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SUMMARY

Geologic carbon sequestration (GCS) can be considered essen-
tial for alleviating atmospheric level of anthropogenic carbon
dioxide (CO,). GCS is the process of capturing, injecting, and
long-term storing CO, into a geologic formation. However,
the injection of CO; into deep geologic layers can create pres-
sure perturbations that can potentially lead to leakages from
the storage formation to nearby aquifers or to the surface. CO,
accumulations can cause harm to animals and humans, and
brine or CO, leakage into other formations can disturb sub-
surface operations (e.g. oil production, groundwater). There-
fore, an effective monitoring method is an essential procedure
that needs to be taken to ensure CO, or brine leakage are de-
tected. We use seismic and pressure data from hundreds of
flow models generated with different hydrogeological param-
eters combined with convolutional neural networks to develop
a processing pipeline that can estimate the amount of CO, and
brine leaked. Our model has the potential to be used as a quick
first inference tool, indicating whether further analysis and in-
terventions need to take place.

INTRODUCTION

In geologic carbon sequestration (GCS), carbon dioxide (CO»)
is injected into a geologic formation (Gale, 2004; Holloway,
2005; Breunig et al., 2013), preventing anthropogenic CO,
from entering the atmosphere (Breunig et al., 2013). CO, in-
jection will give rise to a necessary CO, imaging and mon-
itoring to ensure that the gas is being injected at the correct
location, that it fills the storage reservoir as estimated, that it
does not flow toward high-risk areas, and that the CO, remains
sealed in the intended formation over time, not escaping to the
surface or other geologic formations (Lumley, 2010). Differ-
ent geologic formations, such as saline aquifers or depleted oil
and gas reservoirs, have the potential to serve as storage units
to capture CO,. Due to their large storage capacities, saline
aquifers within sedimentary basins in the United States (US)
contain some of the most attractive geologic formations for
GCS. However, as such saline aquifers are usually saturated
with brine, the injection of large quantities of CO, can lead to a
widespread and lasting pressure perturbation in the subsurface
(Nicot, 2008; Birkholzer et al., 2012; Breunig et al., 2013).
The elevated formation pressure might incur in caprock frac-
turing and fault reactivation, as well as pressure-driven leakage
of CO, and brine (Rutqyvist et al., 2008; Breunig et al., 2013).
Extensive research has been conducted to improve fault imag-
ing (e.g. Bahorich and Farmer, 1995; Gersztenkorn and Mar-
furt, 1999; Hale, 2013; Lima and Marfurt, 2017; Wu, 2017; Qi
et al., 2018) thus, such high risk areas might be avoided due
to a prior fault location and characteristics understanding. An-
other high risk factor are legacy wells. As legacy wells create
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artificial connections between geologic layers, they can also be
pathways to potential leakages. Regardless of the proximity
with beforementioned geohazards, as the increased pressure
generates subsurface instabilities, GCS sites should be moni-
tored as an early leakage detection can help mitigate potential
significant pollutant spreading. We investigate a combination
of time-lapse geophysical surveys and the implementation of
machine learning techniques. Our objective is to help proto-
type a system with the capacity to automatically estimate the
amount of CO, and brine leaked at a GCS site.

Most of time-lapse analysis monitoring techniques are based
on the response of geophysical properties to changes in local
geology, such as temperature, pressure, and fluid properties.
Time-lapse surveys are commonly used in different plays (e.g.
Swanston et al., 2003; Shabelansky et al., 2015; Gherasim
et al., 2016) and even for GCS monitoring (e.g. Chadwick
et al., 2005; Lumley, 2010; Bergmann et al., 2014). Jung
et al. (2013) demonstrated how brine and CO, leakage
through abandoned wells can be detected using pressure
and surface-deformation time-lapse data. Geoscientists have
been successfully using machine learning methodologies
for roughly twenty years now. Applications of machine
learning with geophysical data are vast and range from many
different geophysical methods (e.g. Calderén-Macids et al.,
1998; Zhang et al., 2002; Schnetzler and Alumbaugh, 2017;
Araya-Polo et al., 2017; de Lima and Marfurt, 2018; Sinha
et al., 2018; Zhao et al., 2018; Zhou et al., 2018; Wu et al.,
2019a,b; Lubo-Robles and Marfurt, 2019; Infante-Paez and
Marfurt, 2019). In our investigation, we make use of both of
these techniques, time-lapse surveys and machine learning,
to address CO, and brine leakage from a synthetic dataset
created based on a GCS site. We evaluate convolutional
neural networks (CNN) as a improvement that can be coupled
with a time-lapse CGS monitoring sensors. Specifically, we
use vertical component seismic and pressure data as input to
CNN to estimate the amount of CO, and brine leaked. Our
approach integrates geophysical data (seismic and pressure
data), and estimates the leakage of two different fluids (CO,
and brine), which is an improvement on previously published
applications (Zhou et al., 2018)

DATA

Buscheck et al. (2017) generated thousands of groundwater
flow models to better understand effects caused by CO, injec-
tion at GCS sites. The model is based on a hypothetical CO,
storage reservoir in the Vedder Formation at the Kimberlina
site in the southern San Joaquin Basin, California. Each one
of the models varies according to the amount of CO, injected
and the physical properties of the aquifer, such as porosity,
solid density, and permeability. We use 500 different reservoir
and groundwater flow scenarios (static model) extracted from
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Figure 1: (a) One of the configurations of the geoogic model after 200 years of CO, injection and leakage. The white vertical line
in the Vp image indicates the position of the legacy well containing the sensors measuring pressure. The injection well is not visible
in this image (3 km to the left). (b) A a seismic shot taken at position 5 km (star in panel (a)). (c) The measured pressure in the
legacy well. And (d) the CO, and brine leakage acumulated in the area.

Buscheck et al. (2017) dataset. The static model is composed
of three geological layers, an injecting well, and a leaking well.
Each one of the 500 static models were used to compute a flow
simulation of 20 time steps, each time step representing a time
difference of 10 years (simulation). Therefore, for each one
of the simulations, we have a geological model indicating the
differences in the geological properties as well as the amount
of CO; leaked through the leaking well.

For each time step, we used a finite difference forward model
to generate three shot gathers with 100 receivers. Each receiver
contains 4000 samples, with a sampling rate of 1 ms. Fig-
ure 1 shows one simulation example containing the geological
model, one of the three simulated shots, as well as the step-
by-step CO, and brine leaked. In our simulations, a leakage
is any amount of CO, or brine that enters the model, i.e., that
somehow breaks the bottom-most layer at 1.4 km (the saline
aquifer being injected with CO,).

METHODOLOGY

The leakage estimation task can be modeled as a function F*
that takes seismic and pressure data and returns the estimated
amount of CO, and brine leaked. Traditionally, geoscientists
use model based methods, i.e., using mathematical approxima-
tions to model the underlying physical process, to estimate the
fluid or rock physics of the studied region. Such model based
approach commonly relies on reservoir simulator coupled with
arock physics model. The model based approach is also heav-
ily dependent on the expert domain experience, a combination
of geophysics, geology, and petroleum engineering. In con-
trast, we adopt a data-driven approach, wherein we estimate
the function F* from the statistics within the data. Though
this statistical approach requires less domain knowledge, our
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results indicate that such approach can be efficient and help
quickly estimate the amount of leakage. In that manner, such
statistical based approach can be used to trigger further more
intense and domain knowledge-based investigations, such as
traditional fluid flow modeling.

Out of the 500 simulations we used, we selected 50 to be part
of the test set. The remaining 450 are used for training. As our
objective is to find a function F* that receives as input seismic
and pressure data, and outputs the estimated CO, and brine
leaked, we concatenate the results obtained using the Incep-
tion V3 (Szegedy et al., 2015) on the seismic path, and a simple
CNN model on the pressure path. Figure 3 shows a visualiza-
tion of the final deep learning model we applied. We compare
the results we obtained using a single data input (seismic only)
and a combination of the available geophysical data (seismic
and pressure).

To reduce the seismic dimensions, originally 4000 samples by
100 receivers (4000 x 100) for each shot, we apply an anti-alias
filter and decimate the data. After the decimation, each one of
the shots has 400 samples and 100 receivers (400 x 100). That
reduces the Nyquist frequency from 500 Hz to 50 Hz, how-
ever we observe that the important reflections and information
are still well represented in the data. As order of mass leaked
CO; and brine leakage mass in the simulations varies from 0
to 1010 (kg), we standardized the leaked mass using the natural
logarithmic function:

Y =In(Y +1) )]

where Y represents the original value of leakage mass (CO, or
brine), and ¥ stands for standardized leakage mass. We add 1
to avoid taking the logarithm of 0. Therefore, our results are
reported based on the natural logarithm of the leaked CO, and
brine.
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Figure 2: A simple ilustration of data preparation. We subtract (a) three shots taken after 200 years of CO; injection from (b)the
same three baseline shots. The resulting difference (c) shows the geological changes. (c) Is the data we used in our experiments.
We apply the same process (computing the difference) with the pressure data.

Inception V3

dense (1024)

dense (1024)

Figure 3: Visual representation of the deep neural network we used. The seismic data goes through Inception V3 CNN model.
The pressure data goes through two convolutional layers (conv(3,1),128 denotes using 128 (3x1) convolution kernels with valid
padding). The resulting seismic and pressure features are concatenated. We then split the model in two paths, both with one layer
of 1024 densely connected neurons and a final regression neuron.
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RESULTS AND DISCUSSION

To evaluate the performance of our approach, we present the
resulting metrics obtained with the test set. Table | shows the
summary of the errors in the test data when using as input seis-
mic only, and seismic and pressure data combined. Figure 4
shows the results graphically. We observe that the addition
of pressure data provided a small improvement in the predic-
tion of small leaks for both CO, and brine predictions (blue
circles/lines in Figure 4). Such small improvement is not re-
flected in the CO, metrics, however it is present in the brine
metrics (Table 1). One of the reasons for better metrics of seis-
mic only CO; predictions is that such results are more focused
for higher amount of CO, leakage (Figure 4a., focused orange
dots for leakage above ~10).

1og(CO,) | log(brine)
sesmic RMSE 0.87 1.66
only MAE 0.50 1.22
seismic and | RMSE 0.91 1.53
pressure MAE 0.58 1.20

Table 1: Summary results of the two approaches: seismic data
as input, and a combination of seismic and pressure data. We
present the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE) as our metrics. For both metrics, 0
means a perfect score. The values of In(CO;) range from 0
to 20 while In(brine) values range from 6 to 16.

CONCLUSIONS AND FUTURE WORK

We demonstrated that a machine learning approach is a
methodology that can provide highly accurate results for CO,
and brine leakage in CGS sites. Our results indicate that a
CGS monitoring system, with permanently installed sensors,
perhaps also permanently installed sources, could be coupled
with a machine learning model. Such monitoring system could
have the capability to quickly estimate the amount of leakage
and help geoscientists with early warnings. We observed that
combining seismic and pressure data provides marginally
better results for brine estimation when compared with a
monitoring system based solemnly in seismic data. Further
testing with increased number of examples of small leaks
(CO, < 10° kg and brine < 10* kg) might help us understand
the benefits of geophysical integrated monitoring. We believe
the implementation we described needs to be tested against
presence of noisy data. The following necessary step is to test
the methodology we described using real seismic and pressure
data. The results we encountered using machine learning
techniques also should be compared with estimates obtained
with traditional fluid flow reservoir modeling methodologies.
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Figure 4: Summary and examples of the predicted and true
values of leaked CO, and brine. (a) Shows values of pre-
dicted vs true CO; leaked and (b) shows CO, leaked for one
selected simulation example. (c) Shows values of predicted vs
true brine leaked and (d) shows brine leaked for one selected
simulation example.
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