
4     |     June 2019

The Sedimentary Record

INTRODUCTION
 Machine learning (ML) techniques have been 
successfully applied, with considerable success, in the 
geosciences for almost two decades. Applications of ML by 
the geoscientific community include many examples such 
as seismic-facies classification (Meldahl et al., 2001; West 
et al., 2002; de Matos et al., 2011; Roy et al., 2014; Qi et 
al., 2016; Hu et al., 2017; Zhao et al., 2017), electrofacies 

classification (Allen and Pranter, 2016), and analysis of 
seismicity (Kortström et al., 2016; DeVries et al., 2018; 
Perol et al., 2018; Sinha et al., 2018), and classification 
of volcanic ash (Shoji et al., 2018), among others. 
Conventionally, ML applications rely on a set of attributes 
(or features) selected or designed by an expert. Features 
are specific characteristics of an object that can be used 
to study patterns or predict outcomes. In classification 
modeling, these features are chosen with the goal of 
distinguishing one object from another. 
 Typically, feature selection is problem dependent. 
For example, a clastic sedimentary rock is most broadly 
classified by its grain size; therefore a general classification 
for a rock sample (data) is sandstone if its grain sizes 
(features) lie from 0.06 mm to 2.0 mm following the 
Wentworth size class. In this example, a single feature 
is used to classify the sample, but more complex and/or 
detailed classification often requires analysis of multiple 
features exhibited by the sample. An inefficiency of 
traditional ML approaches is that many features may 
be constructed while only a subset of them are actually 
needed for the classification.
 The use of explicitly designed features to classify 
data was the traditional approach in ML applications 
within the geosciences as in many other research areas. 
This classification approach works well when human 
interpreters know and can quantify the features that 
distinguish one object from another. However, sometimes 
an interpreter will subconsciously classify features 
and have difficulty describing what the distinguishing 
features might be, relying on “I’ll know what the object 
is when I see it”. In contrast to feature-driven ML 
classification algorithms, deep learning (DL) models 
extract information directly from the raw unstructured 
data rather than the data being manually transformed.  

Deep convolutional neural 
networks as a geological image 
classification tool
Rafael Pires de Lima1,2, Alicia Bonar1, David Duarte Coronado1, Kurt Marfurt1, Charles Nicholson3

1School of Geology and Geophysics, The University of Oklahoma, 100 East Boyd Street, RM 710, Norman, Oklahoma, 73019, USA
2The Geological Survey of Brazil – CPRM, 55 Rua Costa, São Paulo, São Paulo, Brazil
3School of Industrial and Systems Engineering, The University of Oklahoma, 202 West Boyd Street, RM 124, Norman, Oklahoma, 73019, USA

Keywords
convolutional neural networks, transfer learning, automatization, microfossil identification, petrography

ABSTRACT 
 A convolutional neural network (CNN) is a deep learning 
(DL) method that has been widely and successfully applied to 
computer vision tasks including object localization, detection, 
and	image	classification.	DL	for	supervised	learning	tasks	is	a	
method	that	uses	the	raw	data	to	determine	the	classification	
features, in contrast to other machine learning (ML) 
techniques that require pre-selection of the input features 
(or attributes).  In the geosciences, we hypothesize that deep 
learning will facilitate the analysis of uninterpreted images that 
have been neglected due to a limited number of experts, such 
as fossil images, slabbed cores, or petrographic thin sections. 
We use transfer learning, which employs previously trained 
models to shorten the development time for subsequent 
models, to address a suite of geologic interpretation tasks 
that	may	benefit	from	ML.	Using	two	different	base	models,	
MobileNet V2 and Inception V3, we illustrate the successful 
classification	of	microfossils,	core	images,	petrographic	
photomicrographs, and rock and mineral hand sample images. 
ML does not replace the expert geoscientist. The expert 
defines	the	labels	(interpretations)	needed	to	train	the	
algorithm and also monitors the results to address incorrect 
or	ambiguous	classifications.		ML	techniques	provide	a	means	
to apply the expertise of skilled geoscientists to much larger 
volumes of data.
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Because of their greater complexity 
(and resulting flexibility and power) 
convolutional neural networks 
(CNN) usually requires more training 
data than traditional ML processes. 
However, when expert-labeled data 
are provided, non-experts can use 

the CNN models to generate highly 
accurate results (e.g. TGS Salt 
Identification Challenge | Kaggle, 
2019). 
 DL applications in the geosciences 
require experts to first define 
the labels used to construct the 

necessary data sets as well as 
identify and address any ambiguous 
results and anomalies. In order 
to bring awareness and provide 
basic information regarding CNN 
models, DL techniques, and the 
necessity of expert-level knowledge 

Figure 1: Examples of the data used in this study. A) Three of the seven Fusulinids groups (Beedeina (1), Fusulinella (2), and Parafusulina (3)). 
B) Three of the five lithofacies (bioturbated mudstone-wackestone (1), chert breccia (2), and shale (3)). C) Reservoir quality classes (high (1), 
intermediate (2), and low (3)) D) Three of the six rock sample groups (basalt (1), garnet schist (2), and granite (3)). Samples were interpreted by 
professionals working with each separate dataset.
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needed to utilize these advancements, 
we applied these methods to four 
different geologic tasks. Figure 1 shows 
samples of different types of data that 
can be interpreted and labeled by 
experienced geologists. We use such 
interpretations to train our models. In 
this manuscript, we show how CNN 
can aid geoscientists with microfossil 
identification, core descriptions, 
petrographic analyses, and as a 
potential tool for education and 
outreach by creating a simple hand 
specimen identification application.

CONVOLUTIONAL 
NEURAL NETWORKS AND 
TRANSFER LEARNING
 Recent CNN research has 
yielded significant improvements 
and unprecedented accuracy (the 
ratio between correct classifications 
and the total number of samples 
classified) in image classification 
and are recognized as leading 
methods for large-scale visual 
recognition problems, such as the 
annual ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC, 
Russakovsky et al. (2015)). Specific 
CNN architectures have been the 
leading approach for several years now 
(e.g., Szegedy et al., 2014; Chollet, 
2016; He et al., 2016; Huang et 
al., 2016; Sandler et al., 2018). 
Researchers noted that the parameters 
learned by the layers in many CNN 
models trained on images exhibit a 
common behavior – layers closer to 
the input data tend to learn general 

features, such as edge detecting/
enhancing filters or color blobs, 
then there is a transition to more 
specific dataset features, such as faces, 
feathers, or object parts (Yosinski et 
al., 2014; Yin et al., 2017). These 
general-specific CNN layer properties 
are important points to be considered 
for the implementation of transfer 
learning (Caruana, 1995; Bengio, 
2012; Yosinski et al., 2014). In 
transfer learning, first a CNN model 
is trained on a base dataset for a 
specific task. The learned features 
(model parameters) are repurposed, or 
transferred, to a second target CNN 
to be trained on a different dataset 
and task (Yosinski et al., 2014). 
 New DL applications often require 
large volumes of data, however the 
combination of CNNs and transfer 
learning allows the reuse of existing 
DL models to novel classification 
problems with limited data, as has 
been demonstrated in diverse fields, 
such as botany (Carranza-Rojas et al., 
2017), cancer classification (Esteva 
et al., 2017), and aircraft detection 
(Chen et al., 2018). Analyzing 
medical image data, Tajbakhsh 
et al. (2016) and Qayyum et al. 
(2017) found that transfer learning 
achieved comparable or better results 
than training a CNN model with 
randomly initialized parameters. 
As an example, training the entire 
InceptionV3 (Szegedy et al., 2015) 
with 1000 images (five classes, 50 
original images for each class, four 
copies of each original image) with 

randomly initialized parameters can 
be 10 times slower than the transfer 
learning process (11 minutes vs 1 
minute on average for five executions) 
using a Nvidia Quadro M2000 (768 
CUDA Cores). On a CPU (3.60 
GHz clock speed), training the entire 
model can take up to 2 hours whereas 
transfer learning can be completed 
within a few minutes. We also noticed 
that transfer learning is easier to 
train. During the speed comparison 
test, transfer learning achieved high 
accuracies (close to 1.0) within 5 
epochs (note the dataset is very simple 
with most of the samples being copies 
of each other). Successful applications 
of computer vision technologies 
in different fields suggest that ML 
models could be extremely beneficial 
for geologic applications, especially 
those in the category of image 
classification problems. 
 For the examples we present 
in this paper (Figure 1), we rely 
on the use of transfer learning 
(Yosinski et al., 2014) using the 
MobileNetV2 (Sandler et al., 
2018) and InceptionV3 as our base 
CNN models. Both MobileNetV2 
and InceptionV3 were trained on 
ILSVRC. Therefore, the CNN 
models we used were constructed 
based on inputs of 3-channels (RGB) 
of 2D photographic images. We 
randomly select part of the data to 
be used as a test set maintaining 
the same proportion of samples per 
class as in the training set. The data 
in the test set is not used during the 

Table 1: Summary of test accuracy for the examples in this study.

 Dataset Number of Number of Number of MobileNetV2 InceptionV3
  training samples test samples output classes Accuracy Accuracy
 Microfossils 1480 184 7 1.00 1.00
 (Fusulinids)

 Core 227 28 5 1.00 0.97

 Petrographic 194 31 3 0.81 0.81
 thin-sections

 Rock samples 1218 151 6 0.98 0.97
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computational process for model 
training; rather, it is used to evaluate 
the quality and robustness of the 
final model. Due to limited space, we 
refrained showing the CNN mistakes 
and many of the steps necessary for 
data preparation.

CNN-ASSISTED FOSSIL 
ANALYSIS
 Biostratigraphy has become a 
less common focus of study in the 
discipline of paleontology (Farley 
and Armentrout, 2000, 2002), but 
the applications of biostratigraphy 
are necessary for understanding 
age-constraints for rocks that cannot 
be radiometrically dated. Access 
to a specific taxonomic expert to 
accurately analyze fossils at the 
species-level can be as challenging 
as data acquisition and preparation. 
Using labeled data from the 
University of Oklahoma Sam Noble 
Museum and iDigBio portal, we 
found that fusulinids (index fossils for 
the Late Paleozoic) can be accurately 
classified with the use of transfer 
learning. Accurate identification of a 
fusulinid depends on characteristics 
that must be observed and exposed 
along the long axis of the (prolate 
spheroid-shaped) fusulinid. We used 

a dataset of 1850 qualified images 
including seven different fusulinid 
genera. After retraining the CNN 
model, we obtained an accuracy for 
the test set (10% of the data) of 1.0 
for both retrained MobileNetV2 
and InceptionV3 (Table 1). Figure 
2 shows a schematic view of the 
classification process. 

CNN-ASSISTED CORE 
DESCRIPTION 
 Miles of drilled cores are stored in 
boxes in enormous warehouses, many 
of which have either been neglected 
for years or never digitally described. 
Core-based rock-type descriptions 
are important for understanding the 
lithology and structure of subsurface 
geology. Using several hundred feet 
of labeled core from a Mississippian 
limestone in Oklahoma (data from 
Suriamin and Pranter, 2018 and Pires 
de Lima et al., 2019), we selected a 
small sample of 285 images from five 
distinct lithofacies to be classified by 
the retrained CNN models. Pires de 
Lima et al. (2019) describes how a 
sliding window is used to generate 
CNN input data, cropping small 
sections from a standard core image. 
We used 10% of the data as the test 
set and achieved an accuracy of 1.0 

using the retrained MobileNetV2 
and an accuracy of 0.97 using the 
retrained InceptionV3 (Table 1).  

CNN-ASSISTED RESERVOIR 
QUALITY CLASSIFICATION 
USING PETROGRAPHIC 
THIN SECTIONS
 Petrography focuses on the 
microscopic description and 
classification of rocks and is one of 
the most important techniques in 
sedimentary and diagenetic studies. 
Potential information gained from 
thin section analysis compared to 
hand specimen descriptions include 
mineral distribution and percentage, 
pore space analysis, and cement 
composition. Petrographic analyses 
can be laborious even for experienced 
geologists. Using a total of 161 
photomicrographs of parallel Nicol 
polarization of thin sections from the 
Sycamore Formation shale resource 
play in Oklahoma, we classified 
these images as representatives of 
high, intermediate, and low reservoir 
quality depending on the percent of 
calcite cement and pore space. We 
used 20% of the images in the test 
set and obtained a test set accuracy 
of 0.81 for both the retrained 

Figure 2: An example of the classification process. In this example, a thin-section image that should fit one of the seven fusulinid genera is analyzed 
by the model. The model outputs the probability assigned to each of the possible classes (all probabilities summing to 1.0). The term “classes” here is 
used in the ML sense rather than the biological one. In the example provided, our model provided a high probability for the same class as the human 
expert. Note that in the implementation we use the model will classify any image as one of the seven learned classes – even if the image is clearly not a 
fossil. This highlights the importance of a domain expert intervention. 
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MobileNetV2 and the retrained 
InceptionV3 (Table 1).

CNN-ASSISTED ROCK 
SAMPLE ANALYSIS
 By creating a simple website, 
the general population could 
have immediate access to a rock 
identification tool using transfer 
learning technology. For this work 
in progress, we used smartphones to 
acquire 1521 pictures of six different 
rock types, using five different hand 
samples for each one of the rock 
types. We took pictures with different 
backgrounds, as visually depicted in 
Figure 1, however all pictures were 
taken in the same classroom. After 
retraining the CNN models, we 
obtained an accuracy for the test set 
(10% of original data) of 0.98 using 
the retrained MobileNetV2 and 0.97 
using the retrained InceptionV3 
(Table 1). We note that our model 
does not perform well with no-
background images (i.e., pictures in 
which the rock sample is edited and 
seems to be within a white or black 
canvas) as such images were not used 
in training. 

CONCLUSIONS AND 
FUTURE WORK
 Although gaining popularity and 
becoming established as robust 
technologies in other scientific 
fields, transfer learning and CNN 
models are still novel with respect 
to application within the geoscience 
community. In this paper, we used 
CNN and transfer learning to address 
four potential applications that 
could improve data management, 
organization, and interpretation in 
different segments of our community. 
We predict that the versatile 
transfer learning and deep learning 
technologies will play a role in public 
education and community outreach, 
allowing the public to identify rock 
samples much as they currently can 

use smart phone apps to identify 
visitors to their bird feeder. Such 
public engagement will increase 
geological awareness and provide 
learning opportunities for elementary 
schools, outdoor organizations, and 
families. 
 For all of our examples, we were 
able to achieve high levels of accuracy 
(greater than 0.81) by repurposing 
two different CNN models originally 
assembled for generic computer vision 
tasks. We note that the examples and 
applications demonstrated here are 
curated, and therefore we expected 
highly accurate results. We presented 
demonstrations with limited classes 
and relatively well-controlled input 
images, so near perfect accuracies 
cannot necessarily be expected in 
an open, free-range deployment 
scenario. Regardless, the ability to 
create distinctive models for specific 
sets of images allows for a versatile 
application. 
  The techniques we have shown 
could greatly improve the speed of 
monotonous tasks such as describing 
miles of core data with very similar 
characteristics or looking at hundreds 
of thin sections from the same 
geologic formation. While the tasks 
are performed by the computer, the 
geoscience expert is still the most 
important element in every analysis in 
order to create the necessary datasets 
and provide quality control of the 
generated results. In the end, the 
expert validates the correctness of 
the results and looks for anomalies 
that are poorly represented by 
the target classes. We believe ML 
can help maintain consistency in 
interpretations and even provide 
a resource for less common 
observations and data variations, 
such as previously overlooked fossil 
subspecies and unique mineralogical 
assemblages in small communities 
and private collections, thereby 
building and reconciling a more 

complete international database. By 
combing expert knowledge and time 
efficient technology, ML methods 
can accelerate many data analysis 
processes for geologic research.
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