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Abstract

During the past two decades, the number of volumetric seismic attributes has increased to the point at which
interpreters are overwhelmed and cannot analyze all of the information that is available. Principal component
analysis (PCA) is one of the best-known multivariate analysis techniques that decompose the input data into
second-order statistics by maximizing the variance, thus obtaining mathematically uncorrelated components.
Unfortunately, projecting the information in the multiple input data volumes onto an orthogonal basis often
mixes rather than separates geologic features of interest. To address this issue, we have implemented and evalu-
ated a relatively new unsupervised multiattribute analysis technique called independent component analysis
(ICA), which is based on higher order statistics. We evaluate our algorithm to study the internal architecture
of turbiditic channel complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input
12 spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and we plot 3 of the resulting
independent components against a red-green-blue color scheme to generate a single volume in which the col-
ored independent components correspond to different seismic facies. The results obtained using ICA proved to
be superior to those obtained using PCA. Specifically, ICA provides improved resolution and separates geologic
features from noise. Moreover, with ICA, we can geologically analyze the different seismic facies and relate
them to sand- and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill
architectures.

Introduction
In addition to picking horizons, traditional interpre-

tation includes the identification of geologic features
of interest such as faults, collapse features, channel
complexes, salt domes, and mass transport deposits in
3D seismic amplitude volumes. Volumetric seismic
attributes such as coherence, curvature, gray-level
co-occurrence matrix texture attributes, and spectral-
decomposition analysis can accelerate and facilitate
this process, enhancing subtle features that may other-
wise be overlooked. Depending on the seismic attrib-
utes interpreter’s selection, different information is
extracted (Infante-Paez and Marfurt, 2017; Infante-Paez,
2018). Therefore, relying solely on a single attribute can
lead to an incomplete seismic interpretation in which
important geologic elements can be overlooked. During
the past two decades, the number of volumetric seismic
attributes has increased to the point at which inter-
preters are overwhelmed and cannot analyze all of
the information available.

Corendering using red-green-blue (RGB) or hue-
lightness-saturation color gamuts provides an efficient

means of combining the information content of three
volumes. For more than three volumes, one may project
the higher dimensional data onto a lower dimensional
space. Principal component analysis (PCA) (Guo et al.,
2009; Chopra and Marfurt, 2014; Roden et al., 2015;
Zhao et al., 2015) organizes multivariate data into lin-
early uncorrelated components using second-order sta-
tistics based on the covariance matrix of the data. The
first three components are either corendered using
RGB or interpreted using crossplotting tools. PCA is
also widely used as the first iteration for clustering tech-
niques to reduce the dimensionality of the input data
(Zhao et al., 2015; Sinha et al., 2016). The k-means algo-
rithm (MacQueen, 1967) is a clustering technique in
which, after the interpreter decides the number of de-
sired clusters, the distance between the multiattribute
data point and the center of the clusters is measured
using the Mahalanobis distance. Each data point is as-
sociated with the closest cluster (Zhao et al., 2015).
Generative topographic maps generate a probabilistic
representation of the data on a lower dimensional mani-
fold (Roy et al., 2014; Zhao et al., 2015). Perhaps the
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most widely used clustering technique is self-organizing
maps (SOMs), in which a lower dimensional manifold is
first deformed to represent the data that in turn are pro-
jected onto a corresponding latent space (Kohonen
1982; Strecker and Uden, 2002; Coléou et al., 2003; Zhao
et al., 2015, 2016; Marfurt, 2018).

Spectral-decomposition analysis (Sinha et al., 2005;
Chopra and Marfurt, 2016) decomposes the seismic vol-
ume into a suite of magnitude and phase components at
different frequencies that allow the study of geologic
features near the limits of seismic resolution, enabling
the interpreter to map lateral changes in thickness, lith-
ology, and porosity. A major drawback in spectral-
decomposition analysis is that, from one 3D amplitude
volume, one may generate up to 10–100 output volumes
(Guo et al., 2009), making the selection and visualiza-
tion of the most important components a cumbersome
task. Guo et al. (2009) apply PCA to characterize chan-
nels draining an unconformity in the Central Basin
Platform in Texas, and Li et al. (2009) apply indepen-
dent component analysis (ICA) to a carbonate bank
data volume to map reef as well as shoaling features.
Honorio et al. (2014) apply ICA to a fluviodeltaic system
to map channels.

Inspired by Honorio et al.’s (2014) work, we imple-
mented our own ICA algorithm and applied it to a deep-
water turbidite system in the Taranaki Basin, New
Zealand, and we compared the results not only to the
input data volumes, but also to the more commonly
used corendered PCA volume.

To illustrate ICA, we consider the popular cocktail-
party problem, in which two people are speaking simul-
taneously in a room where two microphones record the
combination of their voices (Figure 1). The recorded
signalsX ¼ fX1;X2g are a linear mixture of the people’s
voices P ¼ fP1;P2g, which can be written as

X ¼ AP; (1)

where A is an unknown matrix called the mixing ma-
trix, whose parameters are a function of the distances
between the microphones and the speakers.

Although the goal is to estimate the people’s voices
P1 and P2, the matrix A is unknown, such that P1 and
P2 cannot be computed directly from X. ICA assumes
that the components Pi are statistically independent,
allowing the computation of the matrix A and its in-
verse W (Hyvärinen and Oja, 2000):

P ¼ WX: (2)

The cocktail-party problem is analogous to our ob-
jective in mapping the Moki A sands Formation of
the Taranaki Basin in New Zealand. Rather than having
two measurements of two simultaneous human speak-
ers, we have N -spectral component measurements of
an unknown number of geologic facies that are mixed
in the seismic response measured byM traces. Within a
given target, we hypothesize that a given geologic
speaker will exhibit the same spectrum across the sur-
vey. Our goal is to use ICA to not only better delineate
but also to determine how many geologic sources are
needed to statistically represent the measured data.

In this study, we begin with an explanation of the
differences between PCA and ICA techniques. Using
an ICA algorithm developed by Hyvärinen and Oja
(2000) for feature extraction and signal separation as
a guide, we implement an ICA algorithm that can work
on a suite of large, 3D volumetric seismic attributes.
The choice of attributes used depends on the geologic
target. To study submarine turbidites in the Moki A
sands of the Taranaki Basin, New Zealand, we use spec-
tral magnitude components that are routinely used to
image fluvial and deepwater channel and canyon sys-
tems (e.g., Partyka et al., 1999; Marfurt and Kirlin,
2001; Lubo-Robles and Marfurt, 2017). We then analyze
these spectral components individually and as input to
the PCA and ICA algorithms. We conclude with a dis-
cussion of the ICA and its advantages with respect to
the well-established PCA. Finally, we add Appendix A
with mathematical details explaining how the algorithm
works.

Theory
A principal component is a scalar value that repre-

sents the projection of an N -dimensional sample vector,
against an N -dimensional eigenvector. This technique is
known as PCA, and, based on Gaussian statistics, it de-
composes the data into mathematically linearly uncor-
related components. PCA reduces the dimensionality
and redundancy of the input multivariate data, but it
may omit geologic features associated with lower re-
flectivity (Guo et al., 2009). PCA is based on an
assumption that the data exhibit Gaussian statistics,
allowing the use of second-order statistics to decom-
pose the data into orthogonal components sorted based
on their variability. Principal components are ranked
according to the energy of the input data they represent.

Figure 1. Illustration of ICA using the popular cocktail-party
problem. The goal is to recover the individual signals P1 and
P2 from the mixtures signals X1 and X2.
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In contrast to PCA, ICA is based on higher order
statistics, and it separates a multivariate signal into in-
dependent, but not necessarily orthogonal, subcompo-
nents, finding a linear representation of non-Gaussian
data (Hyvärinen and Oja, 2000). The concept of “inde-
pendence” provides a means to capture more interest-
ing information from the multivariate data (Honorio
et al., 2014). The independent components are not only
nonorthogonal, but their order is undefined (Figure 2);
i.e., the independent components cannot be ranked
(Hyvärinen and Oja, 2000; Tibaduiza et al., 2012).

The independent component algorithm that we
propose (Figure 3) is based on the FastICA algorithm
developed by Hyvärinen and Oja (2000), with modifica-
tions to implement it using volumetric seismic attrib-
utes. In our workflow, we first select the seismic
attributes a based on the geologic features of interest
and compute their means μ and standard deviations
σ to apply Z-score normalization. We compute the
correlation matrix C from the scaled parameters and
compute its eigenvectors and eigenvalues. To be com-
putationally efficient, we decimate the data to create a
representative data subset atr from which the unmixing
matrix W is computed.

After Z-normalizing the data subset atr to avoid is-
sues related to different units of the seismic attributes,
the data are whitened and filtered using PCA (Stanford,
2018) whereby the eigenvalues retained just exceeding
a choosing criterion of 90% are considered to be signal,
and the others to be noise, therefore reducing the di-
mensionality of the multivariate data.

To initialize the algorithm, we must assume an initial
guess for the unmixing matrixW. Instead of using a ran-
dom initial guess, we generate an initial guess based on
the eigenvectors and eigenvalues of the correlation ma-
trix C to guarantee the exact repeatability of the
process.

Gaussian behavior implies maximum
entropy. In ICA, the unmixing matrix W

is estimated by maximizing the non-
Gaussian behavior of the multivariate
data measured by an approximation of
negentropy (Hyvärinen and Oja, 2000).
PCA assumes that the distributions of
the input sources are Gaussian. Walden
(1985) and Honorio et al. (2014) find
that seismic data can be considered to
be super-Gaussian distributions charac-
terized by a positive kurtosis. In con-
trast, seismic attributes such as the
Sobel filter similarity, coherence, and
spectral magnitude components exhibit
a Poisson distribution characterized
by nonnegative values that is inconsis-
tent with the unbounded support repre-
sentative of a Gaussian distribution
(Ma, 2011). Therefore, maximizing non-
Gaussianity captures valuable informa-
tion associated with higher moments

of the distribution that can be used to recover the
underlying independent geologic sources. Finally, when
convergence is reached, the independent components
are computed by projecting the Z-normalized and whit-
ened seismic attributes onto the final unmixing matrix
W obtained from the algorithm. For more information
on the mathematical details of the procedure, please
refer to Appendix A.

Figure 2. Differences between PCA and ICA. Attributes a1
and a2 are scaled by their means and standard deviations.
The first eigenvector v1 is a line that least-squares fit the data
cloud and best represent the variance of the data. PC1 is a
projection of each data point onto v1. The second eigenvector
v2 is a perpendicular to v1 and for two dimensions these
two eigenvectors best represents the data. In contrast, the in-
dependent components IC1 and IC2 are latent variables
whose order is undefined and are not orthogonal to each other
(Hyvärinen and Oja, 2000; Tibaduiza et al., 2012). To compute
the independent components, each data point is projected
onto the whitened eigenvectors v1 and v2 and then projected
onto the unmixing matrix W.

Figure 3. The ICA. The algorithm is based on the FastICA algorithm developed
by Hyvärinen and Oja (2000), but with modifications for volumetric seismic
attribute application.
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Geologic background
The Taranaki Basin is a sedimentary basin located

along the western side of the North Island, New Zealand
(Palmer, 1985) (Figure 4a). The eastern Taranaki
Graben Complex and the Western Platform are the
two main structural elements of the basin (Pilaar and
Wakefield, 1984).

The Western Platform, with a width of more than
100 km, is characterized by 2000–5000 m of Late
Cretaceous-Recent sediments, and it represents the off-
shore part of the Taranaki Basin (Palmer, 1985). The
Western Platform was affected by normal block faulting
during the Late Cretaceous-Eocene, but during most of
the Tertiary it remained relatively stable (Pilaar and
Wakefield, 1984). The Taranaki Graben structure is
controlled by movement in the basement and faults de-
veloped during the Late Cretaceous-Eocene (Palmer,
1985) with its infill characterized by sedimentary and
igneous rocks (Pilaar and Wakefield, 1984).

The Taranaki Basin was initially formed by transcur-
rent rifting during the Late Cretaceous. Throughout this
time, transgressive marine and terrestrial sedimentary
rocks of the Pakawau Group were deposited (Thrasher,
1992). The Pakawu Group can be subdivided into the
Rakopi and the North Cape Formations. An important
characteristic of the Rakopi Formation is that it was de-
posited under fluvial-lacustrine conditions and has

good hydrocarbon source potential (Figure 4b) (Dau-
zacker et al., 1996).

The Paleocene to Lower Oligocene is characterized
by the deposition of the Kapuni Group, a sequence of
sandstones, coal, and mudstones lithologies, which
overlie the Pakawau Group after a period of transgres-
sion. Contrary to the Pakawau Group, the Kapuni
Group sedimentation is distributed across all the Tara-
naki Basin and is not confined only to the Cretaceous
Grabens (De Bock, 1994).

After the deposition of marine siltstones and mud-
stones related to the Turi Formation in the Eocene to
Early Oligocene, the Tikorangi Limestone, a bioclastic
limestone sequence, was deposited widely in the Tara-
naki Basin during the Oligocene, and according to De
Bock (1994) it represents a regional seismic marker.

The Miocene deposits are characterized by detrital
sedimentation associated with relative sea-level fluctu-
ations and tectonism associated with deposition of sedi-
ments in the South Taranaki Graben during the Early
Miocene and reverse faulting in the South Taranaki Gra-
ben during the Late Miocene (De Bock, 1994). Deposi-
tion started with deepwater mudstones and siltstones
represented by the Lower Manganui Formation. In
the Early to Middle Miocene, deposition of submarine
fans occurred associated with a major regression (De
Bock, 1994). These submarine fans were deposited

on the basin floor or at the base of
continental slope (Dauzacker et al.,
1996) and are represented by the Mt
Messenger and Moki Formations (Fig-
ure 4b). These sandstone turbidites
are diachronous toward the north (Dau-
zacker et al., 1996).

During the Middle to Late Miocene,
the Moki Formation was buried by pro-
gradational deposits of the (Upper)
Manganui Formation (Dauzacker et al.,
1996). The end of the Miocene was char-
acterized by a sea-level falling stage, de-
positing a sequence of prograding strata
known as the Giant Foresets Formation.
Pliocene to present-day sediments are
associated with marine deposition (De
Bock, 1994).

The Moki Formation is a fine-grained
turbidite sequence (Engbers, 2002), and
it is comprised of sandstones inter-
bedded with siltstone, bathyal clay-
stone, and thin limestones (Bussell,
1994). The Moki Formation can be sub-
divided into the Moki A sands, the Moki
B shale, and the Moki B sands (Bussell,
1994). The Moki B sands form the lower
unit in the Moki Formation and consist
of turbidite sheet sands with large later-
ally extension, which were deposited on
a basin floor (Engbers, 2002). The Moki
B shale represents a period of low

Figure 4. (a) The Taranaki Basin can be divided in the Taranaki Graben Com-
plex and the Western Platform (Pilaar and Wakefield, 1984). The Tui3D seismic
survey (the orange star) is situated offshore Taranaki Basin, New Zealand. After
King et al. (1993), King and Thrasher (1996), Thrasher et al. (2002), and Hansen
and Kamp (2006). (b) Stratigraphic column of the Taranaki Basin, New Zealand.
The Moki Formation (the red rectangle) can be divided from the lower to the
upper unit into the Moki B sands, Moki B shale, and Moki A sands (Engbers,
2002). The Moki A sands unit is the zone of interest in this research, and it is
characterized by the base of slope turbidities and channel complexes (Engbers,
2002) trending northwest–southeast (Yagci, 2016). Picture after De Bock (1994).
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sedimentation associated to deposition of bathyal clay-
stones (Engbers, 2002), and it tends to thicken to the
east and northeast (Bussell, 1994). The Moki A sands
unit was deposited as a base of slope turbidite (Engb-
ers, 2002), and it is characterized by major submarine
meandering channel complexes (Bussell, 1994) trend-
ing northwest–southeast (Yagci, 2016). According to
Bussell (1994), the Moki B sands have few channels,
whereas the Moki A sands are incised by sinusoidal
channel complexes, consistent with a progradation of
the slope model. The channel complexes present in
the Moki A sands unit are the geologic feature of inter-
est in this study.

Data set
The Tui3D seismic survey is located offshore Tara-

naki Basin on the southwest coast of the North Island,
New Zealand (Figure 4a), and it was acquired by Veritas
DGC Australia Pty. Ltd from 25 March 2003 to 10 May
2003 (Veritas DGC, 2003). The Tui3D seismic volume
provided by New Zealand Overseas Petroleum Limited
has a surface area of 350 km2 with a streamer separa-
tion of 150 m and a source separation of 75 m and a
12.5 × 12.5 m bin size.

The Tui3D seismic volume data quality is good, but it
was contaminated by the acquisition footprint. A phase
shift of 180° was applied to the volume resulting in a
zero-phase American polarity. In addition to the seismic
volume, we use the Tui SW-2 well to validate our unsu-
pervised seismic facies analysis.

Seismic attributes and analysis interval
Seismic attributes are powerful tools that quantita-

tively measure properties such as continuity, morphol-
ogy, and frequency, facilitating the identification of
turbidites and channel complexes in this
seismic data volume. Different attrib-
utes highlight different features of
interest. Combining them using multiat-
tribute analysis techniques provides a
means to better understand the underly-
ing geologic processes and to better
characterize the reservoir.

Zhao et al. (2015) and Marfurt (2018)
summarize some of the more commonly
used multiattribute data integration
tools, such as 3D corendering, PCA,
and SOMs among other. In this paper,
we evaluate the relatively new ICA mul-
tiattribute decomposition technique.

To apply the ICA algorithm to make a
facies analysis and study the geomor-
phology of the turbiditic channel com-
plexes in the Moki A sands Formation,
several seismic attributes are used as in-
put. The choice of these attributes is
critical to obtain satisfactory results.
Spectral components are sensitive to
impedance and thickness variations

and are thus good candidates for turbidite analysis.
We hypothesize that applying ICA to spectral magnitude
components will reduce the dimensionality of the data,
reject noise, and extract the most valuable information
components, thus accomplishing our goal of highlight-
ing the turbiditic channels to study their internal archi-
tecture and facies distribution.

Spectral-decomposition analysis is a powerful tech-
nique for studying bed thickness, lateral changes in
porosity, the presence of hydrocarbons (Sinha et al.,
2005; Chopra and Marfurt, 2014), and the sequence stra-
tigraphy and the deposition of a particular system (Mar-
furt and Kirlin, 2001). The method of choice in this
study was the continuous wavelet transform (CWT)
that decomposes the seismic volume into phase and
magnitude components at different time-frequency
samples, often improving the temporal and vertical res-
olution and allowing us to interpret geologic features at
different scales. These frequency components are sim-
ilar to applying a band-pass filter to the volume and re-
present its information at a particular frequency
(Chopra and Marfurt, 2015, 2016).

Besides an appropriate choice of seismic attributes,
another critical factor for multiattribute facies analysis
techniques is the design of the analysis interval. The
ideal analysis interval encloses only the target forma-
tion thereby avoiding mixing adjacent facies that have
no geologic interest with the target turbidite facies and
basin floor matrix. Fewer facies results in easier facies
discrimination.

In this study, the Moki A sands unit consists of strong
continuous reflectors incised by discontinuous reflec-
tors with variable reflectivity (Figure 5). For this rea-
son, picking a consistent horizon through the Moki A
sands Formation is a challenging task. Instead, we

Figure 5. Analysis interval between horizon A and horizon B enclosing the Moki
Formation. A strong continuous reflector associated with the Tikorangi Lime-
stone was picked, and phantom horizons were created bracketing the Moki For-
mation. To completely enclose the channel complexes present in the Moki A
sands Formation, the analysis interval brackets the Moki A sands Formation,
the Moki B Shale, and parts of the Moki B sands and Upper Manganui. The analy-
sis interval has a width of 300 ms.
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picked a horizon along the base of the Tikorangi Lime-
stone, characterized by a strong continuous reflector
and similar depositional trend as the Moki Formation,
to create phantom horizons bracketing the top and bot-
tom of the Moki A sands Formation resulting in an
analysis interval of 300 ms. Although the ideal analysis
interval should enclose only one target formation, to
completely enclose the channel complexes present in
the Moki A sands Formation, our 300 ms analysis inter-
val brackets the Moki A sands Formation, the Moki B
shale, and part of the Moki B sands and Upper Manga-
nui Formations.

Results
Seismic geomorphology and facies analysis
using spectral magnitude components as
input in the ICA

To interpret the geomorphology and facies of the
channel complexes present in the Moki A sands unit,
each spectral magnitude component, independent com-
ponent, and principal component volumes are flattened
against the top analysis interval horizon (horizon A),
which is equivalent to extracting a suite of phantom
horizons parallel to horizon A (Figure 6).

Spectral magnitude components are often plotted
against an RGB color scheme for their interpretation
(Li and Lu, 2014; Li et al., 2018). If we plot different
combinations of these spectral components along a
phantom horizon A + 196 ms, we note that the combi-
nation of 25–35–45 Hz (Figure 7a) is similar to the com-
bination of 40–50–60 Hz (Figure 7b), even though a
small meandering channel (blue arrow) tends to be bet-
ter resolved in the former. In contrast, the combination
of 60–70–80 Hz (Figure 7c) is contaminated by the
strong acquisition footprint (red rectangle), but it delin-
eates thin beds inside the channels (yellow arrows).
If we plot the 25–50–75 Hz (Figure 7d), we note that
the infill of the channels tends to tune at the low
frequencies while their flanks are more coherent at ap-
proximately 50 Hz; also, some thin beds tune at high
frequencies of approximately 75 Hz. Analyzing the same
combinations at horizon A + 248 ms (Figure 8), we still

observe that the infill of the channels tends to tune at
low frequencies, the flanks, internal thin beds, and ac-
quisition footprint tune at higher frequencies.

Besides the redundant data existing in the spectral
component analysis, selection of which combination
better represents the turbiditic channels in the Moki
A sands Formation can be cumbersome because there
are many output components to choose from, requiring
manually scrolling and analysis of each combination.
The internal architecture of the channel complexes is
poorly captured at 10, 15, and 20 Hz. For these reasons,
in workflow 1 (Figure 9), we analyze the spectral mag-
nitude components ranging from 25 to 80 Hz with inter-
vals of 5 Hz in the PCA and ICA algorithms. Based on
the retained variability criteria (Stanford, 2018), the al-
gorithm automatically outputs four principal compo-
nents, from which the independent components are
computed because they represent 94.04% of the vari-
ability of the data (Figure 10a).

Workflow 1 reduces the 12D attribute space to a 4D
mathematical space, in which the 12D vectors at each
voxel are projected against the whitened eigenvectors
and the results projected against the unmixing matrix
W. Therefore, if we project the independent compo-
nents against an RGB color scheme, voxels that are pro-
jected to similar colors can be considered as similar
seismic facies.

Principal components are sorted based on the energy
represented by their eigenvalues. Thus, the first princi-
pal component (PC1) is the strongest in these data and
represents 63.52% of the variability (Figure 10a). In gen-
eral, the complex seismic spectrum is the product of the
spectrum of the seismic source and the spectrum of the
geologic response, where the latter exhibits the effects
of thin-bed tuning, reflection strength, attenuation, and
scattering. To examine the spectral response of such
geologic sources, it is common practice to first sta-
tistically flatten the unknown source spectrum. Such
flattening is possible if the average lateral and vertical
changes in reflectivity can be considered to be random
and white over the lateral extent of the survey, and in
this case, within a 1 s analysis window. For this reason,

Figure 6. Spectral magnitude, independent, and principal components volumes are flattened against the top analysis interval
horizon A. This procedure is similar that extracting them along phantom horizons within the analysis interval.
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the eigenspectrum that best represents the data (PCA1)
is approximately flat (Figure 10b). Guo et al. (2009) ob-
serve that because the principal components reside in a
mathematical space, where the spectral components
are represented as orthogonal uncorrelated compo-
nents, little physical significance can be assigned to
these spectra. Moreover, under a non-Gaussian distri-
bution, such as the Poisson distribution associated with
the spectral magnitude components, PCA cannot re-
cover the independent sources (Shlens, 2014), but
rather it provides a different mixture of variabilities
with a low physical meaning (Kim and Wu, 1999; Aires
et al., 2000)

Unlike the principal components that are ordered by
their statistical contribution to the final image, the order
of the independent components is undefined because
they were preprocessed to have unit variance, such that
all four components represent similar energy (Fig-
ure 11a). For this reason, the interpreter evaluates
the components subjectively, based on the relevance
of the imaged geologic features. The noisiest energy
is defined as IC4. Because the independent components
reside in a space where the spectral components
are represented as oblique projections obtained by

maximizing the non-Gaussianity of the data to find
the underlying independent sources (Hyvärinen, 2012),
we hypothesize that the ICA spectrum has more physi-
cal significance that the PCA eigenspectrum. We evalu-
ate this hypothesis in Figure 11b, which shows the ICA
spectrum generated by plotting the columns of the whit-
ened eigenvectors matrix by the unmixing matrix W

where, similar to the PCA eigenspectrum, each column
has a value associated with the frequencies ranging
from 25 to 80 Hz.

Comparing the variability of the principal compo-
nents (Figure 10a) with the energy of the independent
components (Figure 11a), we observe that PCA tends to
be dominated by PC1, whereas the independent compo-
nents exhibit almost the same energy and thus are
equally important. To avoid a subjective comparison be-
tween PCA and ICA, in Figures 12, 13, 14, and 15, we
first examine each of the principal components sorted
by their energy (measured by the corresponding eigen-
values), and we compared them with the results ob-
tained analyzing each of the independent components
seen in Figures 16, 17, 18, and 19, which are sorted vis-
ually, using the delineation of large- and small-scale
geologic features as the sorting criterion.

Figure 7. Spectral magnitude components plotted against an RGB color scheme along a phantom horizon A + 196 ms. (a) Combi-
nation of 25–35–45 Hz spectral magnitude components showing the channel complexes present in the Moki A sands Formation.
(b) The combination of 40–50–60 Hz also shows the channel complexes; however, the small-scale abandoned meandering channel
(the blue arrow) is better resolved in the combination of 25–35–45 Hz. (c) Combination of 60–70–80 Hz. At higher frequencies, the
picture is contaminated by acquisition footprint (the red rectangle). Internal architecture of the channel is still delineated (the
yellow arrows). (d) Combination of the 25–50–-75 Hz. Infill of the channels predominantly tunes at lower frequencies than their
flanks (approximately 50 Hz). Thin beds inside the channels tune at approximately 75 Hz.
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Figure 8. Spectral magnitude components plotted against an RGB color scheme along a phantom horizon A + 248 ms. Analyzing
the same combinations as in Figure 7, the infill of the channels still tunes at lower frequencies, whereas the flanks, internal thin
beds, and acquisition footprint tune at higher frequencies.

Figure 9. Proposed workflow to highlight
and study the internal architecture of the
channel complexes present in the Moki A
sands Formation. We use spectral magnitude
components ranging from 25 to 80 Hz with in-
tervals of 5 Hz to analyze the stratigraphy and
depositional system of the target area. ICA at-
tempts to extract stronger correlated patterns
in the data (geology and acquisition footprint),
with random uncorrelated noise remaining in
the residual. The independent components
are sorted by visual inspection using geologic
insight. For PCA and ICA, we corender the
three most useful components using RGB
blending.
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Geologic features seen on the principal
components

Let us first examine principal component 1 (PC1) at
horizon A + 196ms (Figure 12a) in which the numbering
denotes the different architectural elements and is not
associated with the time of deposition of the channel
complexes. Note the confluence of two leveed mean-
dering tributary channels with moderate sinuosity as
well as a tabular-shaped channel with an architecture
similar to a braided channel (green arrows). The merg-
ing of these three late lowstand turbidite channel infill
systems forms a major turbidite channel toward the
northwest of the study area. In addition, PC1 is charac-
terized by a strong acquisition footprint (red rectangle)
and random noise. Small-scale geologic
features such as oxbow 1, oxbow 2, ox-
bow 3 (orange arrows), and a small
abandoned meandering channel (blue
arrow) are visible but are difficult to
delineate using PC1.

Along horizon A + 248 ms (Fig-
ure 12b), PC1 still exhibits a strong ac-
quisition footprint (the red rectangle)
and random noise. Although we can
delineate the tabular shape channel
and its bifurcation into two distributary
channels toward the northwest, the
leveed meandering channels (the green
arrows) and the small-scale oxbow 3
(the orange arrow) are difficult to in-
terpret.

PC2 at horizon A + 196 ms (Fig-
ure 13a) is somewhat similar to PC1,
exhibiting strong acquisition footprint
(the red rectangle) and random noise.
Although we can still observe the larger
scale geologic features such as the
leveed meandering channel and the
tabular shape channel (the green ar-
rows), the smaller scale geologic fea-
tures such as oxbows (the orange
arrows) and the small abandoned chan-
nel (the blue arrow) are less apparent
than on PC1.

Although PC2 along horizon A +
248 ms (Figure 13b) still exhibits acquis-
ition footprint (the red rectangle) and
random noise, the image is smoother
and less noisy than PC1. The tabular-
shaped channel and its distributary
channels bifurcating toward the north-
west of the study area and the meander-
ing channels (the green arrows) are
similarly resolvable than in PC1,
although meandering channels 1 and 3
look easier to interpret in PC2. The
small-scale oxbow 3 (the orange arrow)
is difficult to delineate using PC2.

Figure 14a shows principal component 3 (PC3) along
horizon A + 196 ms. The leveed meandering channels,
the tabular-shaped and the subsequent merged main
channels (the green arrows), together with the small-
scale oxbows (the orange arrows) images are similar
to those in PC1 and PC2. However, the small abandoned
channel (the blue arrow) that was not completely delin-
eated in PC1 and PC2 is now visible in PC3.

Along horizon A + 248 ms (Figure 14b), PC3 exhibits
less acquisition footprint (the red rectangle) and ran-
dom noise than previous principal components. More-
over, the leveed meandering tributary channels 1, 2, 3,
and 4 have better resolution in PC3 compared with PC1
and PC2, whereas the tabular-shaped channel and its

Figure 10. Variability retained. (a) Based on the percentage of variability re-
tained (Stanford, 2018), the algorithm automatically outputs four components
during the PCA whitening preprocessing step that represent 94.04% of the vari-
ability of the data, from these components the independent components are com-
puted. Also, PC1 is the strongest and represent 63.52% of the variability and
(b) PCA eigenspectrum. PC1 is characterized by a flat spectrum because the
spectral magnitude components were spectrally balanced during the CWT spec-
tral decomposition. Because principal components reside in a mathematical
space and under a non-Gaussian distribution such as the Poisson distribution
associated with the spectral magnitude components, little physical significance
can be assigned to these spectra because PCA recovers a new mixture of var-
iabilities (Kim and Wu, 1999; Aires et al. 2000; Guo et al., 2009; Shlens, 2014).
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bifurcations (distributary channels 1 and 2) look equally
resolvable.

Finally, analyzing principal component 4 (PC4) along
horizon A + 196 ms (Figure 15a) and horizon A + 248 ms
(Figure 15b), we note that it still exhibits the acquisition
footprint (red rectangle) and random noise seen in PC1,
PC2, and PC3. Nevertheless, the edges and internal ar-
chitecture of the geologic deepwater elements analyzed
before are not as well-delineated as in the other princi-
pal components (PC1, PC2, and PC3), although the
edges of the leveed meandering channel 1 at horizon
A + 248 are better delineated.

Geologic features seen on the independent
components

Figure 16a of independent component 1 (IC1) along
horizon A + 196 ms shows the confluence of two leveed
meandering channels with the tabular-shaped channel

forming a major turbidite channel toward the northwest
(the green arrows). However, we note that IC1 presents
better footprint suppression (the red rectangle) and a
smoother, less noisy picture than all the principal com-
ponents. Moreover, the large-scale channels (the green
arrows) and small-scale features such as oxbow 1, ox-
bow 2, oxbow 3 (the orange arrows) and the small aban-
doned meandering channel (the blue arrow) are better
delineated and internally resolvable using IC1.

Figure 16b of IC1 along horizon A + 248 ms shows
better resolution, less random noise, and better foot-
print suppression (red rectangle) than all the principal
components. Furthermore, while the leveed meander-
ing channels (green arrows) are difficult to delineate
using the principal components, these are well-resolved
in IC1. In addition, the tabular-shaped channel that bi-
furcates into two distributary channels toward the
northwest is being better delineated and internally re-

solved using IC1. The small-scale oxbow
3 (orange arrow) is also better resolved
by IC1.

Figure 17a of independent compo-
nent 2 (IC2) along horizon A + 196 ms
appears to be smoother, less noisy with
better footprint suppression (the red
rectangle) than all the principal compo-
nents. IC2 also better shows the large-
scale geologic features such as the
leveed meandering channels and the
tabular-shaped channel (the green ar-
rows), as well as the small-scale geo-
logic features such as oxbows (the
orange arrows) and the small aban-
doned channel (the blue arrow) than
any of the principal component images.

Figure 17b of IC2 along horizon A +
248 ms provides better delineation of
the large-scale leveed meandering tribu-
tary channels (the green arrows) and the
small-scale oxbow 3 (the orange arrow)
than any of the principal component im-
ages. Like IC1, IC2 exhibits a smaller ac-
quisition footprint (the red rectangle)
and less random noise than the principal
components.

Figure 18a of IC3 along horizon A +
196 ms still exhibits a smaller footprint
(the red rectangle) and random noise
than the principal components (the
red rectangle), even though it has a big-
ger footprint and looks noisier than IC1
and IC2. The leveed meandering chan-
nels, the tabular-shaped and the sub-
sequent merged main channels (the
green arrows), together with the small-
scale oxbows (the orange arrows) are
better delineated using IC3 than in
the principal components. However,
the small abandoned channel (the blue

Figure 11. The ICA energy. (a) Independent components exhibit similar energy,
and this is not clearly correlated to geology, thus independent components are
sorted based on visual inspection, seeking for better resolution of large- and
small-scale geologic features and (b) ICA spectra. ICA, in which projections
are not necessarily orthogonal, find the underlying geologic sources by maximiz-
ing the non-Gaussianity of the data (Hyvärinen, 2012); thus, we believe that the
ICA spectrum has more physical meaning than the PCA eigenspectrum.
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arrow) that was not completely delineated in PC1
and PC2 but, was visible in PC3, is barely resolved
in IC3.

Figure 18b of IC3 along horizon A + 248 ms shows the
leveed meandering tributary channels 1 and 2 are still
better delineated in IC3 compared with PC1, PC2, and

Figure 12. Principal component 1 (PC1).
(a) Along horizon A + 196 ms, we note the con-
fluence of two leveed meandering tributary
channels and a tabular-shaped channel into
major turbidite channel toward the northwest
(the green arrows). Also, we observe strong
acquisition footprint (the red rectangle) and
random noise. Moreover, small-scale geologic
features (the orange arrows) and a small aban-
doned meandering channel (the blue arrow)
are difficult to delineate. (b) PC1 at horizon
A + 248 ms. PC1 is still characterized by ran-
dom noise and strong acquisition footprint
(the red rectangle). The large-scale leveed me-
andering channels (the green arrows) and the
small-scale oxbow 3 (the orange arrow) are
difficult to interpret. Please note that the num-
bering is used to identify the different archi-
tectural elements, and it is not associated
with time of deposition of the channel com-
plexes.

Figure 13. Principal component 2 (PC2).
(a) Similar to PC1, PC2 along horizon A +
196 ms shows a strong acquisition footprint
(the red rectangle) and random noise.
Large-scale geologic features such as the tabu-
lar-shaped and the leveed meandering chan-
nels (the green arrows) are possible to
delineate. However, small-scale geologic fea-
tures such as the small abandoned channel
(the blue arrow) and oxbows (the orange ar-
rows) have lower resolution in PC2 compared
to PC1. (b) Along horizon A + 248 ms, PC2
looks smoother than PC1, although we ob-
serve random noise and acquisition footprint
(the red rectangle). The meandering channels
1 and 2 present better resolution in PC2 than
PC1, whereas the tabular-shaped channel and
its distributary channels toward the northwest
of the study have similar resolution on both
principal components. The small-scale oxbow
(the orange arrow) is difficult to interpret us-
ing PC2.
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PC3. In addition, IC3 shows similar resolution than PC2,
PC3, and PC4 when interpreting the meandering chan-
nel 4 and better resolution than PC1 and PC4 when

analyzing the meandering channel 3. The small-scale
oxbow 3 (the orange arrow) is delineated using IC3,
but it is clearer using PC3.

Figure 15. Principal component 4 (PC4).
(a) Along horizon A + 196, PC4 exhibits sim-
ilar random noise and acquisition footprint
(the red rectangle) than previous principal
components. However, the internal architec-
ture and edges of the geologic deepwater ele-
ments present less resolution than in PC1,
PC2, and PC3. (b) PC4 at horizon A +
248 ms is still characterized by acquisition
footprint (the red rectangle) and random. In
addition, although the edges and internal ar-
chitecture of the deepwater elements are bet-
ter delineated in the previous principal
components, the edges of the leveed meander-
ing channel 1 are better resolved using PC4
along horizon A + 248 ms.

Figure 14. Principal component 3 (PC3).
(a) At horizon A + 196 ms, the large-scale
(the green arrows) and small-scale (the or-
ange arrows) geologic features are similarly
interpretable than in PC1 and PC2. Never-
theless, the small abandoned channel (the
blue arrow) is better resolved using PC3.
(b) PCA 3 along horizon A + 248 ms exhibits
a smaller acquisition footprint (the red rectan-
gle) and less random noise than previous prin-
cipal components. Although the tabular-
shaped channel and distributary channels 1
and 2 look equally resolved than in PC1 and
PC2, the meandering channels 1, 2, 3, and
4 have better resolution in PC3. Similar to
Figures 12 and 13, numbering is used to iden-
tify the different architectural elements, and it
is not associated with time of deposition of the
channel complexes.
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Figure 19a of IC4 at horizon A + 196ms and Figure 19b
along horizon A + 248 ms are contaminated by strong
acquisition footprint and random noise. The architec-

tural elements of IC4 are poorly delineated when com-
pared with IC1, IC2, and IC3. This observation is
consistent with the objective of ICA, which seeks to

Figure 16. Independent component 1 (IC1).
(a) At horizon A + 196 ms, IC1 shows better
footprint suppression (the red rectangle)
and a smoother, less noisy behavior than all
the principal components. Furthermore, the
large-scale (the green arrows) and small-scale
oxbows (the orange arrow) and abandoned
meandering channel (the blue arrow) are bet-
ter internally resolved and delineated using
IC1. (b) IC1 along horizon A + 248 ms still ex-
hibits better resolution, less random noise,
and a smaller acquisition footprint (the red
rectangle) than all of the principal compo-
nents. Moreover, the leveed meandering chan-
nels (the green arrows) and the small-scale
oxbow 3 (the orange arrow) have better reso-
lution in IC1 than in all principal components.
In addition, the tabular shape channel and its
distributary channels are better delineated
and internally resolved. Similar to previous fig-
ures, numbering is used to identify the differ-
ent architectural elements, and it is not
associated with time of deposition of the chan-
nel complexes.

Figure 17. Independent component 2 (IC2).
(a) Along horizon A + 196 ms, IC2 is still char-
acterized by a smoother, less noisy behavior,
and better footprint suppression (the red rec-
tangle) than all the principal components. Fur-
thermore, IC2 better exhibits the large-scale
(the green arrows) and small-scale geologic
features such as oxbows (the orange arrows)
and the small abandoned channel (the blue ar-
row) than using PCA. (b) IC2 along horizon A
+ 248 ms shows a smaller acquisition footprint
(the red rectangle) and better resolution of the
large-scale (the green arrows) and the small-
scale (the orange arrow) geologic features
than the principal components.
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better separate alternative patterns or independent
sources (e.g., the geologic features seen in IC1, IC2,
and IC3 and the noise pattern seen in IC4). Moreover,

because PCA sorts the data into orthogonal components
based on higher variability, it tends to mix the geologic
features of interest with noise (PC1, PC2, PC3, and PC4).

Figure 18. Independent component 3 (IC3).
(a) IC3 at horizon A + 196 ms shows a smaller
acquisition footprint (the red rectangle) and
less random noise than the principal compo-
nents, although it has a larger footprint and
more random noise than IC1 and IC2. More-
over, the large-scale geologic features (the
green arrows) and small-scale oxbows (the or-
ange arrows) are better delineated than in
PCA. However, the small abandoned channel
(the blue arrow) that was not completely
delineated using PC1 and PC2, but was resolv-
able in PC3, is barely delineated in IC3.
(b) Along horizon A + 248 ms, IC3 shows sim-
ilar resolution than PC2, PC3, and PC4 when
delineating the meandering channel 4. How-
ever, IC3 has greater resolution than PC1,
PC2, PC3 and PC1 and PC4, when interpreting
the leveed meandering tributary channels 1
and 2 and the meandering channel 3, respec-
tively. The small-scale oxbow 3 (the orange ar-
row) is possible to interpret using IC3, but it
looks better highlighted using PC3.

Figure 19. Independent component 4 (IC4).
Along horizon A + 196 ms, IC4 is characterized
by strong acquisition footprint (the red rectan-
gle) and random noise. Architectural elements
are difficult to delineate. (b) At horizon A +
248 ms, IC4 is still contaminated by strong ac-
quisition footprint (the red rectangle) and ran-
dom noise. Large- and small-scale geologic
features are difficult to interpret. We hypoth-
esize that because ICA looks for independ-
ence in the multivariate data, it provides
better separation between geologic features
(IC1, IC2, and IC3) and noise signal (IC4) than
PCA, which, sorting the data using orthogonal
components based on higher variability, tends
to mix geologic features of interest with noise.
Also, the independent components exhibit
better resolution of large-scale and smaller
scale geologic features than PCA, thus provid-
ing a means of making a better seismic inter-
pretation.
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To accomplish the goal of making an unsupervised
seismic facies analysis, we plot the independent compo-
nents IC1, IC2, and IC3 that represent valuable geologic
information against an RGB color scheme. By construc-
tion, similar seismic facies will appear as similar colors.
In addition, we compare the ICA RGB blending with the
PCA RGB blending using PC1, PC2, and PC3 in which
88.29% of the variability is retained.

In Figure 20, we note that the RGB blending using
independent components at horizon A + 196 ms (Fig-
ure 20b) provides better resolution of geologic features
than the RGB blending of principal components (Fig-
ure 20a). As in the individual components, the leveed
meandering channels, the tabular-shaped main chan-
nels (green arrows) as well as the small-scale geologic
features such as the older abandoned channel and the
oxbows are better delineated using ICA. We also notice
that the ICA RGB blending provides better contrast be-
tween the distinct seismic facies. Although the axis and
off-axis of the leveed meandering channel (Posamentier
and Kolla, 2003; McHargue et al., 2011; Fildani et al.,
2013; Hubbard et al., 2014) are characterized by similar
greenish colors in PCA RGB blending, they are charac-
terized in the ICA RGB blending by a purple color for
the axial deposition of the leveed meandering channels
and a green color associated with the off-axis to mar-
ginal deposition. Moreover, we note that similar to a
braided channel, the tabular-shaped tributary channel

has a more variable internal architecture with predomi-
nantly purple seismic facies mixed with green and some
blue seismic facies. In addition, the oxbows present dif-
ferent infill patterns. Oxbow 1 is filled by a blue, oxbow
2 by a purple, and oxbow 3 by a green seismic facies.
Finally, the small abandoned channel, which is poorly
captured in the PCA RGB image, is characterized by a
purple seismic facies.

At horizon A + 248 ms (Figure 21), the leveed mean-
dering channels 1 and 2 are much better delineated us-
ing ICA RGB blending (Figure 21b) than PCA RGB
blending (Figure 21a). The leveed meandering channel
1 is characterized predominantly by purple seismic fa-
cies intercalated with some bluish seismic facies,
whereas the leveed meandering channel 2 appears
as a green seismic facies. At horizon A + 196 ms, the
tabular-shaped channel internal architecture is highly
variable with a mix of different seismic facies; this vari-
ability is better captured using ICA. The distributary
channel 1 is characterized by a predominant purple
seismic facies, whereas now the distributary channel
2 looks like a prolongation of the tabular channel be-
cause they have the same variable internal architecture.
The meandering channel 3 is characterized by a purple
seismic facies, whereas oxbow 3 and meandering chan-
nel 4 are characterized by a green infill.

In terms of random noise and footprint, ICA RGB
blending (Figures 20b and 21b) provides a smoother

Figure 20. RGB blending of PC1, PC2, and
PC3 versus RGB blending of IC1, IC2, and
IC3 at phantom horizon A + 196 ms, in which
similar colors can be interpreted as similar
seismic facies. (a) From PCA RGB blending,
it is possible to analyze the large-scale geo-
logic features (the green arrows), and the
small-scale oxbows (the orange arrows), but
the small abandoned channel (the blue arrow)
is only partially delineated. PCA RGB blending
is contaminated by the acquisition footprint
(the red rectangle). Axis and off-axis seismic
facies are characterized by similar greenish
colors. (b) From ICA RGB blending, the
large-scale (the green arrows) and small-scale
geologic features such as oxbows (the orange
arrows) and the small abandoned channel
(the blue arrow) are better delineated than
in PCA RGB blending. In addition, the former
presents a smaller acquisition footprint (the
red rectangle) and less random noise than
the latter. ICA RGB blending also provides a
better contrast between different seismic fa-
cies; e.g., the axis of the channel is character-
ized with a purple seismic facies, whereas the
off-axis of the channel is associated with a
green seismic facies. In addition, the tabu-
lar-shaped channel is characterized by a more
variable internal architecture with predomi-
nantly purple seismic facies mixed with blue
and green seismic facies. Finally, the oxbows’
infill varies from purple to blue and green fa-
cies, and the small abandoned channel is as-
sociated with the purple seismic facies.
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picture with remarkably less footprint than PCA RGB
blending (Figures 20a and 21a). Even though the acquis-
ition footprint in ICA RGB blending increases at horizon
A + 196 ms, we hypothesize that it is associated with
independent component 3 (IC3).

ICA shows better results than PCA in terms of delin-
eating deepwater architectural elements of interest,
reduces noise, and improve the contrast between differ-
ent seismic facies. However, neither of these techniques
can be used to predict thickness or porosity because
the independent and principal components project
the data onto a mathematical space. To study reflector
thickness, we must use the original or reconstructed
spectral components (Guo et al., 2009; Honorio
et al., 2014).

Geologic interpretation of seismic facies using
ICA RGB blending

Following McHargue et al. (2011), channels associ-
ated with turbiditic deposits are a product of multiple
waxing and waning flows. During a waxing cycle,
high-energy turbiditic flows produce erosion forming
a channel conduit. In a waning cycle, turbiditic flows
become less energetic, thus allowing filling of the chan-
nel conduit.

Deposition in deepwater channels can be divided
into axis, off-axis, and margin turbiditic facies (Fig-
ure 22). In most cases, the axis represents the thickest
part of the channel and is characterized by deposition
of thick-bedded amalgamated sandstone facies. In

contrast, off-axis to marginal deposition is associated
with interbedded sandstone and mudstone facies, also
known as heterolytic facies, implying a lower con-
centration of net sand compared with axis facies
(McHargue et al., 2011; Fildani et al., 2013; Hubbard
et al., 2014).

Although the internal architecture of the channels
present in the Moki A sands Formation is highly varia-
ble and complex, based on principles of geomorphology
and following the model of deposition of turbiditic fa-
cies (McHargue et al., 2011; Fildani et al., 2013; Hubbard
et al., 2014) and cut-and-fill architecture (Posamentier
and Kolla, 2003) in channel complexes, we generate
several vertical sections of seismic amplitude through
the channels complexes, to correlate the different seis-
mic facies obtained from the ICA RGB blending analysis
with axis, off-axis, and margin deposition and lateral
and upward migration of facies.

In Figure 23a, we generated a vertical section AA′
through the straight tabular-shaped channel that con-
tains a more variable internal architecture of the seis-
mic facies with predominantly purple seismic facies
mixed with some green and blue facies. We hypothesize
that this channel complex was developed as a deep cut
associated with high-energy turbiditic flows in which,
during a waning cycle, weakly unconfined channels mi-
grated inside the channel conduit. According to
McHargue et al. (2011), these weakly unconfined chan-
nels are characterized by a tabular shape and similar
architecture to braided channels with predominant

Figure 21. The RGB blending of PC1, PC2,
and PC3 versus the RGB blending of IC1,
IC2, and IC3 at phantom horizon A +
248 ms, similar colors are associated with sim-
ilar seismic facies. (a) From PCA RGB blend-
ing, the large-scale meandering and tabular-
shaped channels are well-delineated but the
resolution decreases compared with the ICA
RGB blending. In addition, the former
presents a larger acquisition footprint than
the latter. (b) The geologic architectural ele-
ments are better resolved in ICA RGB blend-
ing than in PCA RGB blending. The leveed
meandering channel 1 is characterized pre-
dominantly by purple seismic facies interca-
lated with some bluish seismic facies, and
the leveed meandering channel 2 is associated
with a green seismic facies. The tabular-
shaped channel internal architecture is highly
variable with a mix of different seismic facies.
The distributary channel 1 is characterized by
a predominant purple seismic facies, and the
distributary channel 2 looks like a prolonga-
tion of the tabular channel. Finally, the mean-
dering channel 3 is characterized by only a
purple seismic facies, and the oxbow 3 and
the meandering channel 4 are characterized
by a greenish infill.
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sand-rich facies. In addition, in vertical section AA′,
we observe that oxbow 3, with a predominant green
seismic facies related to low-amplitude reflectors, is en-
closing the purple seismic facies associated with high-
amplitude, continuous reflectors.

Vertical section BB′ (Figure 23b) through the
meandering leveed channel 1 shows an asymmetrical

configuration which, according to McHargue et al.
(2011), occurs in sinusoidal channels. The fact that this
channel complex is asymmetrical can be associated
with cut-and-fill or waxing and waning cycles (Posa-
mentier and Kolla, 2003). Cut-and-fill architectures
can lead to upward and lateral migration of channel fa-
cies (Posamentier and Kolla, 2003). We hypothesize that
in BB′ (Figure 23b), there was a first waxing and waning
cycle in which sand-prone facies are deposited in the
axis of the channel, whereas in the off-axis to margin
of the channel, mud-prone facies are deposited (Posa-
mentier and Kolla, 2003; McHargue et al., 2011). Then, a
second waxing-waning cycle occurred, creating a cut-
and-fill architecture in which the facies migrated up-
ward and laterally (the red arrow). On the waxing
and waning cycles, sand-prone facies are deposited
in the axis of the channel, whereas mud-prone facies
are related to off-axis to marginal deposition. In addi-
tion, in vertical section BB′, we note that axial facies
associated with purple seismic facies are characterized
by high-amplitude, continuous reflectors with a limited
lateral extent, whereas the green seismic facies, associ-
ated with off-axis to marginal deposition, are character-
ized by low-amplitude reflectors as observed in section
AA′. From Figure 23b, we note that the sheet sands of

Figure 23. Geologic interpretation of seismic facies using ICA RGB blending and principles of geomorphology of architectural
elements in deepwater channel complexes. (a) Vertical section AA′ intersecting the straight tabular-shaped channel characterized
by a more variable internal architecture with predominantly purple seismic facies mixed with some green and blue facies. We
interpret that this tabular-shaped channel was developed as a deep cut related to high-energy turbiditic flows during a waning
cycle. In addition, weakly unconfined channels migrated inside the channel conduit. These weakly unconfined channels are char-
acterized by a tabular shape and similar architecture to braided channels with predominantly sand-rich facies. The oxbow 3, with a
predominantly green seismic facies associated with low-amplitude reflectors encloses the purple seismic facies related to high-
amplitude continuous reflectors. (b) Vertical section BB′ through the meandering leveed channel 1. The sinusoidal channel is
characterized by an asymmetrical configuration, which is associated with the cut-and-fill architecture. We interpret two different
waxing and waning cycles in which sand-prone facies, characterized by high-amplitude reflectors, are deposited in the axis of the
channel, whereas mud-prone facies, associated with low-amplitude reflectors, are related to off-axis to marginal deposition. Also,
upward and lateral migration of channel facies is seen (red arrow). Sheet sands are associated with a mixture of bright-blue with
yellow, red, and purple seismic facies related to high amplitude with great lateral extension parallel reflectors.

Figure 22. Following McHargue et al. (2011), Fildani et al.
(2013), and Hubbard et al. (2014), deposition of turbiditic fa-
cies in deepwater channels can be divided into axis, off-axis,
and margin. In general, the axis of the channel represents the
thickest part, and it is associated with deposition of thick-
bedded amalgamated sandstone facies. Off-axis to marginal
deposition is characterized by interbedded sandstone and
mudstone facies (heterolytic facies), implying a lower concen-
tration of net sand. Picture after McHargue et al. (2011) and
Hubbard et al. (2014).
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the Moki A sands Formation are represented by a mix-
ture of bright-blue with yellow, red, and purple seismic
facies associated with high amplitude with great lateral
extension parallel reflectors.

In Figure 24a, we make another vertical section CC′
through meandering leveed channel 1, but now the
outer bend of the channel is facing the opposite direc-
tion. In vertical section CC′, we note that there is lateral
and upward migration of facies (the red arrow); thus,
cut-and-fill architecture related with waxing and
waning cycles is present. Like in vertical section BB′
(Figure 23b), we hypothesize that sand-prone facies
are deposited in the axis of the channel and mud-prone
facies are deposited in the off-axis to marginal deposi-
tion. Moreover, purple seismic facies are still associated
with axial deposition and characterized by high-
amplitude continuous reflectors, whereas green purple
facies with low-amplitude reflectors represent off-axis
to marginal deposits. Sheet sands are associated with
bright-blue seismic facies, mixed with yellow, red,
and purple seismic facies.

Vertical section DD′ (Figure 24b) through meander-
ing leveed channel 2 shows cut-and-fill architecture as-
sociated with the waxing-waning cycles. Also, we
hypothesize that during channel deposition related with
a second waning-waxing cycle, axial deposits from the

previous waning-waxing cycle were eroded. Like in the
previous observations, purple seismic facies represent
high-amplitude continuous reflectors suggesting sand-
prone deposits along the axis of the channel. Further-
more, green seismic facies are still characterized by
low-amplitude reflectors and they represent mud-prone
facies related with off-axis to marginal deposition.

Vertical section EE′ (Figure 25) through meandering
channel 3 at horizon A + 248 ms shows a lateral change
in the amplitude thickness that we interpret is associ-
ated with differential compaction (Chopra and Marfurt,
2012). Differential compaction is related to lateral
changes in lithologies. We interpret the positive relief
in EE′ as a channel filled with sand-prone sediments
that do not experience as much compaction as the
mud-prone facies outside it. In this case, the purple seis-
mic facies are associated with sand-prone facies and
high-amplitude reflectors and the green facies are re-
lated to mud-prone sediments and lower amplitude re-
flectors associated with the Moki B shale Formation.

Based on the observations made using vertical sec-
tions through the channel complexes present in the
Moki A sands Formation, we hypothesize that purple
seismic facies, characterized by continuous high-
amplitude reflectors, are associated with sand-prone fa-
cies related to axial deposition. In contrast, we believe

Figure 24. Geologic interpretation of seismic facies using ICA RGB blending and principles of geomorphology of architectural
elements in deepwater channel complexes. (a) Vertical section CC′ intercepting the meandering leveed channel 1, with the outer
bend of the channel facing the opposite direction compared with BB′. Cut-and-fill architectures, associated with lateral and upward
migration of facies (the red arrow), are interpreted. Similar to vertical section BB′, we interpret that sand-prone facies are de-
posited in the axis of the channel and are characterized by purple seismic facies associated with high-amplitude continuous re-
flectors. Mud-prone facies deposited in the off-axis to marginal deposition are related to green purple facies characterized by low-
amplitude reflectors. Finally, sheet sands are associated with bright-blue seismic facies, mixed with yellow, red, and purple seismic
facies. (b) Vertical section DD′ through the meandering leveed channel 2. Cut-and-fill architectures associated with waxing-waning
cycles are interpreted. We hypothesize that during channel deposition related with a second waning-waxing cycle, axial deposits
from the previous waning-waxing cycle were eroded. Purple seismic facies represent high-amplitude continuous reflectors, which,
based on geomorphology concepts, we believe are associated with sand-prone deposits along the axis of the channel. Green seis-
mic facies are related to low-amplitude reflectors and represent mud-prone facies associated with off-axis to marginal deposition.
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that the green seismic facies, characterized by low-
amplitude reflectors, are associated with mud-prone
facies related to off-axis to marginal deposition in the
meandering channel complexes. Finally, mixed blue,
yellow, and red facies represent sheet sand deposits,
we hypothesize that these seismic facies are associated
with higher concentration of sand-prone deposits.

Validation of seismic facies using well data
To validate our interpretation of the seismic facies

using principles of geomorphology and the ICA RGB
blending to highlight the different architectural ele-
ments, we relate the seismic facies with lithologies an-
alyzing the gamma-ray log from the Tui SW-2 well.
Figure 26 shows that high gamma-ray values associated

Figure 25. Geologic interpretation of seismic facies using ICA RGB blending and principles of geomorphology of architectural
elements in deepwater channel complexes. Vertical section EE′ through meandering channel 3 at horizon A + 248 ms. There is a
lateral change in the amplitude thickness, which is related to differential compaction (Chopra and Marfurt, 2012). Differential
compaction is associated with lateral changes in lithologies. In this case, we interpret the positive relief as a channel filled with
sand-prone sediments related to purple seismic facies, which do not experience as much compaction as the mud-prone facies of
the Moki B shale Formation, associated with green seismic facies, outside it.

Figure 26. Validation of the interpretation based on the principles of geomorphology of the seismic facies in the Moki A sands
Formation using the gamma-ray log from the Tui SW-2 well. High gamma-ray values associated with bathyal claystones of the Moki
B shale Formation are associated with the green seismic facies (the yellow arrow), which, in our interpretation, we hypothesized
were associated with mud-prone seismic facies. Small low gamma-ray values (the blue arrow) associated with calcareous sand-
stones are not seen in the seismic because they are below the resolution. Intercalation of high- and low-gamma-ray values asso-
ciated with interbedded calcareous sandstone and claystones related to base of slope turbidites of the Moki A sands Formation are
associated with the red and blue seismic facies (the green arrows), this correlate with our interpretation of sheet sands charac-
terized by a mixture of blue, red, and yellow seismic facies. The low-gamma-ray calcareous sandstone of thickness approximate to
30 m bracketed by high-gamma-ray values associated with bathyal claystones are related with mixed purple and green seismic
facies (the orange arrow).
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with bathyal claystones of the Moki B shale Formation
correlate with the green seismic facies (the yellow ar-
row) suggesting a mud-prone seismic facies. In addi-
tion, the low gamma-ray values (the blue arrow),
which are associated with calcareous sandstones, are
not seen in the seismic because their thickness is ap-
proximately 5 m; thus, they are below seismic resolu-
tion. In addition, intercalation of high-gamma-ray
with low-gamma-ray values associated with inter-
bedded calcareous sandstone and claystones related
to the base of slope turbidites present in the Moki A
sands Formation are characterized by red and blue seis-
mic facies (the green arrows), which is consistent with
our interpretation of sheet sands characterized by a
mixture of blue, red, and yellow seismic facies. Finally,
the low-gamma-ray calcareous sandstone of approxi-
mate thickness of 30 m bracketed by high-gamma-ray
claystone are associated with mixed purple and green
seismic facies (the orange arrow) in the Tui SW-2 well.
Although the Tui SW2 well is not drilled through one of
the channel complexes, we believe that the validation of
the seismic facies using this well can be extrapolated to
the other zones of the seismic volume.

Conclusion
Applications to a 3D seismic data volume acquired

in the Taranaki Basin show that ICA is a powerful tech-
nique to reduce dimensionality, extract valuable infor-
mation from multiple seismic attribute volumes, and
separate geologic features from noise. ICA uses higher
order statistics that found projections that were more
geologic and less mathematical than PCA, in which
PCs based on Gaussian statistics seem to mix multiple
geologic features as well as noise. For this reason, ICA
provided better resolution and better footprint reduc-
tion than PCA in this study. Small-scale geologic fea-
tures characterized by lower reflectivity than large-
scale geologic features are overlooked by PCA,
whereas in ICA geologic features at all scales are
well-preserved. Specifically, meandering and tabular-
shaped tributary channels as well as abandoned mean-
dering channels and oxbows are better delineated us-
ing ICA. Finally, ICA RGB blending provided better
contrast between distinct seismic facies than PCA
RGB blending. In ICA RGB blending, axial deposition
associated with sand-prone facies is characterized
by a distinct (the purple color in our case) seismic fa-
cies related to high-amplitude reflectors. In contrast,
off-axis to marginal deposition of the channels is
represented by a different (the green color) seismic fa-
cies associated with mud-prone facies and character-
ized by low-amplitude reflectors. Finally, sheet sand
deposits are characterized by high-amplitude continu-
ous reflectors with greater lateral extent, and they
are associated with a mixture of (purple, red, and yel-
low) facies dominated by one (bright-blue) seismic
facies.
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Appendix A

Preprocessing for ICA estimation
Estimation of the independent components P ¼

fP1;P2g requires finding an unmixing matrix W such
that its projection maximizes the independence or
non-Gaussianity between the components (Hyvärinen
and Oja, 2000). ICA assumes that the data have a
non-Gaussian distribution.

We apply some preprocessing steps to better condi-
tion the problem. Hyvärinen and Oja (2000) suggest
subtracting the mean vector ā of the data a from the
value at each voxel prior to estimating the independent
components. However, unlike human voices and other
ICA applications, each seismic attribute may have a dif-
ferent unit of measurement and range of values. For ex-
ample, the seismic envelope may range between 0 and
þ10;000, whereas the curvature may have value that
range between −1 andþ1 km−1. For this reason, we ap-
ply a Z-score normalization to the data, i.e., subtracting
its mean but also dividing by its standard deviation:

a
ðnormÞ
n ¼ ðan − anÞ∕σðanÞ: (A-1)

The next preprocessing step is to whiten the data.
Whitening guarantees that the data are uncorrelated
(mathematically, the covariance matrix is the identity
matrix). The correlation matrix C is constructed by
comparing each sample vector to itself and all its neigh-
bors and can be computed from K attribute volumes as

Ckl¼
1
M

XM
m¼1

aðnormÞ
mk ðtm;xm;ymÞaðnormÞ

ml ðtm;xm;ymÞ; (A-2)

where M is number of voxels in the volume to be
analyzed.

According to Hyvärinen and Oja (2000), uncorrelated
data simplify the estimation of independent compo-
nents because the mixing matrix A becomes an
orthogonal matrix, thereby reducing the number of free
parameters to be computed.
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PCA is a common technique used for dimensionality
and noise reduction. The kth principal component PðkÞ

at the mth voxel (tm, xm, ym) is a scalar that represents
the projection of an N -dimensional sample vector a

against the kth unit length, N -dimensional eigenvector
vðkÞ:

P
ðkÞ
n ðtm; xm;ymÞ ¼

XN
n¼1

a
ðnormÞ
n ðtm; xm;ymÞvðkÞn : (A-3)

PCA can be used to whiten the data. Specifically,
after computing the principal components Pn, we re-
scaled them by 1∕

ffiffiffiffiffi
λn

p
thereby making each of the pro-

jections have unit variance:

a
ðwÞ
n ¼ P

ðkÞ
n ðtm; xm;ymÞ
ðλn þ εÞ1∕2 ; (A-4)

where a
ðwÞ
n represents the data after Z-score normaliza-

tion and whitening, λn are the eigenvalues of the corre-
lation matrix, and ε is a fraction of the largest
eigenvalue λ1, to avoid division by zero.

Using PCA whitening, we not only reduce the dimen-
sionality of the data but also reduce noise during the
independent component estimation (Hyvärinen and
Oja, 2000). To decide how many components we should
preserve, we analyze the percentage of variance re-
tained (Stanford, 2018).

If we have N principal components, the eigenvalues
are λ1; λ2; λ3; : : : ; λN , where λn ≥ λnþ1. For N attributes,
Stanford (2018) suggests keeping the largest K compo-
nents whose sum just exceeds a user-defined percent-
age β of the variability E of the data, where the
remaining variability is considered to be noise:

P
K
n¼1 λnP
N
n¼1 λn

≥ β; (A-5)

where we use a value β ¼ 0.9 to define the data
from noise.

The ICA algorithm
Based on the central limit theorem, Hyvärinen and

Oja (2000) state that the distribution of two indepen-
dent variables is less Gaussian than the distribution
of the sum of the two variables. Therefore, by maximiz-
ing the non-Gaussianity of the preprocessed data, we
can find the unmixing matrix W that maximizes the
independence of the sources P1 and P2.

Because a Gaussian variable has the largest entropy
of all, Hyvärinen and Oja (2000) quantitatively measure
non-Gaussianity based on an approximation of negen-
tropy, which is a modified version of entropy that is al-
ways nonnegative and is equal to zero for a Gaussian
distribution.

Assuming a random variable y ¼ WTaðwÞ with zero
mean and unit variance, Hyvärinen (1999) approxi-
mates the negentropy J as

JðyÞ ¼ fE½GðyÞ� − E½GðvÞ�g2; (A-6)

where G is a nonquadratic function called the contrast
function, v is a centered and whitened Gaussian varia-
ble, and E is the expected value operator. In practice,
the expectation operator must be replaced by the sam-
ple means (Hyvärinen and Oja, 2000).

To compute the independent components, Hyväri-
nen and Oja (2000) develop an algorithm called
FastICA, in which the goal is to maximize the contrast
function G. Any nonquadratic function can be used in
the computations (Hyvärinen and Oja, 2000). We follow
Honorio et al. (2014), and use the contrast function:

GðyÞ ¼ −e−ðy2∕2Þ; (A-7)

which through empirical analysis appears to provide
good resolution and delineation of the geologic fea-
tures. The independent components are computed si-
multaneously. To avoid convergence to the same
maxima, the outputs are decorrelated after each itera-
tion (Hyvärinen and Oja, 2000).

Following Hyvärinen and Oja (2000), in each itera-
tion of the algorithm, each row of the unmixing matrix
W is updated by

Wþ
j
¼E

�
aðwÞ∂G

∂y
ðWT

j a
ðwÞÞ

�
−E

�
∂2G
∂2y

ðWT
j a

ðwÞÞ
�
Wj; (A-8)

and normalized by

Wþ
j
¼ Wþ

j
∕kWþ

j
k; (A-9)

where Wþ is the updated unmixing matrix. Finally, the
updated unmixing matrix Wþ is decorrelated using
eigenvalue decomposition by

Wþ
decorr ¼ ðWWTÞ−1∕2W: (A-10)

Convergence is reached when the dot product
between the old and new values of W is close to
one, indicating that they are parallel and unchanged
(Hyvärinen and Oja, 2000).

Finally, the energy of each independent component
is the sum of the energy over all the voxels that fall in
the target region:

L ¼
XM
m¼1

yiðtm; xm;ymÞ2; (A-11)

where yiðtm; xm;ymÞ is the ith independent component
at voxel m and M is the number of voxels in the tar-
get area.
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