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Abstract

Automated seismic facies classification using machine-learning algorithms is becoming more common in the
geophysics industry. Seismic attributes are frequently used as input because they may express geologic patterns
or depositional environments better than the original seismic amplitude. Selecting appropriate attributes be-
comes a crucial part of the seismic facies classification analysis. For unsupervised learning, principal compo-
nent analysis can reduce the dimensions of the data while maintaining the highest variance possible. For
supervised learning, the best attribute subset can be built by selecting input attributes that are relevant to
the output class and avoiding using redundant attributes that are similar to each other. Multiple attributes
are tested to classify salt diapirs, mass transport deposits (MTDs), and the conformal reflector “background”
for a 3D seismic marine survey acquired on the northern Gulf of Mexico shelf. We have analyzed attribute-to-
attribute correlation and the correlation between the input attributes to the output classes to understand which
attributes are relevant and which attributes are redundant. We found that amplitude and texture attribute fam-
ilies are able to differentiate salt, MTDs, and conformal reflectors. Our attribute selection workflow is also
applied to the Barnett Shale play to differentiate limestone and shale facies. Multivariate analysis using filter,
wrapper, and embedded algorithms was used to rank attributes by importance, so then the best attribute subset
for classification is chosen. We find that attribute selection algorithms for supervised learning not only reduce
computational cost but also enhance the performance of the classification.

Introduction
In the exploration and production industry, automated

seismic facies classification is gradually being integrated
into common workflows. Several machine-learning
algorithms, such as self-organizing maps (SOMs) and
K-means clustering, have been applied to automate seis-
mic facies classification, and they are available in several
commercial interpretation software packages. A great
number of different seismic attributes can be used as in-
put to machine-learning algorithms for classification and
pattern recognition. However, some attributes express
geologic or depositional patterns more effectively than
others. For instance, the envelope (reflection strength)
is sensitive to changes in acoustic impedance and has
long been correlated to changes in lithology and porosity
(Chopra and Marfurt, 2005). In many cases, the instanta-
neous frequency enhances interpretation of vertical and
lateral variations of layer thickness (Chopra and Marfurt,
2005). Coherence measures lateral changes in the seis-
mic waveform, which in turn can be correlated to lateral
changes in structure and stratigraphy (Marfurt et al.,
1998). Exploration generates large amounts of seismic
data, andmany attributes generatedmay be highly redun-

dant. Adding to this problem, the original seismic ampli-
tude data (and therefore the subsequently derived
attributes) may contain significant noise (Coléou et al.,
2003). Therefore, understanding the nature of seismic
attributes is of crucial importance for providing the most
reliable classifications.

According to the Hughes phenomenon, adding attrib-
utes beyond a threshold value causes a classifier’s per-
formance to degrade (Hughes, 1968). Several studies
found that dimensionality reduction in machine-learn-
ing problems reduces computation time and storage
space as well as having meaningful results for facies
classification (Coléou et al., 2003; Roy et al., 2010; Ro-
den et al., 2015). Principal component analysis (PCA)
is one of the most popular methods, reducing a large
multidimensional (multiattribute) data set into a lower
dimensional data set spanned by composite (linear
combinations of the original) attributes, while preserv-
ing variation. SOM also creates a lower dimensional
representation of high-dimensional data to aid interpre-
tation. PCA and SOM are types of unsupervised learning,
in which the goal is to discover the underlying structure
of the input data.
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Roden et al. (2015) use PCA to define a framework
for multiattribute analysis to understand which seismic
attributes are significant for unsupervised learning. In
their study, the combination of attributes determined
by PCA is used as input to SOM to identify geologic pat-
terns and to define stratigraphy, seismic facies, and di-
rect hydrocarbon indicators. Zhao et al. (2018) build on
these ideas and suggest a weight matrix computed from
the skewness and kurtosis of attribute histograms to im-
prove SOM learning.

In general, attribute selection in unsupervised learn-
ing relies on the data distribution of the input attributes
and the correlation between input attributes. Supervised
learning maps a relationship between input attributes
and output using an interpreter-defined training data

set. Several supervised learning studies introduced
attribute selection methods, also known as feature selec-
tion or variable selection to reduce dimensionality (Jain
and Zongker, 1997; Chandrashekar and Sahin, 2014). We
present multiple strategies to select appropriate attrib-
utes for seismic facies classification with a case study.
Our goals are to provide a good classification model in
terms of validation accuracy, to avoid overfitting, and to
reduce the computation and memory requirements
needed for generating seismic attributes.

A desirable attribute subset might be built by
detecting relevant attributes and discarding the irrel-
evant ones (Sánchez-Maroño et al., 2007). Although rel-
evant attributes are those that are highly correlated
with the output classes, redundant attributes are highly

correlated with each other. Barnes
(2007) suggests that there are many re-
dundant and useless attributes that
breed confusion in seismic interpreta-
tion; we argue that these attributes also
pose problems in machine-learning clas-
sification.

To avoid building an unnecessarily
complex model, we evaluate several
attribute selection algorithms to maxi-
mize relevance and minimize redundancy
to build an efficient subset of attributes
for supervised facies classification analy-
sis. Attribute selection methods can be
classified into three groups: (1) a filter
method that uses a correlation or depend-
ency measure, (2) a wrapper method that
applies a predictive model to evaluate the
performance of an attribute subset, and
(3) an embedded method, which mea-
sures the attribute importance during
the training process. Because multiple
attributes are analyzed simultaneously
in the test, we consider our attribute se-
lection algorithm to be a multivariate al-
gorithm.

We compare the three types of attrib-
ute selection algorithms to build an
efficient subset to differentiate seismic
facies in a Gulf of Mexico survey. We gen-
erate 20 attributes from amplitude, in-
stantaneous, geometric, texture, and
spectral categories. The aim of the case
study is to classify the specific facies
based on patterns from a labeled training
data set. We define the target classes of
training data as being the facies corre-
sponding to salt diapirs, MTDs, and
conformal reflectors, which are created
from manual geologic and stratigraphic
interpretation. Correlations between
attributes and correlations between
attributes and output classes are analyzed
using different measures to investigate

Figure 1. Different types of relationship between variables X and Y and their
correlation coefficients and regression score. Each scatterplot describes a
different relationship between X and Y : (a and c) linear and monotonic relation-
ships, (b and e) nonlinear, monotonic relationship, and (c and f) nonlinear, non-
monotonic relationships. Gaussian noise of 10% has been added to variable Y in
(d-f). Coefficients are computed using Pearson, rank, MI, and distance correla-
tion methods. A regression score is computed for the linear Bayesian, NN, RF,
and SVM repressor predictive algorithms. The best hyperparameters for each
model were obtained using a grid-search algorithm.
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the relevance and redundancy of each seismic attribute.
The selected attributes are tested using a random forest
(RF) algorithm, and the classification results are dis-
cussed. We also apply our workflow to the Barnett Shale
play in the Fort Worth Basin to differentiate shale and
limestone facies using inverted physical properties as in-
put attributes. The output class is labeled based on strati-
graphic interpretation aided by adjacent wireline logs.
The classification results using different attribute subsets
are discussed.

Correlation measures to maximize relevance and
minimize redundancy

Finding an optimal subset can be achieved by maxi-
mizing the relevance between attributes and output
classes, while minimizing redundancy
among attributes (Yu and Liu, 2004;
Peng et al., 2005). To maximize rel-
evance, attributes that are highly corre-
lated with output classes are selected.
On the other hand, redundancy is
caused by attributes that are highly cor-
related to each other. Thus, measuring
and analyzing the correlation between
attributes and classes, or correlations
between attributes are prioritized to
evaluate the performance of each attrib-
ute subset. Several correlation measures
can be used in the feature selection. We
examine Pearson’s correlation (Pear-
son, 1894), rank correlation (Spearman,
1904), mutual information (MI) (Shan-
non and Weaver, 1949; Cover and
Thomas, 1991), and distance correlation
(Székely et al., 2007). Refer to Appen-
dix A for a mathematical description.
Pearson’s correlation (Pearson, 1894)
is the most common measure, and it de-
tects only a linear relationship between
two random variables. Spearman’s rank
correlation (Spearman, 1904) measures
the tendency of a positive or negative re-
lation, without requiring the increase or
decrease to be explained by a linear re-
lationship. Figure 1 illustrates different
types of relationships between variables
X and Y . Four types of correlation
measure are able to detect the linear
relationship (Figure 1a and 1d). In Fig-
ure 1b and 1e, the rank correlation
has a higher coefficient value than
Pearson’s correlation because rank cor-
relation is able to detect nonlinear pos-
itive relationships, whereas Pearson’s
correlation is not. In addition, depend-
ence among attributes is not always lin-
ear. MI (Shannon and Weaver, 1949;
Cover and Thomas, 1991) and distance
correlation (Székely et al., 2007) detect

nonlinear and nonmonotonic relationships. In Figure 1c
and 1f, the Pearson’s and rank correlation coefficients
are approximately zero, which indicates that these
two correlation measures do not detect nonlinear and
nonmonotonic relationship.

In terms of dependence between an input attribute
and an output class, it is also important to identify each
predictive model’s ability to map a nonlinear relation-
ship between an attribute and a class. Even though
the attribute is a powerful variable, which can have a
high correlation with class, some predictive models
may degrade prediction accuracy if the model cannot
properly map the relationship. Figure 1 describes four
types of predictive models: linear Bayesian, neural net-
work (NN), RF, and support vector machine (SVM) and

Figure 2. Relations between different attribute pairs (a) total energy versus rms
amplitude, (b) peak magnitude versus instantaneous envelope, and (c) GLCM
entropy versus variance. Correlation coefficients are computed using Pearson,
rank, MI, and distance measures.

Figure 3. Schematic diagram summarizing the steps from the (a) filter, (b) wrap-
per, and (c) embedded attribute subset selection workflows. Note that there is
no feedback in the filter workflow. The examples of each method and their
mathematical description are given in Appendix B.
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their ability to map input and output using regression
methods. Using data points described in each plot, five-
fold cross validation is applied. The hyper parameters
for each predictive model were selected based on grid
searches that give the best validation score. Linear-
Bayesian models are not able to map a nonlinear rela-
tionship that gives an accuracy of 0.84 in monotonic
case (Figure 1b) and −0.04 in a nonmonotonic case
(Figure 1c). Except for linear-Bayesian, the other three
models map the input and output with high accuracy
(1.0) when noise is not added (Figure 1b and 1c). We
select our test predictive model to be NN, RF, and
SVM for our case study because they are able to map
the nonlinear relationship appropri-
ately. The noise in the signal can affect
the correlation because it gives more un-
certainty in predicting the output class.
The sensitivity to noise also differs with
correlation measure. MI and distance
correlation coefficients decrease more
than the others, when 10% of Gaussian
noise is added to variable Y as shown
in Figure 1d–1f.

The correlation measures are af-
fected not only by nonlinearity but also
by the covariance of two variables or
of a variable with noise. Figure 2 shows
the scatterplots of two attributes, which
have relatively high correlations. The
rms amplitude and total energy in Fig-
ure 2a have a positive, monotonic rela-
tionship because the energy attribute
is equivalent to the square of the ampli-
tude. These two attributes exhibit a high
rank correlation coefficient (0.97). The
relationship between peak magnitude
and instantaneous envelope (Figure 2b)
is linear, and it has a higher Pearson’s
coefficient than the other two scatter-
plots. Figure 2c describes correlation

between entropy computed from gray-level cooccur-
rence matrix (GLCM) and variance. MI and distance
correlation can detect nonlinear relationships, but their
values for GLCM entropy and variance are lower in Fig-
ure 2c because their entropy is high.

In addition, we also test the analysis of variance
(ANOVA) to determine which attributes are significant
to differentiate output classes. ANOVA is an analysis
tool that splits the variability found in a data set into
systematic factors and random factors. If the variation
can be explained from systematic factors, then the var-
iable is significant in distinguishing classes.

Figure 4. Time slice through the (a) seismic amplitude and (b) energy ratio sim-
ilarity attribute. The red box indicates the volume in which the training data are
sampled. The green arrow indicates MTDs, whereas the blue arrows indicate salt
diapirs, both of which exhibit a low value of similarity.

Table 1. The seismic attribute families and the 20 specific attributes used to classify conformal sediments, salt,
and MTDs.

Categories of seismic attributes evaluated in facies classification

Amplitude
attributes

Instantaneous
attributes

Geometric
attributes

Texture
attributes

Spectral
attributes

rms amplitude Instantaneous envelope Variance Chaos Peak magnitude

Total energy Instantaneous frequency Dip magnitude GLCM entropy Peak frequency

Relative acoustic impedance Instantaneous phase Dip azimuth GLCM homogeneity Peak phase

Most-positive curvature

Most-negative curvature

Curvedness

Aberrancy magnitude

Aberrancy azimuth
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Attribute selection algorithms: filters, wrappers,
and embedded methods

The goal of attribute selection is to differentiate seis-
mic facies effectively with an optimal combination of
different attributes. To choose an optimal subset, the
relationship between attributes as well as their rel-
evance to the output should be analyzed in a multivari-
ate manner. To measure redundancy is simple when
attributes are perfectly correlated. If two attributes
are perfectly correlated, then adding them does not pro-
vide additional information. Guyon and Elisseeff (2003),
however, suggest that if two variables are highly corre-
lated, then they have a possibility to complement each
other. In addition, two variables that are not relevant by
themselves can be useful when they are used together.
Selecting attributes when considering relevance and re-
dundancy together can be a complicated problem, but if
the attribute selection algorithms are developed in a
multivariate manner, they can be applied for attribute
selection as well.

In supervised classification, there are three major ap-
proaches to select attributes in a multivariate manner:
filters, wrappers, and embedded methods. Figure 3
describes the mechanisms of these methods. Filter
methods use a suitable measure or ranking criterion,
such as correlation or MI to select attributes. Relief
(Kira and Rendell, 1992) is a distance-based filter
algorithm that evaluates attributes according to feature
value differences between nearest-neighbor instance
pairs. ReliefF (Kononenko, 1994), an updated Relief
algorithm, can deal with multiclass problems, and it is
more robust to incomplete and noisy data. Correlation-

based feature selection (CFS) (Hall, 1999) is an algo-
rithm based on a heuristic evaluation function, which
is calculated from attribute-class and attribute-attribute
correlations. The fast correlation-based filter (FCBF) al-
gorithm (Yu and Liu, 2003) is also a correlation-based
measure but is designed for high-dimensional data. Fil-
ter methods are computationally less expensive than
the wrapper method, which requires computation of
a classification model.

Wrapper methods use a classification model to select
the attribute subset. Wrapper methods require greater
computational resources but provide better performance
in that they maximize the classification accuracy. The
sequential forward selection (SFS) algorithm (Kittler,
1978), for example, starts with an empty subset and adds

Figure 5. The workflow to select the best subset of attributes
based on geologic relevance as well as attribute-to-attribute
redundancy using three types of multivariate approaches.

Table 2. Attribute-to-attribute correlation analysis
using Pearson, rank, MI, and distance correlations.

Attribute – attribute correlation analysis

Correlation 
measures

Attributes highly correlated with the other attributes 
(corr. coeff. >0.6)

GLCM entropy - GLCM homogeneity (-1.0)
Instantaneous envelope - Peak magnitude (0.96)
RMS amplitude - Instantaneous envelope (0.93)
RMS amplitude - Peak magnitude (0.90)
RMS amplitude - Total energy (0.90)
Total energy - Instantaneous envelope (0.84)
Total energy -Peak magnitude (0.83)
Instantaneous phase - Relative acoustic impedance (0.73)
GLCM entropy - Chaos (0.71)
GLCM entropy - Variance (0.70)
Instantaneous frequency - Peak frequency (0.62)

Rank correlation

Pearson correlation

GLCM entropy - GLCM homogeneity (-1.0)
RMS amplitude - Total energy (0.99)
Instantaneous envelope - Peak magnitude (0.95)
RMS amplitude - Instantaneous envelope (0.94)
RMS amplitude - Total energy (0.93)
RMS amplitude - Peak magnitude (0.92)
Total energy - Peak magnitude (0.82)
Instantaneous phase - Relative acoustic impedance (0.81)
GLCM entropy - Variance (0.80)
GLCM entropy - Chaos (0.71)
Instantaneous frequency - Peak frequency (0.64)
Instantaneous envelope - GLCM homogeneity (0.62)

Mutual information

RMS amplitude - Total energy (0.9)
GLCM entropy - GLCM homogeneity (0.85)
Instantaneous envelope - Peak magnitude (0.74)
RMS amplitude - Instantaneous envelope (0.72)
Total energy - Instantaneous envelope (0.71)
RMS amplitude - Peak magnitude (0.69)
Total energy - Peak magnitude (0.68)

Distance correlation

GLCM entropy - GLCM homogeneity (0.97)
RMS amplitude - Total energy (0.92)
Instantaneous envelope - Peak magnitude (0.87)
RMS amplitude - Instantaneous envelope (0.83)
RMS amplitude - Peak magnitude (0.78)
Total energy - Instantaneous envelope (0.78)
Total energy - Peak magnitude (0.74)

Note: Attribute pairs exhibiting a high correlation (correlation coefficient >0.6)
are ranked in descending order. Pairs with a yellow background are the amplitude
attributes or the attributes that are highly correlated with the amplitude attributes.
Pairs with the green background are the texture attributes or the attributes highly
correlated with the texture attributes.
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Figure 6. Relationships between a single in-
put attribute and the desired output classes
using (a) ANOVA F -value and (b) MI. Both
analyses show that amplitude and texture type
attributes are important variables for classifi-
cation. (The yellow background indicates the
amplitude attributes or the attributes highly
correlated with amplitude attributes. The green
background indicates texture attributes or the
attributes highly correlated with texture attrib-
utes.) Unless the prediction is restricted to
a specific horizon, the phase varies between
180° and +180° with increasing time, and it
is poorly correlated to output class. Examining
Figure 4, it is clear that the azimuth of the re-
flector dip, faults, and flexures for this data set
also varies between 180° and +180° and it is not
correlated to any one facies.

Table 3. Selected attribute subsets using filter (ReliefF and FCBF), wrapper (NN, RF, and SVM), and embedded
(RF) methods.

Attribute selection
algorithms

Ranking of attributes (10 highest ranked attributes)

Filter

ReliefF
Peak phase Peak frequency Total energy Relative acoustic

impedance
Instantaneous

envelope
Instantaneous
frequency

Instantaneous
phase

Variance Dip magnitude Dip azimuth

FCBF
Peak frequency Peak phase rms amplitude Total energy Relative acoustic

impedance
Instantaneous

envelope
Instantaneous
frequency

Instantaneous
phase

Variance Dip magnitude

Wrapper

SFS

NN
Total energy Chaos Aberrancy

magnitude
Instantaneous
frequency Variance

Dip azimuth Dip magnitude Aberrancy
azimuth

Peak frequency Most-positive
curvature

RF
Total energy Chaos Aberrancy

magnitude
Instantaneous
frequency Dip azimuth

Variance Dip magnitude Curvedness Peak frequency Aberrancy azimuth

SVM
rms amplitude Chaos Aberrancy

magnitude
Instantaneous
frequency Variance

Dip magnitude Peak frequency Curvedness Dip azimuth Aberrancy azimuth

SBS

NN
Total energy Variance Dip magnitude Instantaneous

frequency
Aberrancy
magnitude

Dip azimuth Aberrancy
azimuth

Chaos Peak frequency Most-positive
curvature

RF
Total energy Chaos Aberrancy

magnitude Peak frequency Variance

Dip azimuth Dip magnitude Most-positive
curvature

Instantaneous
frequency

Most-negative
curvature

SVM
rms amplitude Chaos Aberrancy

magnitude
Instantaneous
frequency Variance

Dip magnitude Peak frequency Most-negative
curvature

Dip azimuth Aberrancy azimuth

Embedded RF
Total energy Peak magnitude Chaos rms amplitude Aberrancy

magnitude
GLCM

homogeneity
GLCM entropy Instantaneous

envelope
Variance Instantaneous

frequency

Note: Each subset includes the 10 best attributes ranked in descending order (from left to right).
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an attribute to the subset sequentially to yield the highest
increase in score. Sequential backward selection (SBS),
on the other hand, subtracts an attribute from a full
subset sequentially whose elimination gives the lowest
decrease in score.

Embedded methods implement attribute selection
as a part of the training process of classification. In ad-
dition to having a low computational cost, embedded
methods do not require a separate process for attribute
selection. For instance, an RF classifier calculates the
variable importance (Breiman, 2001; Liaw and Wiener,
2002) during training. Another embedded technique is
to compute the weights of each attribute in the SVM
classifier (Guyon et al., 2002) and logis-
tic regression (Ma and Huang, 2005).

Application 1: Gulf of Mexico survey
— Attribute selection to differentiate
salt, mass transport deposits, and
conformal reflectors
Seismic expression of salt and
MTDs

Salt diapirs inherently have poor
internal reflectivity and are easily over-
printed by crossing coherent migration
artifacts (Jones and Davison, 2014) in
part due to their geometry and their
higher P-wave velocities compared with
surrounding strata. In general, the mis-
migrated noise gives rise to a relatively
low amplitude, chaotic, and discontinu-
ous seismic patterns that result in
low coherence and high GLCM entropy
inside the salt body. Therefore, texture
attributes, such as GLCM (entropy,
homogeneity, energy), are used to dif-
ferentiate salt diapirs (Berthelot et al.,
2013; Qi et al., 2016). Mass transport de-
posits (MTDs) are slumps, slides, and
debris flows generated by gravity-con-
trolled processes (Nelson et al., 2011).
MTDs often show chaotic or highly dis-
rupted seismic patterns with great inter-
nal complexity (Martinez, 2010). In
general, the resulting attribute anoma-
lies are high rms amplitudes and low co-
herence (Brown, 2011; Omosanya and
Alves, 2013). The conformal reflectors
around salt diapirs and MTDs show a
relatively continuous seismic pattern
that leads to high coherence and low to
moderate values of GLCM entropy.

Methodology
The 3D marine seismic data were ac-

quired in offshore Louisiana over an area
of 3089 mi2 (Qi et al., 2016). The post-
stack seismic volume includes 4367

inlines, 1594 crosslines, and 475 time samples with a
sampling interval of 4 ms. Twenty seismic attributes in
five categories were calculated from the seismic volume.
The five attribute categories consist of amplitude, geo-
metric, instantaneous, texture, and spectral attributes
(Table 1). For supervised learning, we use a voxel-
type training data set that is rendered from geologic
and stratigraphic interpretation: Salt, MTDs, and
conformal reflectors are interpreted inside the red box
(751 inlines × 551 crosslines) as shown in Figure 4, and
they are cropped as a 3D seismic volume using a poly-
gon. From the cropped volume, 10,000 voxels were ran-
domly selected for each facies and labeled for training

Figure 7. The number of attributes included in the attribute subset versus error
rate. (a-c) Attributes in the subset were selected using filter methods (ReliefF
and FCBF). (d-f) Attributes included in the subset were selected using wrapper
methods (SFS and SBS). (g-i) Attributes included in the subset were selected
using an embedded method (RF). Each attribute subset was validated using
the NN, RF, and SVM classifiers.
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output (e.g., conformal reflectors: 0, salt diapirs: 1, and
MTDs: 2). The training input data were then extracted
from the 20 attribute volumes at the same voxel loca-
tions. Figure 5 summarizes the attribute selection work-

flow. First, we look into attribute-attribute correlations
using four measures of correlation: Pearson, rank, MI,
and distance correlation. These measures are valid to
analyze the relationships between two continuous vari-

ables. To investigate the relationship be-
tween attributes and an output class, we
used ANOVA and MI. Both metrics can
provide information on how well a single
attribute can differentiate classes and is
relevant to each output class individu-
ally. Even if the correlation measures
are not used to build the attribute sub-
sets, correlation measures help to ex-
plain and evaluate the results from the
attribute selection methods. We apply
multivariate algorithms using three ap-
proaches: filter, wrapper, and embedded
methods. Among several filter methods,
ReliefF and FCBF are tested. For wrap-
per method, we applied SFS and SBS
with three classifiers: NN, RF, and
SVM. For the embedded method, the
RF classifier is adopted, which produces
a ranking of variables during the training
process. For each method, we test the
performance and evaluate the error rates
of the attribute subset using the NN, RF,
and SVM classifiers. We predict 3D facies
using an RF classifier for the best attrib-
ute subset to test the validity of the
model.

Results and discussion
Table 2 shows attribute-attribute cor-

relation using the Pearson, rank, MI, and
distance correlation measures. We note
that correlation measures have different
susceptibilities to nonlinearity, the pres-
ence of noise and outliers, and also
whether or not the attributes are nor-
mally distributed. For instance, Pear-
son’s correlation coefficient changes
substantially compared to the rank cor-
relation coefficient when an outlier is in-
cluded (Mukaka, 2012). In the case of
MI, the response of one variable is
due to stimuli and noise (Shannon and
Weaver, 1949). Figure 1d–1f shows that
the presence of noise decreases MI and
the distance correlation coefficient sig-
nificantly. The GLCM homogeneity and
entropy are perfectly anticorrelated
when measured with the Pearson, rank,
and distance correlation, suggesting that
we can select only one of them for the
subset to avoid redundancy. Amplitude
attributes such as the rms amplitude and
total energy are highly correlated (cor-
relation coefficient >0.9). In addition,

Figure 8. The number of attributes included in the attribute subset versus the
error rate when Gaussian noise for different S/N levels is added (noise-free, 10, 5,
and 0 dB) to attributes. (a-c) Attributes in the subset were selected using filter
methods (ReliefF and FCBF). (d-f) Attributes included in the subset were se-
lected using wrapper methods (SFS and SBS). (g-i) Attributes included in the
subset were selected using an embedded method (RF). Each attribute subset
was validated using NN, RF, and SVM classifiers.
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Figure 9. (a) A representative time slice at
t ¼ 1.1 s through amplitude and (b) error rate
with respect to the number of attributes in the
subset selected by the wrapper method (RF)
using training data. Facies predicted using
(c) the highest-ranked attribute, (d) top three
highest-ranked attributes, (e) top seven high-
est-ranked attributes selected by the wrapper
method (RF), and (f) all 20 attributes. The red
polygon in (a) is a human-delineated MTD.

Figure 10. (a) A representative vertical slice
along line AA′ through amplitude and (b) error
rate with respect to the number of attributes
in the subset, which is selected by the wrapper
method (RF) using training data. Facies pre-
dicted using (c) the highest-ranked attribute,
(d) the top three highest-ranked attributes,
(e) the top seven highest-ranked attributes se-
lected by the wrapper method (RF), and (f) all
20 attributes. The three red polygons in (a) are
human-interpreted MTDs.
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both of the amplitude attributes are highly correlated
with instantaneous envelope and peak magnitude. Be-
cause MI is more sensitive to noise or the distribution of
data points, the MI coefficients are lower than those of
other measures.

The attribute-to-class relationship is analyzed using
ANOVA and MI (Figure 6). Both methods show that
the amplitude family of attributes (e.g., rms amplitude,
total energy, instantaneous envelope, and peak magni-
tude) are relevant to the output classes. In addition,
texture attributes (GLCM and chaos) are strongly re-
lated to training classes. Recall that ANOVA is based
on a linear model, whereas MI is based on a nonlinear
model. MI shows that the output classes have high
dependence with total energy and rms amplitude. On
the other hand, the ANOVA model indicated rms ampli-
tude exhibits a high F -value. Although ANOVA and MI
tell us which attributes can better differentiate the fa-
cies of interest, attributes that are selected by both
methods can have redundancy. For instance, the GLCM
entropy and GLCM homogeneity are highly ranked in
ANOVA and MI (Figure 6), which shows that they are
powerful variables for classification. However, we need
only select one of two attributes for the subset. Because
the two attributes are perfectly anticorrelated, this in-
dicates that using both is redundant.

To take into account relevance and redundancy,
we test several attribute selection algorithms to build
the attribute subsets. The 10 highest ranked attributes

Figure 11. A time slice at t ¼ 0.612 s through the (a) ampli-
tude, (b) coherence, and (c) facies predicted using seven high-
est-ranked attributes using the wrapper method (RF). The arrow
in (c) indicates the area where MTDs are misclassified as salt.

Figure 12. (a) The vertival slice along AA′
and the representative time slice through the
seismic amplitude and (b) map of the seismic
survey and location of the wells used for data
training.

Figure 13. Well logs through the Barnett Shale showing the relevant section (Marble Falls — Upper Barnett — Forestburg —

Lower Barnett — Viola). The section is flattened on the top Marble Falls. Wireline log data include gamma ray, P-sonic, and bulk
density. Facies were estimated based on each log set. The gray color represents limestone, and brown is shale.
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obtained from each attribute selection algorithm are
shown in Table 3. Algorithms belonging to the same
categories (e.g., the ReliefF and FCBF algorithms of
the filter method and six algorithms of the wrapper
method) show similar attribute rankings. However, the
filter and the wrapper algorithms yield quite different
attribute subsets. Wrapper methods select relevant
attributes, according to input-to-output dependence.
At the same time, wrapper methods more efficiently re-
ject redundant attributes. For instance, when the total
energy is chosen in the subset, the wrapper algorithm
rejects the rms amplitude and vice versa. RF variable
selection is an example of an embedded method that
tends to choose important attributes but also includes
redundant attributes. For instance, the subset has total
energy and peak magnitude ranked close together,
whereas GLCM homogeneity and entropy are ranked
close as well. Figure 7 shows the error rate of the attrib-
ute subsets selected using the filter, wrapper, and
embedded methods. A fivefold cross validation is imple-
mented to compute the accuracy score and error rate
when each attribute subset is applied. Input attributes
were split into five groups randomly, one group was
used as the test (validation) data set, while the other
four groups were used as training data sets. The cross
validation process is repeated five times, and the aver-
age value of accuracy is used to compute the error rate.
Wrapper methods reduce the error rate with a small
number of attributes compared to other methods be-
cause the methods are based on the performance of
the predictive model.

To understand how noise in the data set affects clas-
sification performance, Gaussian noise with different
signal-to-noise ratios (S/Ns) (noise free, 10, 5, and 0 dB)
were added to attributes of the training data set (Fig-
ure 8). We measure the S/N as a ratio of signal power
compared to noise power in dB. The higher level of
noise in the data generally degrades the classification
accuracy. One key point of observation is that using a
larger number of attributes significantly reduces the er-
ror rate in the case of noisy data. Especially, the RF and
SVM wrapper models in Figure 8e and 8f show that the
error rate of 0 dB data decreases substantially as the
number of attributes increases. This implies that if
the data are contaminated with noise, using other attrib-
utes together can improve classification.

We tested subsets using an RF classifier with differ-
ing numbers of attributes to differentiate the salt, MTDs,
and conformal reflectors in the same seismic volume
that we used for the training set (Figures 9, 10, and
11). The error rate with respect to the number of attrib-
utes in each subset is computed from training data and
is shown in Figure 9b. The subset consisting of just the
first highest-ranked attribute does not differentiate
MTDs and conformal reflectors (Figure 9c). The three
highest-ranked attributes distinguish MTDs and con-
formal reflectors better than the one attribute subset
(Figure 9d). However, some parts of the conformal
reflectors are misclassified into salt and MTD. The

top seven highest-ranked attributes differentiate the
three facies as effectively as 20, the full set of attributes.
The subset with the top seven highest-ranked attributes
include relevant attributes that map different geology
while also avoiding redundancy. Figure 11 shows the
predicted facies within the entire seismic volume. The
salt domes that showhigh coherence values in Figure 11b
are correctly predicted as salt facies in Figure 11c. A limi-
tation of this classification is that some of the MTD facies
are misclassified as salt because both facies are highly
discontinuous and have low coherence. In addition,
other discontinuous geologic features, such as faults, are
misclassified as MTDs.

Application 2: Barnett Shale Play in the Fort Worth
Basin — Attribute selection to differentiate
limestone and shale facies

We test our workflow on the Barnett Shale to classify
limestone and shale facies that are dominant in the
play. In the survey area, the Barnett Shale is separated
into upper and lower shale units by a thin Forestburg

Table 4. Attribute-to-attribute correlation analysis
using MI.

Attribute-attribute correlation analysis

Correlation
measures

Attributes highly correlated with the other
attributes (correlation coefficient >0.6)

MI Lambda-Lambda rho (0.96)

Mu rho-Mu (0.93)

IS-Mu (0.93)

Young’s modulus-Mu (0.89)

VS-Mu (0.88)

VS-Young’s modulus (0.87)

Mu rho-Young’s modulus (0.83)

IS-Young’s modulus (0.83)

IP-Young’s modulus (0.79)

IP-VP (0.79)

IS-VS (0.75)

Mu rho-VS (0.75)

VP-Lambda rho (0.74)

VP-Lambda (0.72)

VP∕VS-Lambda (0.69)

Poisson’s ratio-Lambda (0.69)

VP-Young’s modulus (0.65)

IP-Mu (0.64)

IP-VS (0.63)

IP-Lambda rho (0.63)

IP-IS (0.62)

IP-Mu rho (0.62)

Note: Attribute pairs exhibiting high correlation (correlation coefficient >0.6)
are ranked in descending order.
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Limestone. The Barnett Shale, which is relatively brittle
and acts as the reservoir, lies between the Marble Falls
and the Viola Limestones that are more ductile (Perez
and Marfurt, 2014; Li et al., 2016; Verma et al., 2016). In
this example, defining the output classes of the training
data is aided by wireline logs and stratigraphic interpre-
tation. A vertical slice through a seismic line along six

wells is described in Figure 12. Facies were estimated
based on each log set including gamma ray, P-wave
sonic, and bulk density. We defined the facies mainly
based on gamma ray, with values of limestone ranging
from 10 to 40 API, whereas those of shale range from
60 to 150 API. From a stratigraphic interpretation that
was aided by well logs, we labeled data points adjacent

Table 5. Selected attribute subsets using filter (ReliefF and FCBF), wrapper (NN, RF, and SVM), and embedded
(RF) methods.

Attribute selection algorithms Ranking of attributes (10 highest ranked attributes)

Filter

ReliefF
Lambda rho Lambda Mu Poisson Young

Rho VP∕VS VS VP MuRho

FCBF
VS Mu IS VP IP

Mu rho Young Lambda LambdaRho Rho

Wrapper

SFS

NN
Young IP Rho VP∕VS Lambda rho
Mu rho VS VP Poisson IS

RF Young IP Rho Lambda Lambda rho

IS VP∕VS VP Poisson VS

SVM Young IP Mu VS IS
VP∕VS Rho Mu rho Poisson Lambda rho

SBS

NN
IS Poisson VS Lambda rho Mu rho

VP/VS VP Young Lambda Mu

RF VP IS Rho Lambda VS

IP Mu rho Lambda rho Mu Young

SVM IP IS VS Mu rho Poisson

VP Young VP∕VS Lambda Mu

Embedded RF
Young IP Mu VS VP

Mu rho IS Lambda rho Lambda Rho

Note: Each subset includes 10 best attributes ranked in descending order (from left to right).

Figure 14. Relationships between a single in-
put attribute and the desired output classes
using (a) ANOVA F -value and (b) MI.
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to each well log as limestone and shale, which is equiv-
alent to the training output (Figure 13). The input attrib-
utes are comprised of 12 physical properties calculated
from prestack seismic inversion: P-and S-impedances, P
and S velocities, VP∕VS, density, mu rho, Young’s modu-
lus, Poisson’s ratio, mu, lambda, and lambda rho. The
general workflow is the same as that of the first case
study: attribute-attribute correlations and attribute-class
correlations are analyzed, and attribute subsets are built
using filter and wrapper algorithms. Among the four cor-
relation measures, we opted for MI for the second case
study because it is able to assess nonlinear relationships.

The attributes that describe physical properties in-
verted from seismic amplitude are highly correlated
with each other because many of these physical proper-
ties can be calculated from other physical properties in
the attribute set (Table 4). The elastic properties can
especially be determined from two elastic moduli in
the case of homogeneous isotropic media. In terms of
attribute-class correlations, MI coefficients from seven
attributes (P-impedance, Young’s modulus, P velocity,
mu, S velocity, mu rho, and S-impedance) are higher

than 0.5 (Figure 14b). From the correlation analysis,
we found that the attributes are highly correlated
with each other, and many of the attributes are also
highly correlated to the corresponding target class. The
Young’s modulus and P-impedance are highly ranked in
the SFS of the wrapper methods (Table 5), and they de-
crease error rate efficiently (Figure 15d–15f). Because
of the high redundancy in input attributes, the score in
Figure 15 does not increase significantly after three
components in each method.

Like the first case study, we tested subsets with dif-
fering numbers of attributes to differentiate shale and
limestone in the same seismic volume that we used for
the training set (Figure 16). Two thin lime layers are in-
tervening in the Barnett Shale, which is interpreted in
well-log section in Figure 13: a limestone layer in the
Upper Barnett and the Forestburg Limestone between
the Upper and Lower Barnett Shale. The subsets with
the four highest-ranked attributes (Young’s modulus,
P-impedance, density, and Lambda) differentiate thin
limestone layers between the Barnett Shale as effec-
tively as 12 attributes (Figure 16).

Figure 15. The number of attributes included
in the attribute subset versus error rate. (a-c)
Attributes in the subset were selected using
filter methods (ReliefF and FCBF). (d-f) Attrib-
utes included in the subset were selected using
wrapper methods (SFS and SBS). (g-i) Attrib-
utes included in the subset were selected using
an embedded method (RF). Each attribute
subset was validated using NN, RF, and SVM
classifiers.
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Conclusion
Analyzing attribute-to-attribute dependence and attrib-

ute-to-class relationships helps to understand which
attributes are redundant and which are relevant. How-
ever, a high correlation between the attributes does not
always imply that attributes are redundant. We need to
analyze all attributes together using a framework, which
can quantitatively rank the attributes to build a subset.
The multivariate attribute selection algorithms result in
the subsets, which have smaller number of attributes but
show good performance in differentiating salt and MTD
facies from conformal reflectors. From a geologic point
of view, it is challenging to define the depositional envi-
ronments in the survey area into only three discrete

classes. Turbidites, faults, overpressured
shale, and seismic noise will be misclas-
sified into one of the target classes.
However, understanding each seismic
attribute’s characteristic is crucial to im-
plement automated facies classification
and to aid rendering of a seismic volume
in which the interpreters target. Even
though the case study is focused on map-
ping different facies in geology, the attrib-
ute selection algorithms can be applied to
other supervised classification problems.
For instance, the workflow can be ap-
plied to select physical properties and
seismic attributes to yield reservoir prop-
erties such as porosity, permeability, and
brittleness from input quantitative inter-
pretation attributes.
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Appendix A
Correlation measures
Pearson’s product-moment
correlation (Pearson, 1894)

A correlation measure that is most
widely used is Pearson’s product-
moment coefficient. The correlation be-
tween two random variables X and Y is
defined as

corrðX;YÞ ¼ covðX;YÞ
σxσy

; (A-1)

where covðX; YÞ is the covariance between X and Y and
σx and σy are the standard deviation of X and Y , respec-
tively. The Pearson’s coefficient describes the linear
dependence between two variables. Among the scatter-
plots in Figure 1a–1c, only Figure 1a is perfectly corre-
lated or anticorrelated in terms of Pearson’s correlation.

Spearman’s rank correlation (Spearman, 1904)
The Spearman’s correlation coefficient is defined

as Pearson’s correlation between the ranked variables.
A positive Spearman correlation corresponds to an

Figure 16. (a) A representative vertical slice through the amplitude and well
logs and (b) the error rate with respect to the number of attributes in each sub-
set, which is selected by the wrapper method (RF) using training data. Facies
predicted using (c) the first highest-ranked attribute, (d) the top four highest-
ranked attributes selected by the wrapper method (RF), and (e) all 12 attributes.
Subsets with the top 4 highest-ranked attributes differentiate the thin limestone
layers as effectively as all 12 attributes (the orange arrows).
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increasing monotonic trend, whereas a negative one
corresponds to a decreasing monotonic trend between
two random variables. The correlation assesses positive
or negative relationships whether they are linear or not.
According to the Spearman’s definitions of correlation,
two variables X and Y in Figure 1b are highly correlated
even if the relationship is nonlinear.

Mutual influence (Shannon and Weaver, 1949;
Cover and Thomas, 1991)

In information theory, the uncertainty involved in the
value of a random variable is quantified as entropy. The
Shannon entropy, which is a measure of the uncertainty
of a random variable, is defined as

H ¼ −
X
i

pi logðpiÞ; (A-2)

where pi is the probability of occurrence of the ith pos-
sible value of the source symbol. Mutual influence (MI)
measures the gain of information about one random
variable by observing another. The MI of two discrete
random variables X and Y is denoted by

IðX;YÞ ¼ HðXÞ − HðXjYÞ
¼ HðYÞ − HðYjXÞ; (A-3)

where HðXÞ and HðYÞ are the marginal entropies and
HðXjYÞ and HðYjXÞ are the conditional entropies. Sub-
stituting equation A-2 to equation A-3 gives

IðX;YÞ ¼
X
y∈Y

X
x∈X

pðx; yÞ log
�

pðx; yÞ
pðxÞpðyÞ

�
; (A-4)

where pðxÞ and pðyÞ are the marginal probability func-
tions and pðx; yÞ is the joint probability function.

Distance correlation (Székely et al., 2007)
The distance correlation of two random variables is

defined as distance covariance divided by distance stan-
dard deviation. The distance correlation is denoted as

dCorðX;YÞ ¼ dCovðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðXÞdVarðYÞp ; (A-5)

where dCovðX;YÞ is the distance covariance and dVarðXÞ
and dVarðYÞ are the distance variance ofX and Y , respec-
tively. In contrast to Pearson’s covariance that is defined
as the inner product of two centered vectors, the distance
covariance is defined as the product of centered Euclid-
ean distances Dðxi; xjÞ and Dðyi; yjÞ in arbitrary dimen-
sions:

dCovðX;YÞ ¼ 1

n2

Xn
i¼1

Xn
j¼1

Dðxi;xjÞ · Dðyi; yjÞ; (A-6)

where x ∈ X, y ∈ X, and n is the number of samples of X
and Y . Distance correlation can detect nonlinear relation-
ships, and its values are nonnegative.

Appendix B
Attribute selection methods
Filter
Relief and ReliefF

The Relief algorithm (Kira and Rendell, 1992) esti-
mates attributes according to how well their values dif-
ferentiate among the instances near to each other. Relief
searches for its two nearest neighbors: one from the
same class that is called the nearest hit and the other
from a different class called the nearest miss. At each
iteration, Relief estimates the weight vector W of a given
attribute:

Wi ¼ Wi þ ðxi − nearest missðxÞiÞ2
− ðxi − nearest hitðxÞiÞ2; (B-1)

where x is an instance of randomly selected in training
data. Attributes are selected if their average weight is
greater than a threshold τ. ReliefF (Kononenko, 1994;
Kononenko et al., 1997) improved Relief by estimating
probabilities more reliably and extended the algorithm
to handle noisy, incomplete, and multiclass data sets.

CFS and FCBF
CFS’s feature subset evaluation function (Hall, 1999) is

Ms ¼
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk − 1Þrf f
p ; (B-2)

where Ms is the heuristic merit of a feature subset con-
taining k attributes, rcf is the mean attribute-class corre-
lation, and rf f is the average attribute-attribute
correlation. FCBF (Yu and Liu, 2003) starts with full
set of features, uses symmetrical uncertainty to calculate
dependences of features, and it finds the best subset us-
ing backward selection for high-dimensional data.

Wrapper
Sequential selection algorithms

The SFS algorithm (Kittler, 1978) starts from an
empty set and sequentially adds the attributes that
maximize the classification accuracy. The process is re-
peated until the required number of features are added.
The SBS algorithm starts from the full set and sequen-
tially removes the attribute that its removal gives the
lowest decrease in classification performance. Sequen-
tial floating forward selection and sequential floating
backward selection (Pudil et al., 1994) introduce an ad-
ditional backtracking step that is more flexible than the
naive SFS algorithm (Chandrashekar and Sahin, 2014).

Embedded
Attribute importance in tree-based methods (RF)

In the classification and regression tree algorithm
(Breiman, 2001; Breiman, 2002), the best split is made us-
ing a Gini impurity at each internal node for prediction.
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The Gini importance can be computed as byproduct dur-
ing training process of tree-based predicted model, which
is given by

Gini importance iGðθÞ ¼
X
T

X
τ

Δiθðτ;TÞ; (B-3)

where ΔiðτÞ is the node purity gain that is denoted as

ΔiðτÞ ¼ iðτÞ − pliðτlÞ − priðτrÞ: (B-4)

Decrease in Gini impurity,ΔiðτÞ results from splitting the
samples to left and right subnodes.
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