
utes (GLCM entropy, chaos, and coher-
ence), frequency attributes (the peak
frequency, average frequency, and band-
width), and conformity attributes (reflec-
tor convergence and parallelism).

Figure 11. The same “samples” as in Figures 9 and 10 in which the attributes are
clothing, gender, and happiness. In this example, the SOM results in only one
cluster, suggesting a happy conformity in this university, but no indication of
the role occupied by each person.

Figure 12. Proposed workflow to decide clustering of the patterns approach in seismic data.
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Spectral components are also helpful,
but they are more difficult for a human
interpreter to assign to a given seismic
pattern. Seismic patterns exist at zones
(geologic age), so one can constrain
the attribute analysis within a zone of in-
terest bounded by seismic horizons to
minimize variability not only to geology
but also to seismic resolution.

Seismic attributes that assist inter-
preters versus seismic attributes
that assist machine learning

For monogenetic and composite seis-
mic patterns to be successfully clustered
using the voxel approach, all of the input
attributes should highlight the same
sample (voxel) in the seismic volume.
Therefore, we must differentiate among
attributes that assist the interpreter in
highlighting key geologic features (Fig-
ure 14) and attributes that assist machine
learning algorithms to isolate specific
geologic features (Figure 15). That is,
if the target seismic features to map are
faults, one should avoid using input
attributes to machine learning such as
the most-positive and most-negative cur-
vatures and coherency together. Though
they do highlight the fault in a visual way
that is clear to a human interpreter, they
do not highlight the fault at the same seis-
mic sample (voxel). The same principle
applies to different facies such as sink-
holes. If one is trying to isolate sinkholes
using a clustering technique such as
SOM, feeding complementary attributes
such as the most-positive and most-neg-
ative curvatures and coherency would
not produce an accurate result because
these attributes highlight various parts
of the sinkhole but not at the same voxel.
The most obvious example is combina-
tions of spectral components, which
differentiate thicknesses and lithologies
within a channel system, and coherence,
which highlights the channel edges. Seis-
mic noise also results in patterns that
may be mentally “filtered out” by a hu-
man interpreter but form (ideally, its
own) noise clusters.

Seismic attribute expression of
volcanic rocks that assist machine
learning clusters.

Based on the descriptions (e.g., con-
tinuous versus chaotic, low-amplitude
versus high-amplitude) of the TP, the in-
put seismic attributes for clustering of

Figure 13. Proposed workflow to decide which seismic attributes to select for
machine learning.

Figure 14. Cartoon showing a normal fault and its attribute response. Such red-
yellow and blue patterns are easily recognized by a human interpreter. However,
because they occur at laterally shifted voxels, they are more difficult to interpret
for a machine. The most-positive curvature k1 (in red) illuminates the footwall,
the most-negative curvature k2 (in blue) illuminates the hanging wall, whereas
coherence (in yellow) illuminates the fault discontinuity (after Qi, 2018).

Figure 15. Cartoon showing the same normal fault as in the previous figure. The
attributes are coherence, dip magnitude, and aberrancy (Qi, 2018). These three
attributes image the fault at the exact same location (voxel) and are therefore
amenable to machine learning for clustering (after Qi, 2018).
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these patterns would be three types of
attributes that highlight the amplitude,
continuity, and frequency content. Using
the same composite section fromFigure 3
as a reference, we compute a suite of can-
didate attributes to visually evaluate the
attribute response of the TPs (Figures 16,
17, 18, 19, 20, 21, and 22). Figure 17 shows
the peak spectral magnitude calculated
from the continuous wavelet transform
(CWT). This attribute gives a response
similar to the rms amplitude and high-
lights the strength of the reflectors. The
peak spectralmagnitude shows that there
are differences in all TPs. TP 1 is charac-
terized by high magnitude, whereas TP 2
is highlighted by low magnitudes. How-
ever, TP 3 and TP 4 consist of low tomod-
erate magnitude.

The GLCM provides a group of tex-
ture attributes: homogeneity, entropy,
dissimilarity, contrast, mean, energy,
correlation, and variance. Hall-Beyer
(2007) defines texture as “an everyday
term relating to touch that includes such
concepts as rough, silky, and bumpy.
When a texture is rough to the touch,
the surface exhibits sharp differences
in elevation within the space of your fin-
gertip. In contrast, silky textures exhibit
very small differences in elevation.”
Seismic textures work in an analogous
manner with elevation replaced by am-
plitude, and the probing of a finger re-
placed by a rectangular or elliptical
analysis window oriented along the
structure. From these eight attributes,
the most useful are entropy and homo-
geneity (see, Gao, 2003; Qi et al., 2016;
Gao et al., 2017; Zhao et al., 2017; Mar-
furt, 2018), al though they are somewhat
coupled. Detailed examination of the en-
tropy and homogeneity of TP 1 and TP 2
(Figures 18 and 19) shows that TP 1 dis-
plays moderately low values of entropy
and moderately high values of homo-
geneity. The opposite is true for the
TP 2, suggesting that we can separate
these two patterns using these texture
attributes. TP 3 and TP 4 display zones
where the entropy is high to moderate.
High values of entropy mean that the re-
flectors are chaotic (not layer cake).
Figure 20 shows the peak spectral fre-
quency attribute, which displays the
dominant frequency for the entire sec-
tion. In the volcanic sequence, the peak
spectral frequencies range between 40
and 50 Hz. Although TP 1, TP 3, and

Figure 16. The same vertical amplitude slice as in Figure 3. The color scale has
been changed to black and white to facilitate corendering with seismic attrib-
utes. The yellow boxes represent extrusive volcanics and volcaniclastics. Seis-
mic data are courtesy of NZP&M.

Figure 17. Vertical amplitude slice corendered with peak spectral magnitude.
The same seismic section as in Figure 3. The yellow boxes represent extrusive
volcanics and volcaniclastics. Seismic data are courtesy of NZP&M.

Figure 18. Vertical amplitude slice corendered with GLCM entropy. The same
seismic section as in Figure 3. The yellow boxes represent extrusive volcanics
and volcaniclastics. Seismic data are courtesy of NZP&M.
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TP 4 exhibit a similar range of frequencies, TP 2 is char-
acterized by low to mid frequencies (15–25 Hz).

In the same way, Figures 21–23 show the magnitude
of reflector convergence, the dip magni-
tude, and the coherence attribute, all
corendered with the seismic amplitude,
highlighting different aspects of the seis-
mic patterns of interest, but not at the
same voxel. Therefore, for the Kora 3D
survey, we conclude that the attributes
that would assist machine learning are
(1) the texture attributes, which are a
measure of continuity, (2) peak spectral
magnitude, which measure the strength
of the reflectors, and (3) peak spectral
frequency, which measures the dominant
frequency. These attributes are math-
ematically independent, but coupled
through the geology, making them candi-
dates for SOM.

SOMs and seismic geomorphology
In seismic interpretation, the SOM is

a clustering technique that extracts sim-
ilar patterns across multiple seismic
attribute volumes and displays those
similarities as a color-coded map, with
similar colors representing clusters that
a human interpreter can visualize as
similar facies (Zhao et al., 2016). Be-
cause several of the attributes that we
use (GLCM entropy and homogeneity,
peak magnitude, and peak frequency)
measure spatial patterns, SOM will be
able to cluster spatial patterns as well.
The SOM workflow used in this study
is shown in Figure 24. The input attrib-
utes to feed the SOM are of three types:
attributes that highlight the continuity
— how layer cake the reflectors are
— (homogeneity and entropy), the am-
plitude (peak magnitude), and the fre-
quency (peak frequency) of the TPs.
These attributes are extracted from the
raw amplitude data using software de-
veloped at the University of Oklahoma
(Matos et al., 2011; Qi et al., 2016).

We input the previously computed
seismic attributes into the SOM algo-
rithm. Because we are using four attrib-
utes at each voxel, the analysis is in the
4D attribute space. In this case, the ob-
jective of SOM is to fit a deformed 2D
surface (called a manifold) to the distri-
bution of the data points living in 4D
space. Each data point is projected onto
the nearest part of a manifold, which is
then mapped to a 2D color bar. In this
manner, voxels that have a similar re-

sponse (they lie next to each other in 4D space) project
onto nearby locations on the manifold and are dis-
played as similar colors. In contrast, voxels that exhibit

Figure 19. Vertical amplitude slice corendered with GLCM homogeneity. The
same seismic section as in Figure 3. The yellow boxes represent extrusive
volcanics and volcaniclastics. Seismic data are courtesy of NZP&M.

Figure 20. Vertical amplitude slice corendered with Peak spectral freq. The
same seismic section as in Figure 3. The yellow boxes represent extrusive
volcanics and volcaniclastics. Seismic data are courtesy of NZP&M.

Figure 21. Vertical amplitude slice corendered with magnitude of reflector con-
vergence. The same seismic section as in Figure 3. The yellow boxes represent
extrusive volcanics and volcaniclastics. Seismic data are courtesy of NZP&M.
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a very distinct attribute behavior (they lie far from each
other in 4D space) project onto different parts of the
manifold and appear as different colors. Details of SOMs
applied to seismic data can be found in Roy et al. (2013),
Roden et al. (2015), and Zhao et al. (2016).

Internal elements of the Kora volcano
Integrating well reports from Kora-1, -2, and -3

(where core data were acquired) and their seismic pat-
terns, provide geologic control to the chaotic moderate-
amplitude seismic pattern. Internally to the Kora vol-
cano, the seismic data exhibit two main patterns: strong
continuous (TP 1) and moderate chaotic reflectors
(TP 2). According to the core data and seismic-to-well
ties from wells Kora-1 through 3, we interpret that the
penetrated chaotic, moderate-amplitude reflectors cor-
respond to pyroclastic flows whereas the geologic proc-
ess corresponding to the strong, continuous reflectors
remains unknown.

Figure 25 shows a vertical slice connecting the four
Kora wells illustrating the distribution of TP 1 and TP 2.

The same vertical slice is then shown with the SOM
clusters (Figure 26). From these clusters, we can ob-
serve three distinctive colors (seismic facies). The or-
ange/yellowish colors represent the continuous, high-
amplitude reflectors (TP 1), whereas the purple/dark-
blue colors represent the chaotic, moderate-amplitude
reflectors (TP 2). A third, green, color is more represen-
tative of the clastic sediments underlying and onlapping
onto the volcano, whereas the geometry of the orange/
yellow color appears to be more dominant adjacent to
the Kora-4 well. Extracting the SOM clusters on top of
the time structure map of the volcano shows its geo-
morphology. The orange/yellow facies occur mainly on
the western flank of the volcano, whereas the purple/
dark-blue facies occur more on the eastern flank and
among the orange/yellow facies (Figure 27). The solid
black line highlights these unknown facies. Based on
and understanding of volcanic processes, geomorphol-
ogy and structural relation of these facies to the vol-
canic cone, we interpret the orange/yellow facies to be
lava flows such as those reported by Klarner and Klarner

(2012), Holford et al. (2012), and McAr-
dle et al. (2014).

External elements of the Kora
volcano and adjacent volcanoes
Subaqueous flows

Volcanic eruptions allow the volcano
to grow. A coned geometry such as the
one observed in the Kora and nearby
volcanoes suggests that the volcanoes
grew by preferential addition of material
to the summit area (Magee et al., 2013).
Furthermore, a discontinuous to semi-
chaotic region with short (100 m) con-
tinuous reflectors, creating a distinctive
seismic pattern (TP 3) can be seen as
far as 20 km to the northwest from the
Kora volcano. Fortunately, this and other
similar seismic patterns have been
penetrated by several wells offshore Tar-
anaki Basin, including the Ariki-1, Arawa-
1, Kanuka-1, Moana-1, and other wells
(well report series). Well-to-seismic ties
coupledwith completion reports indicate
that this seismic pattern is representative
of sediments with significant volcaniclas-
tic content called theMohakatino Forma-
tion named by Hansen and Kamp (2004).
The Ariki-1 well drilled through semicon-
tinuous, semichaotic seismic patterns
(Figure 4) similar to the MTDs previously
documented by Posamentier and Kolla
(2003), Lee et al. (2004), Dallas et al.
(2013), and Qi et al., (2016) in steep slope
clastic environments. In our seismic sur-
vey, the MTDs seem at least partially
originated from the west flank of the Kora
volcano (Figure 28a and 28b). The Ariki-1

Figure 22. Vertical amplitude slice corendered with dip magnitude. The same
seismic section as in Figure 3. The yellow boxes represent extrusive volcanics
and volcaniclastics. Seismic data are courtesy of NZP&M.

Figure 23. Vertical amplitude slice corendered with coherence. The same seis-
mic section as in Figure 3. The yellow boxes represent extrusive volcanics and
volcaniclastics. Seismic data are courtesy of NZP&M.
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well completion report defines cuttings from the interval
2256 to 2556m as volcaniclastic deposits, in which “Tuffa-
ceous material is most abundant in the lower part of the
formation and decreases upwards, reflecting the waning
of volcanic material.” The lithology varies from gray mud-
stoneswith a tuffaceousmatrix including biotite, chlorite,
pyrite, and at the base, light- tomoderate-gray sandy tuffs.
These tuffs contain abundant angular to subangular, fine-
to-medium-grained, poorly sorted clasts of biotite, garnet,
olivine, hornblende, and aphanitic material together with
quartz and feldspar of sedimentary and
volcanic origin. Comparable descriptions
are also given for the cuttings of the other
wells that drilled through similar seismic
patterns in the Arawa-1, Kanuka-1, and
Moana-1 well series reports. Given the
morphology of TP 3 (Figure 28a), it is
possible to infer a depositional process.
Figure 28c shows a scour-like base of ap-
proximately 3 km width that spreads out
in a fan-like geometry beyond 20 km, the
limits of the 3D survey reaching Ariki-1.
This geometry is highlighted by SOM
purple/dark blue facies where the chosen
input seismic attributes (entropy/homo-
geneity, peak magnitude, and peak fre-
quency) highlight the characteristics of
TP 3. Interestingly, although the nature of
TP 3 is considered to be composite, it is
still possible to isolate and map TP 3 be-
cause this pattern is very different from
the background clastic sediments. The
fact that the reflectors in TP 3 are far from
being parallel (indicative of tuff clouds
settling in volcanic facies) and that they
form a fan-like geometry, indicates that
the process that deposited the volcani-
clastic material was a subaqueous flow.
We use the term volcanic MTD to de-
scribe these volcaniclastics.

In addition, Figure 28b shows evi-
dence of sill junctions that appear to
have erupted lava onto the west flank
of the Kora volcano, which could explain
the spatial distribution of these flows in
the western flank of Kora (Figure 27).

Pyroclastic flows from volcanoes
adjacent to Kora

Given the proximity of TP 4 to the
Kora volcano, it is reasonable to attrib-
ute TP 4 to a younger eruption in the his-
tory of this volcano. Nevertheless, the
distribution of the submarine volcanoes
of the MBV mapped by Giba et al. (2010)
(Figure 2b), depicts younger (8–4 Ma
compared with Kora’s 16–12 Ma) volca-
noes to the east of Kora. According to
the mapped geometry of these andesitic

volcanoes, they appear to coalesce instead of forming a
single volcanic cone like Kora. Furthermore, their aerial
extent appears to be at least five times larger than Kora.
Detailed examination of the Kora 3D seismic survey in-
dicates that TP 4 is found only on the eastern section
onlapping onto the Kora volcanic edifice (Infante-Paez
and Marfurt, 2017; Infante-Paez, 2018). Therefore, we
interpret TP 4 to be related to the activity of the volca-
noes located east of Kora, which is also confirmed by
the SOM clustering results (Figure 29), in which the pur-

Figure 24. Workflow implemented for clustering analysis using SOMs.

Figure 25. Vertical section connecting the four Kora wells through the seismic
amplitude volume showing the distribution of TP 1 and TP 2 (after Infante-Paez
and Marfurt, 2017). Seismic data are courtesy of NZP&M.
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ple/dark-blue facies appear to dominate the entire area,
even though isolated blocks of orange/yellow facies can
be observed within the purple/dark-blue facies. The
presence of these two facies is because the nature of
TP 4 is “composite,” consisting of two or more patterns.
In this scenario, the orange/yellow facies represents a
greater content of clastic material being deposited
within the volcanics in the basin. Due to the similarities
of TP 2 and TP 4 and the fact that other andesitic vol-
canoes exist adjacent to Kora, we interpret TP 4 to be
pyroclastic flows originated from the previously men-
tioned younger andesitic volcanoes from MVB.

Potentially enhanced volcanic reservoirs
As stated in the previous sections, the submarine vol-

canoes in the Taranaki Basin represent potential reser-
voirs as indicated by the DST in Kora-1A and the good
log and core porosity from the Kora and other wells.
The uncertainty in this type of reservoir is how well
connected those pores are. For that reason, an area
of potentially enhanced flow capacity is that of the in-
terpreted pyroclastic flows (TP 4) adjacent to the east
flank of Kora. In this area, the volcanics are probably
fractured due to the faults associated with the Kora
and/or the adjacent andesitic volcanoes (Figure 29b)

perhaps similar (even though it is not
the same structural style) to the case
of the fractured andesites in the Jatibar-
ang field in Indonesia where permeabil-
ity is up to 10 D (S. Schutter, personal
communication, 2018).

Limitations
Different authors (Meldahl et al.,

2001; Roy et al., 2013; Qi et al., 2016; Si-
nha et al., 2016, 2017; Kumar and Man-
dal, 2017; Zhao et al., 2017; Qi, 2018)
have used different methods, including
MLFN, SOM, and CNN to predict well
production performance and to cluster
different patterns (gas chimneys, faults,
and MTDs) in seismic data. However,
these patterns have different natures
(e.g., monogenetic, composite, and intri-
cate) that present different levels of diffi-
culty for machine learning. Thus, we
propose thatmonogenetic and composite
patterns can be mapped by feeding
appropriate geometric, instantaneous,
spectral, and seismic inversion-derived
attributes to an unsupervised machine al-
gorithm such as SOM. However, intricate
patterns (Figure 8) may need a different
method, such as CNN, where the algo-
rithm convolves adjacent amplitude val-
ues to generate its own “attributes.” At
present, there is not a single method
(SOM, GTM, MLFN, SVM, and CNN) that
is best to map seismic patterns. The clus-
tering method chosen depends on the
nature of the pattern that represents
the facies of interest (Figure 12).

As seen in Figure 26, the voxel-based
approach is most useful in monogenetic
patterns in which we can easily differen-
tiate the interpreted lava flow facies from
the pyroclastic flows (TP 1 and TP 2, re-
spectively). Similarly, Figures 28 and 29
show that the voxel-based approach is
also useful in isolating composite seismic
patterns, although they are represented
by more than one cluster. The key to a

Figure 26. Vertical slice connecting the four Kora wells through the SOM clus-
ters showing the two distinctive colors (purplish and yellowish) indicating two
different facies. The green facies represent clastic sediments. Facies are colored
based on the latent space projection (after Infante-Paez and Marfurt 2017). Seis-
mic data are courtesy of NZP&M.

Figure 27. SOM clusters extracted along the top of the Kora structure map. Core
descriptions provided in the well completion reports for wells Kora-1, -2, and -3
indicate the purple facies to be pyroclastic flows. In contrast, based on their geo-
morphology and structural relation to the volcanic cone, the yellow/orange facies
are interpreted to be lava flows such as those reported by Klarner and Klarner
(2012) and Holford et al. (2012). Clusters are colored based on the latent space
axes (after Infante-Paez and Marfurt, 2017).
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Figure 28. (a) SOM clusters extracted on a slice horizon close to the base of the Kora volcano indicated by the purple pick in (b).
The colors in the horizon slice indicate similar facies (similar colors = similar facies). Note the purplish colors in a fan-like geom-
etry with an approximately 2 km scour suggesting that TP 3 is associated with a landslide from the west flank of the Kora volcano.
(b) A vertical slice through the seismic amplitude volume inside the subaqueous flow showing the extension of TP 3. (c) A vertical
slice perpendicular to that in (b) through corendered amplitude and SOM clusters. Note the distinct purple facies associated with
the landslide or volcanic MTD.

Figure 29. (a) The SOM clusters extracted along a stratal slice inside the volcanics onlapping the eastern flanks of the Kora
volcano. (b) The same image corendered with the dip magnitude attribute highlighting the normal faults. The area is completely
dominated by the purple facies, which, according to Albacore-1, are andesitic detritus probably derived from pyroclastic flows
from adjacent younger volcanoes to the east of Kora.
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successful clustering of a specific seismic facies is to de-
termine the nature of that pattern. The limitation in this
proposedworkflow is twofold. First, a human interpreter
needs to quantitatively define the nature of the TP. The
illustrations shown here provide an example appropriate
for volcanics in the Taranaki Basin. Second, once the
pattern is recognized, the interpreter has to decide which
attributes provide a quantitative measurement that serve
as input to a machine learning algorithm. Our task as in-
terpreters is to construct a dynamic library of the attrib-
ute expressions of different geologic facies in seismic
data that can be updated as they are encountered with
new facies and new attributes as they are developed.

Conclusion
From our experience in trying to isolate the extrusive

volcanics related to the Miocene volcanism in Taranaki
Basin, New Zealand, we realized that when trying to
isolate a TP, interpreters usually describe it regarding
their continuity, parallelism, amplitude, and frequency.
Therefore, a good rule of thumb as to what attributes to
input for clustering of monogenic and composite pat-
terns would be three types of attributes: attributes that
highlight the amplitude (such as envelope, energy, rms
amplitude, and relative acoustic impedance), attributes
that highlight the continuity (such as GLCM entropy
chaos), and attributes that highlight the frequency (such
as peak spectral frequency, average spectral frequency,
and bandwidth). Furthermore, there is a need of a seis-
mic attribute that measures the self-similarity of the
different patterns in the seismic section (with a change
in the lateral and vertical location, and scale). Ideally,
the interpreter draws a polygon around the TP to be
mapped, and this new seismic attribute (self-similarity)
would quantitatively evaluate whether the TP is mono-
genetic or more complex (intricate).

The SOM and similar clustering algorithms do what
they are supposed to do: cluster the attributes they are
fed. Attributes that are good for 3D interactive interpre-
tation may not be appropriate for machine learning.
Thus, there is a need for a new set of seismic attributes
that assist machine learning, so that they can identify
more complex facies such as composite and intricate
seismic patterns.
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