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Summary 

 
In the last decade, machine learning algorithms such as 

Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), and Self-organizing Maps (SOM) have 

been adopted by geoscientists both to extract more detailed 
information and to accelerate the interpretation of their data. 

In this study, we present a novel technique called Exhaustive 

PNN which uses Probabilistic Neural Networks to determine 

the best suite of seismic attributes to perform a supervised 
seismic facies classification to differentiate salt from the 

background seismic response in a Eugene Island seismic 

survey, offshore Louisiana. 

 

Introduction 

 

Working with seismic attributes and well log data, Hampson 

et al. (2001) showed stepwise linear regression to be an 
effective means of picking the best number and collection of 

seismic attributes to predict a desire well log property. There 

are two limitations to this workflow, (1) it does not test all 

the possible combinations of seismic attributes, and (2) by 
searching for linear relationships between the attributes, it 

can miss non-linear relationships existing between them.  

However, for our problem, the limitation is slightly different; 

rather than predict a specific petrophysical property by 
correlating attributes to that property, we wish to 

differentiate one or more seismic facies from each other and 

the background pattern.   

 
Because of artificial neural network’s capacity in exploring 

non-linear relationships, we evaluate whether a novel 

technique called Exhaustive PNN which, using Probabilistic 

Neural Networks coupled with an exhaustive search 
algorithm, are capable of determining the best combination 

of seismic attributes to distinguish between salt vs. non-salt 

seismic facies in a Gulf of Mexico 3D seismic survey. 

 
Probabilistic Neural Networks (PNNs) 

 

Probabilistic Neural Networks (PNNs) are feedforward 

neural networks that using Bayes’s criteria and Parzen 
windows estimate the probability density function from 

random samples, and then classify an unknown variable into 

a certain class (Specht, 1995; Masters, 1995; Hajmeer and 

Basheer, 2002). According to Masters (1995), the most 
common kernel function used in the Parzen method is the 

Gaussian function. For this reason, given a set of training 

attributes 𝐚, the average estimated density function g(a) is 

given by: 

 

 
 

 

where, M is the number of training attributes, N is the 

number of training samples, 𝐛 are the validation attributes in 
which we want to determine to what class they belong, and 

𝜎 is a smoothing parameter that requires optimization. 

 

Following Masters (1995), in order to classify an unknown 
sample (Figure 1), the PNN starts by computing the distance 

between the validation attributes and the training attributes, 

then it inputs that distance into the Gaussian activation 

function. In the summation layer, it computes the average 
estimated density function g(a) for each class. Finally, in the 

output layer, the PNN decides to what class the unknown 

sample belongs based on what g(a) is maximum. Also, PNN 

provides confidence estimates of the classification (Masters, 
1995) given by: 

 

 

 
 

where, P is the probability of an observation B be the product 

of class A, gA(a) is the estimated density function for class 

A, and J represent the total number of classes.  
 

Finally, in order to optimize 𝜎, we use an exhaustive search 

algorithm in which we test a range of values for 𝜎, and select 

the one associated with the minimum error E given by: 

 

 

 

where, R is the number of validation samples, and 𝑒 is 1 if 
the validation sample was not classified correctly, or 0 if the 

validation sample was classified correctly. 

 

Exhaustive PNN workflow for attribute selection and 

supervised seismic facies classification  

 

First, we use our geological insight to choose a suite of 

candidate seismic attributes. Next, we apply 3D Kuwahara 
median filter to smooth and block the attributes (Qi et al., 

2016), preconditioning them for subsequent classification. 

We also define a group of polygons for each facies which 

represent the training and validation datasets (Figure 2). We 

compute the means 𝛍 and covariance matrix 𝐂 from the 

training data which are used to Z-score normalize the and 

validation sets in order to avoid any bias related to different 
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Figure 1. Basic framework for the Probabilistic Neural 

Network (PNN).        

      
units between the seismic attributes. In order to initialize the 

PNN Exhaustive algorithm, we define our first seismic 

attribute combination and an initial smoothing parameter σ. 

We test a suite of values ranging from 0.1 to 15 through the 
exhaustive search algorithm, and we compute the error E in 

each iteration. We store the iteration associated with the 

minimum E and define another seismic attribute 

combination. After testing all possible combination, we 
select the combination of seismic attributes and smoothing 

parameter 𝜎 that provides the minimum E in order to 

perform our supervised seismic facies classification, and 

compute the probability of each classes measuring the 
confidence in the classification. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

Figure 2. The proposed exhaustive PNN-based workflow for 

attribute selection and supervised seismic facies 
classification.   

                                                                                                                    

Geologic setting 

 

The Eugene Island mini-basin is a giant Plio-Pleistocene oil 

and gas field located offshore Louisiana in the outer 

continental shelf of the Gulf of Mexico (Alexander and 

Flemings, 1995; Joshi and Appold, 2016). Following, 

Alexander and Flemings (1995), the mini-basin had three 
phases of evolution.  

 

A prodelta phase characterized by deposition of bathyal and 

prodelta shales, distal deltaic sands, and turbidites on top of 
a salt sheet. This sediment loading caused the salt sheet to 

migrate outward laterally, creating new accommodation 

space in the area (Alexander and Flemings 1995; Joshi and 

Appold, 2016). Second, a proximal deltaic phase associated 
with lowstand deltas characterized by mud and sand 

sequences (Joshi and Appold, 2016). Also, a high sediment 

accumulation rate is seen during this phase due to salt 

withdrawal (Alexander and Flemings, 1995). Finally, the 
last phase is fluvial in which salt withdrawal waned, so little 

further accommodation space was created (Alexander and 

Flemings, 1995; Joshi and Appold, 2016). 

 

Data description  

 

The Eugene Island seismic survey is located in the Gulf of 

Mexico, offshore Louisiana. For this study, the seismic 

volume was cropped consisting of 700 inlines and 700 
crosslines with a bin size of 82.5 ft by 82.5 ft, record length 

of 3 s, and an area of approximately 306 km2. Figure 3 shows 

a representative time slice at t=2 s through the seismic 

amplitude volume, where we observe two salt bodies (Salt 
#1 and Salt #2; red arrows) associated with salt withdrawal 

during the prodelta and proximal deltaic phases of 

deposition.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Time slice at t=2 s through the Eugene Island 

seismic amplitude volume, offshore Louisiana. Note the 

presence of two salt bodies (red arrows) and intervening 

minibasins associated with salt withdrawal in the study area. 
 

Seismic attribute selection to discriminate salt from the 

background seismic pattern using Exhaustive PNN 

 

To perform our supervised seismic facies classification, we  
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Figure 4. Training and validation datasets. (a) Vertical slice though the seismic amplitude along inline 521. We extract the training 
voxels from the salt (green polygons) and non-salt (red polygon) from the six seismic attributes. (b) Time slice at t=2 s through the 

seismic amplitude volume. This time slice is also used to generate training voxels used for the training set. (c) Vertical slice through 

the seismic amplitude volume along inline 451. We also extract voxels from the six seismic attributes for each class. However, 

these voxels are used as validation set in order to train our neural network by minimizing the prediction error E. (d) For six attributes, 
there are 63 possible combinations. We show the ten best combinations of seismic attributes computed from the Exhaustive PNN 

selected based on their associated E. The best combination is given by coherence and most-positive (k1) curvature because it 

provides the minimum error using less attributes, thus is more computationally efficient. 

 
evaluate six candidate seismic attributes based on our 

geologic insight and past experience: coherence, GLCM 

contrast, GLCM dissimilarity, total energy, most-positive 

curvature (k1), and most-negative curvature (k2). These six 
candidate attributes serve as input to our Exhaustive PNN 

algorithm with the goal of finding the best combinations of 

seismic attributes, and the ideal parameter 𝜎 to differentiate 

between salt vs. non-salt facies in the Eugene Island seismic 
volume.  

 

To generate our training and validation sets, we pick a suite 

of polygons enclosing the salt and non-salt facies. We use 
inline 521 (Figure 4a) and time slice at t=2 s (Figure 4b) to 

extract the training voxels of the salt (green polygon) and 

non-salt (red polygons) seismic facies from the six seismic 

attributes used as input in the Exhaustive PNN workflow.  
We perform a similar analysis in inline 451 (Figure 4c), but 

in this case the extracted voxels from the seismic attributes 

enclosing the two target seismic facies are used as validation 

samples for training the neural network by minimizing the 
error E. Also, we only extract our training and validation sets 

from the Salt #1 diapir in order to leave the Salt #2 diapir as 

a blind test to further evaluate the performance of the PNN.  

 

We maintain a similar number of voxels for each class in 
order to avoid any type of bias towards one of the facies.    

 

When running the Exhaustive PNN algorithm, we test 63 

different combinations between the training attributes, then 

we store the ideal smoothing parameter 𝜎 associated with the 

minimum E for each combination. In Figure 4d, we show the 

best 10 combinations of seismic attributes obtained from our 

proposed workflow selected based on their associated E. We 
observe that the best performance is obtained when 

classifying between salt and non-salt seismic facies using the 

coherence, total energy, most-positive (k1) curvature, or 

coherence and most-positive (k1) curvature, both with an E 

of 0.024 and smoothing parameter 𝜎 of 8 and 1.9 

respectively. To perform our seismic facies classification, 

we use the coherence, and most-positive (k1) curvature 

combination because it provides the minimum error using 
less seismic attributes, so it will be more computationally 

efficient. 
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Figure 5. (a) PNN Facies Prediction co-rendered with the seismic amplitudes along inline 391. We note that the PNN correctly 

distinguishes between salt (red arrows) and non-salt seismic facies. (b) PNN Salt Probability along inline 391. We observe that the 
probability of the extracted orange facies of being salt ranges from 75 to 80%. (c) PNN Facies Prediction co-rendered with seismic 

amplitudes at time slice 1.78s. We note that the PNN still classifies the Salt#1 diapir correctly. Moreover, the Salt #2 diapir, that 

was left as blind test, is also classified correctly by the algorithm. (d) PNN Salt Probability at time slice 1.78 s. Salt #1 and Salt #2 

diapirs show high probabilities ranging from 75 to 80%. 
 

In Figure 5, we show the results obtained after applying the 

Exhaustive PNN in all the Eugene Island seismic survey 

using the coherence and most-positive (k1) curvature 

attributes and 𝜎 of 1.9. Analyzing the PNN facies prediction 

co-rendered with the seismic amplitude along inline 391 

(Figure 5a), we note that the neural network classifies 

correctly between the salt (red arrow) and non-salt seismic 
facies. Also, we are able to compute the PNN Salt 

probability volume which provide the confidence of the 

classification (Figure 5b). We observe that the algorithm 

classifies the extracted orange facies as salt with very high 
probabilities ranging from 75 to 80%. It is important to 

highlight that some orange facies visible on the top of the 

seismic volume are associated with missing or noisy data in 

the edges of the survey with little interpretational value. 
 

In Figure 5c, we show the PNN Facies prediction co-

rendered with the seismic amplitude volume at time slice 

1.78 s. We observe that the Salt #1 (red arrow) diapir is still 
correctly classified by the Exhaustive PNN algorithm. 

Moreover, the Salt #2 diapir used as a blind test during the 

training of our neural network, is also correctly classified by 

our algorithm as a salt facies (red arrow). Finally, Figure 5d 
shows that both Salt #1 and Salt #2 diapirs (red arrows) show 

a high probability of being salt ranging from 75 to 80%.  

Conclusions and future work 

 

In this application Exhaustive PNN proved to be a powerful 
tool in determining the best combination of seismic 

attributes in order to perform a supervised seismic facies 

classification to differentiate between salt vs. non-salt 

seismic facies in the Eugene Island dataset. We determine 
that the best combination is given by using coherence and 

most-positive (k1) curvature as training seismic attributes 

with a smoothing parameter 𝜎 of 1.9. For future work, we 

will improve the performance of our model by implementing 
a Gradient Descent algorithm in order to compute a different 

𝜎 for each training attribute. Also, we will perform a 

geobody extraction to obtain a 3D distribution of the salt 

seismic facies along the Eugene Island seismic volume.  
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