
remote sensing  

Article

Convolutional Neural Network for Remote-Sensing
Scene Classification: Transfer Learning Analysis

Rafael Pires de Lima * and Kurt Marfurt

School of Geosciences, University of Oklahoma, 100 East Boyd Street, RM 710, Norman, OK 73019, USA;
kmarfurt@ou.edu
* Correspondence: rlima@ou.edu

Received: 16 November 2019; Accepted: 24 December 2019; Published: 25 December 2019 ����������
�������

Abstract: Remote-sensing image scene classification can provide significant value, ranging from forest
fire monitoring to land-use and land-cover classification. Beginning with the first aerial photographs
of the early 20th century to the satellite imagery of today, the amount of remote-sensing data has
increased geometrically with a higher resolution. The need to analyze these modern digital data
motivated research to accelerate remote-sensing image classification. Fortunately, great advances
have been made by the computer vision community to classify natural images or photographs taken
with an ordinary camera. Natural image datasets can range up to millions of samples and are,
therefore, amenable to deep-learning techniques. Many fields of science, remote sensing included,
were able to exploit the success of natural image classification by convolutional neural network models
using a technique commonly called transfer learning. We provide a systematic review of transfer
learning application for scene classification using different datasets and different deep-learning
models. We evaluate how the specialization of convolutional neural network models affects the
transfer learning process by splitting original models in different points. As expected, we find the
choice of hyperparameters used to train the model has a significant influence on the final performance
of the models. Curiously, we find transfer learning from models trained on larger, more generic
natural images datasets outperformed transfer learning from models trained directly on smaller
remotely sensed datasets. Nonetheless, results show that transfer learning provides a powerful tool
for remote-sensing scene classification.

Keywords: convolutional neural networks; transfer learning; scene classification

1. Introduction

Over the past decades, remote sensing has experienced dramatic changes in data quality,
spatial resolution, shorter revisit times, and available area covered. Emery and Camps [1] reported
that our ability to observe the Earth from low Earth orbit and geostationary satellites has been
improving continuously. Such an increase requires a significant change in the way we use and
manage remote-sensing images. Zhou et al. [2] noted that the increased spatial resolution makes it
possible to develop novel approaches, providing new opportunities for advancing remote-sensing
image analysis and understanding, thus allowing us to study the ground surface in greater detail.
However, the increase in data available has resulted in important challenges in terms of how to properly
manage the imagery collection.

One of the fundamental remote sensing tasks is scene classification. Cheng et al. [3] defined scene
classification as the categorization of remote-sensing images into a discrete set of meaningful land-cover
and land-use classes. Scene classification is a fundamental remote-sensing task and important for
many practical remote-sensing applications, such as urban planning [4], land management [5], and to
characterize wild fires [6,7], among other applications. Such ample use of remote-sensing image

Remote Sens. 2020, 12, 86; doi:10.3390/rs12010086 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6747-1291
http://dx.doi.org/10.3390/rs12010086
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/1/86?type=check_update&version=2


Remote Sens. 2020, 12, 86 2 of 20

classification led many researchers to investigate techniques to quickly classify remote-sensing data
and accelerate image retrieval.

Conventional scene classification techniques rely on low-level visual features to represent the
images of interest. Such low-level features can be global or local. Global features are extracted
from the entire remote-sensing image, such as color (spectral) features [8,9], texture features [10],
and shape features [11]. Local features, like scale invariant feature transform (SIFT) [12] are extracted
from image patches that are centered about a point of interest. Zhou et al. [2] observed that the
remote-sensing community makes use of the properties of local features and proposed several
methods for remote-sensing image analysis. However, these global and local features are hand-crafted.
Furthermore, the development of such features is time consuming and often depends on ad hoc or
heuristic design decisions. For these reasons, the extraction of low-level global and local features
is suboptimal for some scene classification tasks. Hu et al. [13] remarked that the performance of
remote-sensing scene classification has only slightly improved in recent years. The main reason
remote-sensing scene classification only marginally improved is due to the fact that the approaches
relying on low-level features are incapable of generating sufficiently powerful feature representations
for remote-sensing scenes. Hu et al. [13] concluded that the more representative and higher-level
features, which are abstractions of the lower-level features, are desirable and play a dominant role in the
scene classification task. The extraction of high-level features promises to be one of the main advantages
of deep-learning methods. As observed by Yang et al. [14], one of the reasons for the attractiveness of
deep-learning models is due the models’ capacity to discover effective feature transformations for the
desired task.

Recently, the deep-learning (DL) methods [15] have been applied in many fields of science and
industry. Current progress in deep-learning models, specifically deep convolutional neural networks
(CNN) architectures, have improved the state-of-the-art in visual object recognition and detection,
speech recognition and many other fields of study [15]. The model described by Krizhevsky et al. [16],
frequently referenced to as AlexNet, is considered a breakthrough and influenced the rapid adoption
of DL in the computer vision field [15]. CNNs currently are the dominant method in the vast majority
image classification, segmentation, and detection tasks due to their remarkable performance in many
benchmarks, e.g., the MNIST handwritten database [17] and the ImageNet dataset [18], a large dataset
with millions of natural images. In 2012 AlexNet used a five-layer deep CNN model to win the
ImageNet Large Scale Visual Recognition Competition. Now, many CNN models use 20 to hundreds
of layers. Huang et al. [19] proposed models with thousands of layers. Due to the vast number of
operations performed in deep CNN models, it is often difficult to discuss the interpretability, or the
degree to which a decision taken by a model can be interpreted. Thus, CNN interpretability itself
remains a research topic (e.g., [20–23]).

Despite CNNs’ powerful feature extraction capabilities, Hu et al. [13] and others found that in
practice it is difficult to train CNNs with small datasets. However, Yosinski et al. [24] and Yin et al. [21]
observed that the parameters learned by the layers in many CNN models trained on images exhibit a
very common behavior. The layers closer to the input data tend to learn general features, resulting in
convolutional operators akin to edge detection filters, smoothing, or color filters. Then there is a
transition to features more specific to the dataset on which the model is trained. These general-specific
CNN layer feature transitions lead to the development of transfer learning [24–26]. In transfer learning,
the filters learned by a CNN model on a primary task are applied to an unrelated secondary task.
The primary CNN model can be used a as feature extractor, or as a starting point for a secondary
CNN model.

Even though large datasets help the performance of CNN models, the use of transfer learning
facilitated the application of CNN techniques to other scientific fields that have less available data.
For example, Carranza-Rojas et al. [27] used transfer learning for herbarium specimens classification,
Esteva et al. [28] for dermatologist-level classification of skin cancer classification, Pires de Lima
and Suriamin et al. [29] for oil field drill core images, Duarte-Coronado et al. [30] for the estimation



Remote Sens. 2020, 12, 86 3 of 20

of porosity in thin section images, and Pires de Lima et al. [31,32] for the classification of a variety
of geoscience images. Minaee et al. [33] stated that many of the deep neural network models for
biometric recognition are based on transfer learning. Razavian et al. [34] used a model trained for
image classification and conducted a series of transfer learning experiments to investigate a wide
range of recognition tasks such as of object image classification, scene recognition, and image retrieval.
Transfer learning is also widely used in the remote-sensing field. For example, Hu et al. [13] performed
an analysis of the use of transfer learning from pretrained CNN models to perform remote-sensing
scene classification. Chen et al. [35] used transfer learning for airplane detection, Rostami et al. [36] for
classifying synthetic aperture radar images, Weinstein et al. [37] for the localization of tree-crowns
using Light Detection and Ranging RGB (red, green, blue) images.

Despite the success of transfer learning in applications in which the secondary task is significantly
different from the primary task (e.g., [28,38,39]), the remark that the effectiveness of transfer learning is
expected to decline as the primary and secondary tasks become less similar [24] is commonly made and
still very present in many research fields. Although Yosinski et al. [24] concluded that using transfer
learning from distant tasks perform better than training CNN models from scratch (with randomly
initialized weights), it remains unclear how the amount of data or the model used can influence the
models’ performance.

Here we investigate the performance of transfer learning from CNNs pre-trained on natural images
for remote-sensing scene classification versus CNNs trained from scratch only on the remote sensing
scene classification dataset themselves. We evaluate different depths of two popular CNN models—VGG
19 [40], and Inception V3 [41]—using three different sized remote sensing datasets. Section 2 provides a
short glossary for easier reference. Section 3 describes the datasets. Section 4 provides a brief overview of
CNNs and Section 5 provides details on the methods we apply for analysis. Section 6 shows the results
followed by a discussion in Section 7. We summarize our findings in Section 8.

2. Glossary

This short glossary provides common denominations in machine-learning applications and used
throughout the manuscript. Please refer to Google’s machine learning glossary for a more detailed list
of terms [42].

Accuracy: the ratio between the number of correct classifications and the total number of
classifications performed. Values range from 0.0 to 1.0 (equivalently, 0% to 100%). A perfect score of
1.0 means all classifications were correct whereas a score of 0.0 means all classifications were incorrect.

Convolution: a mathematical operation that combines input data and a convolutional kernel
producing an output. In machine learning applications, a convolutional layer uses the convolutional
kernel and the input data to train the convolutional kernel weights.

Convolutional neural networks (CNN): a neuron network architecture in which at least one layer
is a convolutional layer.

Deep neural networks (DNN): an artificial neural network model containing multiple hidden layers.
Fine tuning: a secondary training step to further adjust the weights of a previously trained model

so the model can better achieve a secondary task.
Label: the names applied to an instance, sample, or example (for image classification, an image)

associating it with a given class.
Layer: a group of neurons in a machine learning model that processes a set of input features.
Machine learning (ML): a model or algorithm that is trained and learns from input data rather

than from externally specified parameters.
Softmax: a function that calculates probabilities for each possible class over all different classes.

The sum of all probabilities adds to 1.0. The softmax equation S(xi) computed over k classes is given by:

S(xi) =
exi∑k

j=1 ex j
(1)



Remote Sens. 2020, 12, 86 4 of 20

Training: the iterative process of finding the most appropriate weights of a machine-learning model.
Transfer Learning: a technique that uses information learned in a primary machine learning task

to perform a secondary machine learning task.
Weights: the coefficients of a machine learning model. In a simple linear equation, the slope and

intercept are the weights of the model. In CNNs, the weights are the convolutional kernel values.
The training objective is to find the ideal weights of the machine-learning model.

3. Data

This section provides some details about the datasets we use in our experiments as well as the
number of samples for each one of the datasets. We use a 70%–10%–20% split between training,
validation, and test sets.

3.1. UCMerced: Univeristy of California Merced Land Use Dataset

Introduced by Yang and Newsam [43], the University of California Merced land use (UCMerced)
dataset is a land use image dataset containing 21 classes, each class with 100 samples. The images are
256 × 256 pixels, with a spatial resolution of 0.3 m per pixel. The images were manually cropped from
the publicly available images United States Geological Survey National Map Urban Area Imagery
collection for various urban areas around the United States. Zhou et al. [2] observed that the UCMerced
dataset has many similar or overlapping classes, e.g., sparse residential, medium residential, and dense
residential. This similarity combined with the small number of samples per class makes the UCMerced
a challenging dataset for machine-learning classification. Table 1 shows the data split between training,
validation, and test sets, as well as the total number of samples for all classes in the UCMerced dataset.
The dataset is available to download from http://weegee.vision.ucmerced.edu/datasets/landuse.html.

Table 1. Number of samples for training, validation, and test used for the University of California
Merced land use (UCMerced) dataset.

Class Training Validation Test Total
Agricultural 70 10 20 100

Airplane 70 10 20 100
Baseball diamond 70 10 20 100

Beach 70 10 20 100
Buildings 70 10 20 100
Chaparral 70 10 20 100

Dense residential 70 10 20 100
Forest 70 10 20 100

Freeway 70 10 20 100
Golf course 70 10 20 100

Harbor 70 10 20 100
Intersection 70 10 20 100

Medium residential 70 10 20 100
Mobile home park 70 10 20 100

Overpass 70 10 20 100
Parking lot 70 10 20 100

River 70 10 20 100
Runway 70 10 20 100

Sparse residential 70 10 20 100
Storage tanks 70 10 20 100
Tennis court 70 10 20 100

http://weegee.vision.ucmerced.edu/datasets/landuse.html


Remote Sens. 2020, 12, 86 5 of 20

3.2. AID: Aerial Image Dataset

Xia et al. [44] presented the Aerial Image Dataset (AID), a remote-sensing dataset with 10,000 images.
The dataset comprises 30 classes, the number of samples of each range from 220 to 420. The images are
600 × 600 pixels, with a spatial resolution varying from 0.5 to 8 m per pixel. The images in AID were
extracted from Google Earth imagery, coming from different remote imaging sensors. Unlike the UCMD,
the images from AID are chosen from different countries and regions around the world, mainly in China,
the United States, England, France, Italy, Japan, and Germany. Table 2 shows the data split between
training, validation, and test sets, as well as the total number of samples for all classes in the AID
dataset. The dataset is available to download from http://captain.whu.edu.cn/WUDA-RSImg/aid.html.

Table 2. Number of samples for training, validation, and test used for the Aerial Image Dataset (AID).

Class Training Validation Test Total
Airport 252 36 72 360

Bare land 217 31 62 310
Baseball field 154 22 44 220

Beach 280 40 80 400
Bridge 252 36 72 360
Center 182 26 52 260
Church 168 24 48 240

Commercial 245 35 70 350
Dense residential 287 41 82 410

Desert 210 30 60 300
Farmland 259 37 74 370

Forest 175 25 50 250
Industrial 273 39 78 390
Meadow 196 28 56 280

Medium residential 203 29 58 290
Mountain 238 34 68 340

Park 245 35 70 350
Parking 273 39 78 390

Playground 259 37 74 370
Pond 294 42 84 420
Port 266 38 76 380

Railway station 182 26 52 260
Resort 203 29 58 290
River 287 41 82 410

School 210 30 60 300
Sparse residential 210 30 60 300

Square 231 33 66 330
Stadium 203 29 58 290

Storage tanks 252 36 72 360
Viaduct 294 42 84 420

3.3. PatternNet

Described by Zhou et al. [2], PatternNet is a large-scale high-resolution remote-sensing dataset.
PatternNet contains 38 classes, each class with 800 samples. The images are 256 × 256 pixels, with a
spatial resolution varying from 0.062 to 4.7 m per pixel. The PatternNet images were collected from
Google Earth imagery or via the Google Map API for US cities. Table 3 shows the data split between
training, validation, and test sets, as well as the total number of samples for all classes in the PatternNet
dataset. The dataset is available to download from https://sites.google.com/view/zhouwx/dataset.

http://captain.whu.edu.cn/WUDA-RSImg/aid.html
https://sites.google.com/view/zhouwx/dataset


Remote Sens. 2020, 12, 86 6 of 20

Table 3. Number of samples for training, validation, and test used for the PatternNet dataset.

Class Training Validation Test Total
Airplane 560 80 160 800

Baseball field 560 80 160 800
Basketball court 560 80 160 800

Beach 560 80 160 800
Bridge 560 80 160 800

Cemetery 560 80 160 800
Chaparral 560 80 160 800

Christmas tree
farm 560 80 160 800

Closed road 560 80 160 800
Coastal mansion 560 80 160 800

Crosswalk 560 80 160 800
Dense residential 560 80 160 800

Ferry terminal 560 80 160 800
Football field 560 80 160 800

Forest 560 80 160 800
Freeway 560 80 160 800

Golf course 560 80 160 800
Harbor 560 80 160 800

Intersection 560 80 160 800
Mobile home park 560 80 160 800

Nursing home 560 80 160 800
Oil gas field 560 80 160 800

Oil well 560 80 160 800
Overpass 560 80 160 800

Parking lot 560 80 160 800
Parking space 560 80 160 800

Railway 560 80 160 800
River 560 80 160 800

Runway 560 80 160 800
Runway marking 560 80 160 800

Shipping yard 560 80 160 800
Solar panel 560 80 160 800

Sparse residential 560 80 160 800
Storage tank 560 80 160 800

Swimming pool 560 80 160 800
Tennis court 560 80 160 800

Transformer station 560 80 160 800
Wastewater

treatment plant 560 80 160 800

4. Convolutional Neural Networks (CNNs)

CNNs are a type of deep neural network model architecture that has gained popularity in the
past years. Many computer vision researchers adopted CNNs as their preferred tool after the CNN
architecture implemented by Krizhevsky et al. [16] won the 2012 edition of the ImageNet Large Scale
Visual Recognition Competition. Despite several variations in architecture, all CNN models make
use of convolutions. Convolution operates on two objects, one commonly interpreted as the “input”,
and the second as the “filter”. The filter, which can have different sizes, is applied on the input
and produces an output. Generally, the convolved output in CNNs is further transformed by an
element-wise non-linear function, commonly denominated activation function. When CNN models
are trained, the values of the filters are updated according to an objective function, for example to
reduce the sum of errors in a classification task. A set of filters can be combined into layers and layers
can be organized into more complex architectures. Springenberg et al. [45] and Minaee et al. [33]
observed that CNNs commonly use alternating convolution and max pooling layers. Max pooling



Remote Sens. 2020, 12, 86 7 of 20

layers provide a simple way to reduce the spatial dimension of the data by computing the maximum
value of a sub-window of the input. Dumoulin and Visin [46] provided details on the arithmetic of
convolutions for deep learning.

After the achievements of Krizhevsky et al. [16], many new successful CNN architectures
were proposed. A few of the most well-known CNN architectures for image classification tasks
includes VGGs [40], GoogLenet [47], Inception V3 [41], MobileNetV2 [48], ResNet [49], DenseNet [50],
NASNet [51], and Xception, [52] among others. Attention mechanisms are gaining popularity for
classification tasks (e.g., [53–55]). In this study we focus on VGG19 and Inception V3 for the transfer
learning analysis. VGG models are relatively simples, composed only of 3 x 3 convolutional layers
and max pooling layers. Inception models concatenate the output of filters with different sizes.
The complete description of the VGG and Inception models can be found in the references ([40,41,47]).

5. Methods

To better understand the effects of different approaches and techniques used for transfer learning
with remote-sensing datasets, we perform two major experiments using the models presented in
Section 5.1. The first experiment in Section 5.2 compares different optimization methods. The second
experiment in Section 5.3 aims to investigate the sensitivity of transfer learning to the level of
specialization of the original trained CNN model. The experiment in Section 5.3 also compares the
results of transfer learning and training a model with randomly initialized weights.

The choice of hyperparameters can have a strong influence on CNN performance.
Nonetheless, our main objective here is to investigate transfer learning results rather than maximize
performance. Therefore, unless otherwise noted, we maintain the same hyperparameters specified in
Table 4 for all training in all experiments. The models are trained using Keras [56], with TensorFlow as
its backend [57]. When kernels are initialized, we use the Glorot uniform [58] distribution of weights.
The images are rescaled from their original size to the model’s input size using nearest neighbors.

Table 4. Training hyperparameters.

Optimizer Stochastic Gradient Descent
Kernel initializer Glorot uniform

Batch size 32
Epochs 100

Loss function Cross entropy

5.1. Model Split

To evaluate the transfer learning process from natural images to remote sensing datasets, we
use VGG19 and Inception V3 models and train a small classification network on top of such models.
We refer to the original CNN model structure, part of VGG19 or part of Inception V3, as the “base
model”, and the small classification network as the “top model” (Figure 1). The top model is composed
of an average pooling, followed by one fully connected layer with 512 neurons, a dropout layer [59]
used during training, and a final fully connected layer with a softmax output where the number
of neurons is dependent on the number of classes for the task (i.e., 21 for UCMerced, 30 for AID,
38 for PatternNet). The dropout is a simple technique useful to avoid overfitting in which random
connections are disabled during training. Note the top model will be specific to the secondary task and
for each one of the datasets, whereas the base model, when containing the weights learned during
training for the primary task, will have its layers presenting the transition from general to specific
features. The models we used were primarily trained on the ImageNet dataset and are available online
(e.g., through Keras or TensorFlow websites). We evaluate how dependent the transfer learning process
is on the transition from general to specific features by extracting features in three different positions
for each one of the retrained models and we denominate them “shallow”, “intermediate”, and “deep”
(Figure 2). The shallow experiment uses the initial blocks of the base models to extract features and



Remote Sens. 2020, 12, 86 8 of 20

adds the top model. The intermediate experiment extracts the block somewhere in the middle of the
base model. Finally, the deep experiment uses all the blocks of the original base model, except the
original final classification layers.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 21 

 

AID, 38 for PatternNet). The dropout is a simple technique useful to avoid overfitting in which 
random connections are disabled during training. Note the top model will be specific to the 
secondary task and for each one of the datasets, whereas the base model, when containing the 
weights learned during training for the primary task, will have its layers presenting the transition 
from general to specific features. The models we used were primarily trained on the ImageNet 
dataset and are available online (e.g., through Keras or TensorFlow websites). We evaluate how 
dependent the transfer learning process is on the transition from general to specific features by 
extracting features in three different positions for each one of the retrained models and we 
denominate them “shallow”, “intermediate”, and “deep” (Figure 2). The shallow experiment uses 
the initial blocks of the base models to extract features and adds the top model. The intermediate 
experiment extracts the block somewhere in the middle of the base model. Finally, the deep 
experiment uses all the blocks of the original base model, except the original final classification 
layers. 

 
Figure 1. Visualization of the models used. (a) shows a sample image from UCMerced, the base 
model, and the top model. (b) provides more details for the top model. The base model is dependent 
on the convolutional neural network (CNN) architecture used for transfer learning and it is detailed 
in Figure 2Error! Reference source not found. Top model is the same for all experiments. Note the 
pound sign “#” represents the number of classes, which depends on the dataset used. 

Figure 1. Visualization of the models used. (a) shows a sample image from UCMerced, the base model,
and the top model. (b) provides more details for the top model. The base model is dependent on
the convolutional neural network (CNN) architecture used for transfer learning and it is detailed in
Figure 2. Top model is the same for all experiments. Note the pound sign “#” represents the number of
classes, which depends on the dataset used.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 21 

 

 
Figure 2. Visual representation of the models used. In both panels, data flows from left to right. Both 
panes use the same color code for layer representation. (a) shows the VGG19 shallow, intermediate, 
and deep models – based on the naming convention we are using. (b) shows the Inception V3 
shallow, intermediate, and deep models. For easier reference, we wrote the layer names (as 
implemented in Keras) for each one of the layers we used to split the original CNN models. Note for 
each one of the depth levels (shallow, intermediate, deep), we simple use the model up to the detour 
and connect it with our top model (e.g., when training VGG19 shallow, the data goes through two 
convolutional layers, one max pooling layers, and exits into our top model). Please refer to Simonyan 
and Zisserman [40] and Szegedy et al. [41] for details on VGG19 and Inception V3, respectively. 

5.2. Stochastic Gradient Descent versus Adaptive Optimization Methods 

In the search for the global minima, optimization algorithms frequently use the gradient 
descent strategy. To compute the gradient of the loss function, we sum the error of each sample. 
Using our PatternNet data split as example, we first loop through all training set containing 21,280 
samples before updating the gradient. Therefore, to move a single step towards the minima, we 
compute the error 21,280 times. A common approach to avoid computing the error for all training 
samples before moving a step is to use stochastic gradient descent (SGD). 

The SGD uses a straightforward approach; instead of using the sum of all training errors (the 
loss), SGD uses the error gradient of a single sample at each iteration. Bottou [60] observed that SGD 
show good performance for large-scale problems. SGD is the building block used by many 
optimization algorithms that apply some variation to achieve better convergence rates (e.g., [61,62]). 
Kingma and Ba [63] observed that SGD has a great practical importance in many fields of science 
and engineering and propose Adam, a method for efficient stochastic optimization. Ruder [64] 
recommends using Adam as the best overall optimization choice. 

However, Wilson et al. [65] reported that the solutions found by adaptive methods (such as 
Adam) have a worse generalization than SGD, even though solutions found by adaptive 
optimization methods have a better performance on the training set. Our optimization experiment is 
straightforward: we compare the training, validation losses and the test accuracy for the UCMerced 
dataset using different optimization methods: SGD, Adam, and Adamax, a variant of Adam that 
makes use of the infinity norm, also described by Kingma and Ba [63]. We perform such analysis 

Figure 2. Visual representation of the models used. In both panels, data flows from left to right.
Both panes use the same color code for layer representation. (a) shows the VGG19 shallow, intermediate,
and deep models – based on the naming convention we are using. (b) shows the Inception V3 shallow,
intermediate, and deep models. For easier reference, we wrote the layer names (as implemented in
Keras) for each one of the layers we used to split the original CNN models. Note for each one of the
depth levels (shallow, intermediate, deep), we simple use the model up to the detour and connect it with
our top model (e.g., when training VGG19 shallow, the data goes through two convolutional layers,
one max pooling layers, and exits into our top model). Please refer to Simonyan and Zisserman [40]
and Szegedy et al. [41] for details on VGG19 and Inception V3, respectively.



Remote Sens. 2020, 12, 86 9 of 20

5.2. Stochastic Gradient Descent versus Adaptive Optimization Methods

In the search for the global minima, optimization algorithms frequently use the gradient descent
strategy. To compute the gradient of the loss function, we sum the error of each sample. Using our
PatternNet data split as example, we first loop through all training set containing 21,280 samples before
updating the gradient. Therefore, to move a single step towards the minima, we compute the error
21,280 times. A common approach to avoid computing the error for all training samples before moving
a step is to use stochastic gradient descent (SGD).

The SGD uses a straightforward approach; instead of using the sum of all training errors (the loss),
SGD uses the error gradient of a single sample at each iteration. Bottou [60] observed that SGD show
good performance for large-scale problems. SGD is the building block used by many optimization
algorithms that apply some variation to achieve better convergence rates (e.g., [61,62]). Kingma and
Ba [63] observed that SGD has a great practical importance in many fields of science and engineering
and propose Adam, a method for efficient stochastic optimization. Ruder [64] recommends using
Adam as the best overall optimization choice.

However, Wilson et al. [65] reported that the solutions found by adaptive methods (such as
Adam) have a worse generalization than SGD, even though solutions found by adaptive optimization
methods have a better performance on the training set. Our optimization experiment is straightforward:
we compare the training, validation losses and the test accuracy for the UCMerced dataset using
different optimization methods: SGD, Adam, and Adamax, a variant of Adam that makes use of
the infinity norm, also described by Kingma and Ba [63]. We perform such analysis using the
shallow-intermediate-deep VGG19 and shallow-intermediate-deep Inception V3 to fit the UCMerced
dataset starting the models with randomly initialized weights.

5.3. General to Specific Layer Transition of CNN Models

As mentioned above, many CNN models trained on natural images show a very common
characteristic. Layers closer to the input data tend to learn general features, then there is a transition to
more specific dataset features. For example, a CNN trained to classify the 21 UCMerced dataset has
in its final layer 21 softmax outputs, with each output specifically identifying one of the 21 classes.
Therefore, the final layer in this example is very specific for the UCMerced task; the final layer receives
a set of features coming from the previous layers and outputs a set of probabilities accounting for the
21 UCMerced classes. These are intuitive notions of general vs. specific features that are sufficient
for the experiments to be performed. Yosinski et al. [24] provide a rigorous definition of general and
specific features.

To observe how the transition from general to specific features can affect the transfer learning
process of remote-sensing datasets, we use the shallow, intermediate, and deep VGG19 and Inception
V3 described in Section 5.1. Three training modes are performed: feature extraction, fine tuning,
and randomly initialized weights. Feature extraction “locks” (or “freezes”) the pre-trained layers
extracted from the base models. Fine tuning starts as feature extraction, with the base model frozen,
but eventually allows all the layers of the model to learn. The randomly initialized weights mode starts
the entire model with randomly initialized weights after which all the weights are updated during
training. Randomly initialized weights is the ordinary CNN training, not a transfer learning process.
For the sake of standardization, all modes train the model for 100 epochs. In fine tuning, the first step
(part of the model is frozen) is trained for 50 epochs, and the second step (all layers of the model are
free to learn) for another 50 epochs.



Remote Sens. 2020, 12, 86 10 of 20

6. Results

6.1. Stochastic Gradient Descent versus Adaptive Optimization Methods

We train the shallow, intermediate, and deep VGG19 and Inception V3 models using the UCMerced
dataset with different optimizers. Table 5 shows the naming convention we use here. Figure 3 shows
the accuracy per epoch for each one of the trained models, with each one of the optimizers. Figure 4
shows the accuracy on the test set obtained by each one of the models, with each one of the optimizers.
Figure 5 shows the difference in accuracy between the training set and the test set. Table 6 shows
a summary of optimizer performance on the test set with the computation of a simple average and
median of the accuracy across all tests performed. This test was run using a batch size of 16 on a
NVIDIA Quadro M2000.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 21 

 

Table 6. Optimizer performance summary. 

Optimizer Average Accuracy Median Accuracy 
SGD (1e-2) 0.82 0.80 

SGD (1e-2) momentum 0.9 0.53 0.66 

SGD (1e-3) 0.74 0.75 

SGD (1e-3) momentum 0.9 0.81 0.82 

Adam (1e-2) 0.59 0.81 

Adamax (2e-3) 0.59 0.85 

Note: Highest values in each column are highlighted in bold. 

 
Figure 3. Accuracy per epoch for training and validation sets for different models and optimizers 
trained on the UCMerced dataset. The left column shows results for VGG19 models. The right 
column shows results for Inception V3 models. The first row shows shallow models, center shows 
intermediate, bottom shows deep models. Different colors represent different optimizers. Different 
and line style represent different datasets (solid for training, dashed for validation). 

Figure 3. Accuracy per epoch for training and validation sets for different models and optimizers
trained on the UCMerced dataset. The left column shows results for VGG19 models. The right column
shows results for Inception V3 models. The first row shows shallow models, center shows intermediate,
bottom shows deep models. Different colors represent different optimizers. Different and line style
represent different datasets (solid for training, dashed for validation).



Remote Sens. 2020, 12, 86 11 of 20

Table 5. Naming convention and optimizer details.

Name Optimizer Details

Stochastic gradient descent, SGD (1e-2) SGD optimizer with learning rate of 0.01

SGD (1e-2) momentum 0.9 SGD optimizer with learning rate of 0.01 and momentum 0.9

SGD (1e-3) SGD optimizer with learning rate of 0.001

SGD (1e-3) momentum 0.9 SGD optimizer with learning rate of 0.001 and momentum 0.9

Adam (1e-2) Adam optimizer with learning rate of 0.01 and default
parameters as described in [51]

Adamax (2e-3) Adamax optimizer with learning rate of 0.02 and default
parameters as described in [51]

Note: Numbers in parenthesis on left column are used as reference to reference learning rate values.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 

 

Figure 3 shows a different performance for all the optimizers used. For example, the VGG19 
deep accuracy indicates the model was still improving after 100 epochs for many of the optimizers 
used, e.g., SGD (1e-3). Figure 3 also shows that some combinations of model and optimizer became 
stuck in a local minimum—e.g., Adam (1e-3), Adamax (2e-3)—and did not improve their 
performance.  

 
Figure 4. Test set accuracy obtained by the models using different optimizers training on the same 
UCMerced dataset. The left panel shows VGG 19 results, right panel shows Inception V3 results. 

 
Figure 5. Difference between training set and test set accuracy obtained by the models using different 
optimizers training on the same UCMerced dataset. The left panel shows VGG 19 results, right panel 
shows Inception V3 results. Note, as shown in Figure 4, that SGD (1e-2), Adam (1e-2), and Adamax 
(2e-3) results of theVGG19 intermediate and deep models remained stuck on local minima. 

Discarding the combinations of model and optimizer stuck in local minima, Figure 4 shows 
that, in general, the models achieve a comparable performance after 100 epochs. Figure 5 provides a 
more detailed comparison of the difference of model performance in the training and test sets. 
Figure 5 also presents some cases in which the accuracy in the test set was higher than the in the 
training set, e.g., SGD (1e-3) for Inception V3 shallow model. Validation and test set metrics better 
than training set metrics can be caused by the dropout layer, as during training less information is 
available for the model, or simply because of the data split; the training set is generally larger than 
validation and test sets and can incorporate a higher complexity in its samples. 

Unlike the poor generalization performance of adaptive methods compared to SGD optimizers 
reported by Wilson et al. [65], our results do not find significant differences in performance for the 
optimizers tested. In fact, results in Figure 5 indicate that for our task SGDs had a slightly worse 

Figure 4. Test set accuracy obtained by the models using different optimizers training on the same
UCMerced dataset. The left panel shows VGG 19 results, right panel shows Inception V3 results.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 

 

Figure 3 shows a different performance for all the optimizers used. For example, the VGG19 
deep accuracy indicates the model was still improving after 100 epochs for many of the optimizers 
used, e.g., SGD (1e-3). Figure 3 also shows that some combinations of model and optimizer became 
stuck in a local minimum—e.g., Adam (1e-3), Adamax (2e-3)—and did not improve their 
performance.  

 
Figure 4. Test set accuracy obtained by the models using different optimizers training on the same 
UCMerced dataset. The left panel shows VGG 19 results, right panel shows Inception V3 results. 

 
Figure 5. Difference between training set and test set accuracy obtained by the models using different 
optimizers training on the same UCMerced dataset. The left panel shows VGG 19 results, right panel 
shows Inception V3 results. Note, as shown in Figure 4, that SGD (1e-2), Adam (1e-2), and Adamax 
(2e-3) results of theVGG19 intermediate and deep models remained stuck on local minima. 

Discarding the combinations of model and optimizer stuck in local minima, Figure 4 shows 
that, in general, the models achieve a comparable performance after 100 epochs. Figure 5 provides a 
more detailed comparison of the difference of model performance in the training and test sets. 
Figure 5 also presents some cases in which the accuracy in the test set was higher than the in the 
training set, e.g., SGD (1e-3) for Inception V3 shallow model. Validation and test set metrics better 
than training set metrics can be caused by the dropout layer, as during training less information is 
available for the model, or simply because of the data split; the training set is generally larger than 
validation and test sets and can incorporate a higher complexity in its samples. 

Unlike the poor generalization performance of adaptive methods compared to SGD optimizers 
reported by Wilson et al. [65], our results do not find significant differences in performance for the 
optimizers tested. In fact, results in Figure 5 indicate that for our task SGDs had a slightly worse 

Figure 5. Difference between training set and test set accuracy obtained by the models using different
optimizers training on the same UCMerced dataset. The left panel shows VGG 19 results, right panel
shows Inception V3 results. Note, as shown in Figure 4, that SGD (1e-2), Adam (1e-2), and Adamax
(2e-3) results of theVGG19 intermediate and deep models remained stuck on local minima.

Figure 3 shows a different performance for all the optimizers used. For example, the VGG19 deep
accuracy indicates the model was still improving after 100 epochs for many of the optimizers used,



Remote Sens. 2020, 12, 86 12 of 20

e.g., SGD (1e-3). Figure 3 also shows that some combinations of model and optimizer became stuck in
a local minimum—e.g., Adam (1e-3), Adamax (2e-3)—and did not improve their performance.

Table 6. Optimizer performance summary.

Optimizer Average Accuracy Median Accuracy
SGD (1e-2) 0.82 0.80

SGD (1e-2) momentum 0.9 0.53 0.66
SGD (1e-3) 0.74 0.75

SGD (1e-3) momentum 0.9 0.81 0.82
Adam (1e-2) 0.59 0.81

Adamax (2e-3) 0.59 0.85

Note: Highest values in each column are highlighted in bold.

Discarding the combinations of model and optimizer stuck in local minima, Figure 4 shows that,
in general, the models achieve a comparable performance after 100 epochs. Figure 5 provides a more
detailed comparison of the difference of model performance in the training and test sets. Figure 5
also presents some cases in which the accuracy in the test set was higher than the in the training set,
e.g., SGD (1e-3) for Inception V3 shallow model. Validation and test set metrics better than training set
metrics can be caused by the dropout layer, as during training less information is available for the
model, or simply because of the data split; the training set is generally larger than validation and test
sets and can incorporate a higher complexity in its samples.

Unlike the poor generalization performance of adaptive methods compared to SGD optimizers
reported by Wilson et al. [65], our results do not find significant differences in performance for the
optimizers tested. In fact, results in Figure 5 indicate that for our task SGDs had a slightly worse
performance. SGD (1e-3) momentum 0.9 and SGD (1e-2) had the larger difference between accuracy in
training and test set for VGG19 intermediate and deep models. SGD (1e-2) momentum 0.9 had the
worst performance for Inception V3 shallow.

6.2. General to Specific Layer Transition of CNN Models

This section shows the results of transfer learning, both feature extraction and fine-tuning modes,
as well as training the models with randomly initialized weights. Table 7 shows a summary of the
best performance of Inception V3 and VGG19 trained using SGD (1e-3) momentum 0.9. We chose
SGD (1e-3) momentum 0.9 as it is the optimizer with the second-best median in Table 6, and did not
become stuck in local minima. The table shows, for each dataset and each model, which depth and
training mode achieved the highest accuracy in the test set. We select AID trained on Inception V3
intermediate, one out of the 54 experiments (three datasets, two models, three depths, three training
modes), to provide more details of the training loss-accuracy and the confusion matrix computed for
the test set. Figure 6 shows the training and validation loss and accuracy through the training epochs.
Figure 7 shows the correspondent confusion matrix computed on the AID test set.

Table 7. Best test set accuracy for Inception V3 and VGG19 version for each dataset using SGD (1e-3)
momentum 0.9 optimizer.

Dataset Model Depth Mode Accuracy

PatternNet
Inception V3 intermediate fine tune 0.997

VGG19 deep fine tune 0.995

AID
Inception V3 intermediate fine tune 0.950

VGG19 deep fine tune 0.936

UCMerced
Inception V3 intermediate fine tune 0.983

VGG19 deep fine tune 0.981

Note: The best performing model for each dataset is highlighted in bold.



Remote Sens. 2020, 12, 86 13 of 20

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 

 

performance. SGD (1e-3) momentum 0.9 and SGD (1e-2) had the larger difference between accuracy 
in training and test set for VGG19 intermediate and deep models. SGD (1e-2) momentum 0.9 had the 
worst performance for Inception V3 shallow. 

6.2. General to Specific Layer Transition of CNN Models 

This section shows the results of transfer learning, both feature extraction and fine-tuning 
modes, as well as training the models with randomly initialized weights. Table 7 shows a summary 
of the best performance of Inception V3 and VGG19 trained using SGD (1e-3) momentum 0.9. We 
chose SGD (1e-3) momentum 0.9 as it is the optimizer with the second-best median in Table 6, and 
did not become stuck in local minima. The table shows, for each dataset and each model, which 
depth and training mode achieved the highest accuracy in the test set. We select AID trained on 
Inception V3 intermediate, one out of the 54 experiments (three datasets, two models, three depths, 
three training modes), to provide more details of the training loss-accuracy and the confusion matrix 
computed for the test set. Figure 6 shows the training and validation loss and accuracy through the 
training epochs. Figure 7 shows the correspondent confusion matrix computed on the AID test set. 

Table 7. Best test set accuracy for Inception V3 and VGG19 version for each dataset using SGD (1e-3) 
momentum 0.9 optimizer. 

Dataset Model Depth Mode Accuracy 

PatternNet 
Inception V3 intermediate fine tune 0.997 

VGG19 deep fine tune 0.995 

AID 
Inception V3 intermediate fine tune 0.950 

VGG19 deep fine tune 0.936 

UCMerced 
Inception V3 intermediate fine tune 0.983 

VGG19 deep fine tune 0.981 
Note: The best performing model for each dataset is highlighted in bold. 

 
Figure 6. Train and validation loss and accuracy for the Inception V3 intermediate in the fine tuning 
mode trained on the AID dataset using SGD (1e-3) momentum 0.9. 

The graphs in Figure 6 show a significant improvement in the performance of the model after 
epoch 50, when the model enters the second stage of fine tuning. After 50 epochs, the base model is 
unfrozen, thus all layers can learn. 

Figure 6. Train and validation loss and accuracy for the Inception V3 intermediate in the fine tuning
mode trained on the AID dataset using SGD (1e-3) momentum 0.9.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 21 

 

 
Figure 7. Confusion matrix for the test set of AID dataset for the Inception V3 intermediate in the 
fine-tune mode using SGD (1e-3) momentum 0.9. 

Figure 8 shows an overview of the complete experiment on the test set. This figure shows the 
test set accuracy for all the datasets, for all the models’ depths and training modes. This test was run 
on a NVIDIA GeForce RTX 2060 and it took roughly six days to complete. Training of VGG shallow, 
intermediate, and deep with PatternNet data took roughly 4:10, 6:20, and 6:50 hours to complete. 
Training of InceptionV3 shallow, intermediate, and deep with PatternNet data took roughly 3:50, 
5:40, and 6:50 hours to complete, respectively. These execution times are provided as simple general 
reference and lack more detailed analysis of performance—the computer was not entirely dedicated 
to experiments, thus speed might have been affected. 

Our choice of optimizer, SGD (1e-3) momentum 0.9, for the transfer learning experiments was 
mainly based on its performance in the optimizer tests. However, Figure 8 shows that some models 
were still trapped in local minima, showing the optimizer was unable to improve some of the 
models’ performance. 

Next we selected all the six models trained on PatternNet with randomly initialized weights 
and perform transfer learning, using the same methodology as before. Thus, we first trained CNN 
models on PatternNet and then applied transfer learning to train on AID and UCMerced. Note this is 
slightly different than the transfer learning performed before, where we split a single model in three 
different parts. Here we used the model in its original form (shallow, intermediate, or deep). Loss 
decays and confusion matrix figures, as well as the complete table with all test accuracies are 
provided in the supplemental materials. Table 8 shows the best performing Inception V3 and VGG19 
for each one of the datasets. 

Figure 7. Confusion matrix for the test set of AID dataset for the Inception V3 intermediate in the
fine-tune mode using SGD (1e-3) momentum 0.9.



Remote Sens. 2020, 12, 86 14 of 20

The graphs in Figure 6 show a significant improvement in the performance of the model after
epoch 50, when the model enters the second stage of fine tuning. After 50 epochs, the base model is
unfrozen, thus all layers can learn.

Figure 8 shows an overview of the complete experiment on the test set. This figure shows the
test set accuracy for all the datasets, for all the models’ depths and training modes. This test was run
on a NVIDIA GeForce RTX 2060 and it took roughly six days to complete. Training of VGG shallow,
intermediate, and deep with PatternNet data took roughly 4:10, 6:20, and 6:50 hours to complete.
Training of InceptionV3 shallow, intermediate, and deep with PatternNet data took roughly 3:50,
5:40, and 6:50 hours to complete, respectively. These execution times are provided as simple general
reference and lack more detailed analysis of performance—the computer was not entirely dedicated to
experiments, thus speed might have been affected.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 21 

 

 
Figure 8. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using 
SGD (1e-3) momentum 0.9. Left panel shows VGG 19 results, right panel shows Inception V3 results. 
Note VGG19 shallow and intermediate feature extraction and fine-tune versions were trapped in 
local minima. Some of the points in local minima appear wine-colored as the blue (feature extraction) 
points and red (fine tune) points are very closed and partially overlaying each other. 

Table 8. Best test set accuracy for Inception V3 and VGG19 version for each Dataset using SGD (1e-3) 
momentum 0.9 optimizer to perform transfer learning on models initially trained on PatternNet.  

Dataset Model Depth Mode Accuracy 

AID 
InceptionV3 Deep fine tune 0.838 

VGG19 intermediate fine tune 0.833 

UCMerced 
InceptionV3 intermediate fine tune 0.948 

VGG19 Deep fine tune 0.886 
Note: The best performing model for each dataset is highlighted in bold. 

Finally, we repeated transfer learning tests with Adamax (2e-3), the optimizer with best median 
performance in Table 6, although falling in local minima in some tests. Table 9 shows a summary of 
the best performing Inception V3 and VGG19 trained using Adamax (2e-3) for the three datasets 
used. Figure 9 shows an overview of the complete experiment on the test set. We did not repeat the 
PatternNet to AID-UCMerced transfer learning using Adamax (2e-3) as results in Table 7 are 
generally better than results in Table 9. 

 
Figure 9. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using 
Adamax (2e-3). Left panel shows VGG 19 results, right panel shows Inception V3 results. Note 
VGG19 shallow and intermediate feature extraction and fine tuning versions were trapped in local 
minima. 

Figure 8. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using
SGD (1e-3) momentum 0.9. Left panel shows VGG 19 results, right panel shows Inception V3 results.
Note VGG19 shallow and intermediate feature extraction and fine-tune versions were trapped in local
minima. Some of the points in local minima appear wine-colored as the blue (feature extraction) points
and red (fine tune) points are very closed and partially overlaying each other.

Our choice of optimizer, SGD (1e-3) momentum 0.9, for the transfer learning experiments was
mainly based on its performance in the optimizer tests. However, Figure 8 shows that some models
were still trapped in local minima, showing the optimizer was unable to improve some of the
models’ performance.

Next we selected all the six models trained on PatternNet with randomly initialized weights and
perform transfer learning, using the same methodology as before. Thus, we first trained CNN models
on PatternNet and then applied transfer learning to train on AID and UCMerced. Note this is slightly
different than the transfer learning performed before, where we split a single model in three different
parts. Here we used the model in its original form (shallow, intermediate, or deep). Loss decays and
confusion matrix figures, as well as the complete table with all test accuracies are provided in the
supplemental materials. Table 8 shows the best performing Inception V3 and VGG19 for each one of
the datasets.

Finally, we repeated transfer learning tests with Adamax (2e-3), the optimizer with best median
performance in Table 6, although falling in local minima in some tests. Table 9 shows a summary
of the best performing Inception V3 and VGG19 trained using Adamax (2e-3) for the three datasets
used. Figure 9 shows an overview of the complete experiment on the test set. We did not repeat the
PatternNet to AID-UCMerced transfer learning using Adamax (2e-3) as results in Table 7 are generally
better than results in Table 9.



Remote Sens. 2020, 12, 86 15 of 20

Table 8. Best test set accuracy for Inception V3 and VGG19 version for each Dataset using SGD (1e-3)
momentum 0.9 optimizer to perform transfer learning on models initially trained on PatternNet.

Dataset Model Depth Mode Accuracy

AID
InceptionV3 Deep fine tune 0.838

VGG19 intermediate fine tune 0.833

UCMerced
InceptionV3 intermediate fine tune 0.948

VGG19 Deep fine tune 0.886

Note: The best performing model for each dataset is highlighted in bold.

Table 9. Best test set accuracy for Inception V3 and VGG19 version for each Dataset using Adamax
(2e-3) optimizer.

Dataset Model Depth Mode Accuracy

PatternNet
InceptionV3 intermediate fine tune 0.993

VGG19 Deep feature extraction 0.983

AID
InceptionV3 intermediate fine tune 0.941

VGG19 Deep feature extraction 0.889

UCMerced
InceptionV3 Deep fine tune 0.910

VGG19 Deep feature extraction 0.943

Note: The best performing model for each dataset is highlighted in bold.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 21 

 

 
Figure 8. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using 
SGD (1e-3) momentum 0.9. Left panel shows VGG 19 results, right panel shows Inception V3 results. 
Note VGG19 shallow and intermediate feature extraction and fine-tune versions were trapped in 
local minima. Some of the points in local minima appear wine-colored as the blue (feature extraction) 
points and red (fine tune) points are very closed and partially overlaying each other. 

Table 8. Best test set accuracy for Inception V3 and VGG19 version for each Dataset using SGD (1e-3) 
momentum 0.9 optimizer to perform transfer learning on models initially trained on PatternNet.  

Dataset Model Depth Mode Accuracy 

AID 
InceptionV3 Deep fine tune 0.838 

VGG19 intermediate fine tune 0.833 

UCMerced 
InceptionV3 intermediate fine tune 0.948 

VGG19 Deep fine tune 0.886 
Note: The best performing model for each dataset is highlighted in bold. 

Finally, we repeated transfer learning tests with Adamax (2e-3), the optimizer with best median 
performance in Table 6, although falling in local minima in some tests. Table 9 shows a summary of 
the best performing Inception V3 and VGG19 trained using Adamax (2e-3) for the three datasets 
used. Figure 9 shows an overview of the complete experiment on the test set. We did not repeat the 
PatternNet to AID-UCMerced transfer learning using Adamax (2e-3) as results in Table 7 are 
generally better than results in Table 9. 

 
Figure 9. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using 
Adamax (2e-3). Left panel shows VGG 19 results, right panel shows Inception V3 results. Note 
VGG19 shallow and intermediate feature extraction and fine tuning versions were trapped in local 
minima. 

Figure 9. Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets using
Adamax (2e-3). Left panel shows VGG 19 results, right panel shows Inception V3 results. Note VGG19
shallow and intermediate feature extraction and fine tuning versions were trapped in local minima.

Even though we selected SGD (1e-3) momentum 0.9 as the optimizer for the transfer learning
experiments due to its performance on the optimizer tests, some models still fell into local minima.
This failure shows how the choice of hyperparameters can strongly affect the performance of
deep-learning models. Neither training from random initial weights (Figure 4) nor transfer learning
techniques (Figures 8 and 9) are exempt from the possibility of a poor performance if suboptimal
hyperparameters are used. More than a marginal increase in performance, the results show that
the models can completely fail when used with inappropriate hyperparameters, even if the task is
appropriate for the model.

7. Discussion

Using ImageNet data, Yosinski et al. [24] found that transfer learning, even when applied to
a secondary task not similar to the primary task, perform better than training CNN models with
randomly initialized weights. Using medical image data, Tajbakhsh et al. [66] found that fine-tuning



Remote Sens. 2020, 12, 86 16 of 20

achieved results comparable to or better than results from training a CNN model with randomly
initialized weights. Our results align with their findings. Both Figure 8 and Table 7 show the fine-tuning
mode of training outperforming randomly initialized weights when using SGD (1e-3) momentum
0.9. Results in Figure 9 and Table 9 show that transfer learning performs best with the Adamax (2e-3)
optimizer. However, it seems that the step size (2e-3) is too large for fine tuning in the VGG19 model,
such that the VGG19 intermediate and deep models trained on fine tune and randomly initialized
weights modes fall in local minima. The primary task (ImageNet, composed of natural images) is not
very similar to the secondary task (remote-sensing scene classification). While there is a similarity in
primary and secondary tasks datasets, such as the number of channels (red-green-blue components),
images are from the visible spectra, and some objects might be present in both tasks (e.g., airplanes),
the tasks are fundamentally different. Figure 5, however, shows how feature extraction can be limited
by the difference in tasks. When the initial layers are frozen, the model cannot properly learn and
the model starts to overfit. With the layers unfrozen, the overfitting reduces and accuracy increase.
We observed a similar behavior for most of fine-tuning tests (all of the loss and accuracy per epoch can
be accessed in the supplemental materials). Despite feature extraction limitations, the results show that
transfer learning is an effective deep-learning approach that should not be discarded if the secondary
task is not similar to the primary task. In fact, Table 8 presents striking results. Fine-tuned models
initially trained on PatternNet underperformed fine tuned models trained on ImageNet. Perhaps the
first explanation for such underperformance would be that the models are overfitting the PatternNet
dataset. However, PatternNet models performed well on the PatternNet test set, which indicates
they are not overfitting the training data. We hypothesize that the weaker performance is due to the
complexity of the datasets. PatternNet is a dataset created with the objective to provide researchers
with clear examples of different remote sensing scenes, whereas the ImageNet is a complex dataset
where the intra-class variance, i.e. how a single class contains very different samples, is very high.
As observed by Cheng et al. [3] many remote-sensing scene classification datasets have a lack of
intraclass sample variations and diversity. These limitations severely limit the development of new
approaches especially deep learning-based methods. Thus, CNN models trained on the ImageNet
need to develop more generic, perhaps robust, filters to be able to identify ImageNet’s classes properly.

8. Conclusions

Our objective with this paper was to investigate the use of transfer learning in the analysis of
remote-sensing data, as well as how the CNN performance depends on the depth of the network and
on the amount of training data available. Our experiments, based on three distinct remote-sensing
datasets and two popular CNN models, show that transfer learning, specifically fine tuning CNNs is a
powerful tool for remote-sensing scene classification. Much like the findings in other experiments,
the results we found show that transfer from natural images (ImageNet) to remote-sensing imagery is
possible. Despite the relatively large difference between primary and secondary tasks, transfer learning
training mode generally outperformed training a CNN with randomly initialized weights and achieved
the best results overall. Curiously, fine-tuning models primarily trained on the generic ImageNet
dataset overperformed fine-tuning models primarily trained on PatternNet dataset. As expected,
our results also indicate that for a particular application, the amount of training data available plays
a significant role on the performance of the CNN models. In general we observed a larger accuracy
difference between transfer learning and training with randomly initialized weights using the smaller
UCMerced dataset, whereas accuracy differences were smaller when using the larger PatternNet
dataset. Model robustness was also clear on the results. In several instances the VGG19 ended up stuck
on local minima, both during optimization testing and during transfer learning testing. The VGG19
shallow and intermediate models’ results exhibit a performance degradation caused by splitting the
primary trained CNN model between co-adapted neurons on neighboring layers. VGG19 shallow
and intermediate on randomly initialized mode, however, performed satisfactorily. In spite of our



Remote Sens. 2020, 12, 86 17 of 20

simplistic model split without detailed attention to co-adaption of neurons between layers, Inception
V3 passed all experiments without falling into local minima.

The results seem to corroborate that feature extraction or fine-tuning well-established CNN
models offer a practical way to achieve the best performance for remote-sensing scene classification.
Although fine-tuning the originally more complex deep models might present satisfactory results,
splitting the original model can perhaps improve performance. Note, the fine-tuning Inception V3
intermediate model outperformed Inception V3 deep model. With datasets large enough, randomly
initialized weights are also an appropriate choice for training. However, it is often hard to know when
a dataset is large enough. Our recommendation is to start from the deep models and try to reduce
model’s size as it is easier to overfit models with too many weights.

Supplementary Materials: Data associated with this research are available online. The UC Merced dataset
The dataset is available for download at http://weegee.vision.ucmerced.edu/datasets/landuse.html. AID is
available for download at for download at http://captain.whu.edu.cn/WUDA-RSImg/aid.html. PatternNet dataset
is available for download at https://sites.google.com/view/zhouwx/dataset. The Python scripts used for the
analysis of the datasets, as well as the generation of most images, and the supplemental figures are available at
https://github.com/raplima/remote_sensing-transfer_learning.

Author Contributions: Conceptualization, R.P.d.L.; Formal analysis, R.P.d.L.; Funding acquisition, K.M.;
Investigation, R.P.d.L.; Methodology, R.P.d.L.; Supervision, K.M.; Visualization, R.P.d.L.; Writing—original
draft, R.P.d.L.; Writing—review and editing, K.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by CNPq, grant number 203589/2014-9 and the industry sponsors of the
OU Attribute-Assisted Seismic Processing and Interpretation Consortium. The APC was funded by the OU
Attribute-Assisted Seismic Processing and Interpretation Consortium.

Acknowledgments: Rafael acknowledges CNPq (grant 203589/2014-9) for the financial support and CPRM for
granting the leave of absence allowing the pursuit of his Ph.D. studies. The funding for the computers used
in this project was provided by the industry sponsors of the OU Attribute-Assisted Seismic Processing and
Interpretation Consortium.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Emery, W.; Camps, A. Chapter 1—The History of Satellite Remote Sensing. In Introduction to Satellite Remote
Sensing; Emery, W., Camps, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–42. [CrossRef]

2. Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A benchmark dataset for performance evaluation of
remote sensing image retrieval. ISPRS J. Photogramm. Remote Sens. 2018, 145, 197–209. [CrossRef]

3. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc.
IEEE 2017, 105, 1865–1883. [CrossRef]

4. Xiao, Y.; Zhan, Q. A review of remote sensing applications in urban planning and management in China.
In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–5.
[CrossRef]

5. Skidmore, A.K.; Bijker, W.; Schmidt, K.; Kumar, L. Use of remote sensing and GIS for sustainable land
management. ITC J. 1997, 3, 302–315.

6. Lentile, L.B.; Holden, Z.A.; Smith, A.M.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.;
Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl.
Fire 2006, 15, 319–345. [CrossRef]

7. Daldegan, G.A.; Roberts, D.A.; Ribeiro, F.D. Spectral mixture analysis in Google Earth Engine to model
and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone.
Remote Sens. Environ. 2019, 232. [CrossRef]

8. Sebai, H.; Kourgli, A.; Serir, A. Dual-tree complex wavelet transform applied on color descriptors for
remote-sensed images retrieval. J. Appl. Remote Sens. 2015, 9. [CrossRef]

9. Bosilj, P.; Aptoula, E.; Lefèvre, S.; Kijak, E. Retrieval of Remote Sensing Images with Pattern Spectra
Descriptors. ISPRS Int. J. Geo-Inf. 2016, 5, 228. [CrossRef]

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://captain.whu.edu.cn/WUDA-RSImg/aid.html
https://sites.google.com/view/zhouwx/dataset
https://github.com/raplima/remote_sensing-transfer_learning
http://dx.doi.org/10.1016/B978-0-12-809254-5.00001-4
http://dx.doi.org/10.1016/J.ISPRSJPRS.2018.01.004
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/URS.2009.5137653
http://dx.doi.org/10.1071/WF05097
http://dx.doi.org/10.1016/J.RSE.2019.111340
http://dx.doi.org/10.1117/1.JRS.9.095994
http://dx.doi.org/10.3390/ijgi5120228


Remote Sens. 2020, 12, 86 18 of 20

10. Shao, Z.; Zhou, W.; Zhang, L.; Hou, J. Improved color texture descriptors for remote sensing image retrieval.
J. Appl. Remote Sens. 2014, 8. [CrossRef]

11. Scott, G.J.; Klaric, M.N.; Davis, C.H.; Shyu, C.-R. Entropy-Balanced Bitmap Tree for Shape-Based Object
Retrieval from Large-Scale Satellite Imagery Databases. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1603–1616.
[CrossRef]

12. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

13. Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene
Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]

14. Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep
Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [CrossRef]

15. Le Cun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.

In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3–6 December 2012; Volume 1, pp. 1097–1105.

17. Le Cun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/

mnist/ (accessed on 15 November 2019).
18. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

19. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K. Deep Networks with Stochastic Depth. In Proceedings
of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016.

20. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps. arXiv 2013, arXiv:1312.6034.

21. Yin, X.; Chen, W.; Wu, X.; Yue, H. Fine-tuning and visualization of convolutional neural networks.
In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA),
Siem Reap, Cambodia, 18–20 June 2017; pp. 1310–1315. [CrossRef]

22. Olah, C.; Mordvintsev, A.; Schubert, L. Feature Visualization. Distill 2017. [CrossRef]
23. Olah, C.; Satyanarayan, A.; Johnson, I.; Carter, S.; Schubert, L.; Ye, K.; Mordvintsev, A. The Building Blocks of

Interpretability. Distill 2018. [CrossRef]
24. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks?

In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal,
QC, Canada, 8–13 December 2014; Volume 27, pp. 3320–3328.

25. Caruana, R. Learning Many Related Tasks at the Same Time with Backpropagation. In Advances in Neural
Information Processing Systems 7; Tesauro, G., Touretzky, D.S., Leen, T.K., Eds.; MIT Press: Cambridge, MA,
USA, 1995; pp. 657–664.

26. Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In Proceedings of the
ICML Workshop on Unsupervised and Transfer Learning, Scotland, UK, 26 June–1 July 2012; Volume 27,
pp. 17–36.

27. Carranza-Rojas, J.; Goeau, H.; Bonnet, P.; Mata-Montero, E.; Joly, A. Going deeper in the automated
identification of Herbarium specimens. BMC Evol. Biol. 2017, 17, 181. [CrossRef]

28. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

29. De Lima, R.P.; Suriamin, F.; Marfurt, K.J.; Pranter, M.J. Convolutional neural networks as aid in core lithofacies
classification. Interpretation 2019, 7, SF27–SF40. [CrossRef]

30. Duarte-Coronado, D.; Tellez-Rodriguez, J.; de Lima, R.P.; Marfurt, K.; Slatt, R. Deep convolutional neural
networks as an estimator of porosity in thin-section images for unconventional reservoirs. In SEG Technical
Program Expanded Abstracts 2019; SEG: San Antonio, TX, USA, 15–20 September 2019; pp. 3181–3184.
[CrossRef]

31. De Lima, R.P.; Marfurt, K.; Duarte, D.; Bonar, A. Progress and Challenges in Deep Learning Analysis of
Geoscience Images. In Proceedings of the 81st EAGE Conference and Exhibition 2019, London, UK, 3–6 June
2019. [CrossRef]

http://dx.doi.org/10.1117/1.JRS.8.083584
http://dx.doi.org/10.1109/TGRS.2010.2088404
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.3390/rs71114680
http://dx.doi.org/10.1109/TGRS.2018.2815613
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/ICIEA.2017.8283041
http://dx.doi.org/10.23915/distill.00007
http://dx.doi.org/10.23915/distill.00010
http://dx.doi.org/10.1186/s12862-017-1014-z
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1190/INT-2018-0245.1
http://dx.doi.org/10.1190/segam2019-3216898.1
http://dx.doi.org/10.3997/2214-4609.201901607


Remote Sens. 2020, 12, 86 19 of 20

32. De Lima, R.P.; Bonar, A.; Coronado, D.D.; Marfurt, K.; Nicholson, C. Deep convolutional neural networks as
a geological image classification tool. Sediment. Rec. 2019, 17, 4–9. [CrossRef]

33. Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometric Recognition Using Deep Learning:
A Survey. arXiv 2019, arXiv:1912.00271.

34. Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline
for Recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 512–519. [CrossRef]

35. Chen, Z.; Zhang, T.; Ouyang, C.; Chen, Z.; Zhang, T.; Ouyang, C. End-to-End Airplane Detection Using
Transfer Learning in Remote Sensing Images. Remote Sens. 2018, 10, 139. [CrossRef]

36. Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep Transfer Learning for Few-Shot SAR Image Classification.
Remote Sens. 2019, 11, 1374. [CrossRef]

37. Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB
Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [CrossRef]

38. Huot, F.; Biondi, B.; Beroza, G. Jump-starting neural network training for seismic problems. In SEG Technical
Program Expanded Abstracts 2018; SEG: Anaheim, CA, USA, 14–19 October 2018; pp. 2191–2195. [CrossRef]

39. De Lima, R.P.; Lin, Y.; Marfurt, K.J. Transforming seismic data into pseudo-RGB images to predict CO2
leakage using pre-learned convolutional neural networks weights. In SEG Technical Program Expanded
Abstracts 2019; SEG: San Antonio, TX, USA, 15–20 September 2019; pp. 2368–2372. [CrossRef]

40. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

41. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27–30 June 2016.

42. Google. Machine Learning Glossary. 2019. Available online: https://developers.google.com/machine-
learning/glossary/ (accessed on 3 November 2019).

43. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings
of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems—GIS’10,
San Jose, CA, USA, 3–5 November 2010; p. 270. [CrossRef]

44. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for
Performance Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981.
[CrossRef]

45. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional
Net. arXiv 2014, arXiv:1412.6806.

46. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285.
47. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015.

48. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. arXiv 2018, arXiv:1801.04381.

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the
Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; pp. 630–645.

50. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

51. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018.

52. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

53. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Advances in Neural Information Processing Systems; MIT Press: Long Beach, CA, USA, 2017;
pp. 5998–6008.

54. Wang, J.; Shen, L.; Qiao, W.; Dai, Y.; Li, Z. Deep Feature Fusion with Integration of Residual Connection and
Attention Model for Classification of VHR Remote Sensing Images. Remote Sens. 2019, 11, 1617. [CrossRef]

http://dx.doi.org/10.2110/sedred.2019.2.4
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.3390/rs10010139
http://dx.doi.org/10.3390/rs11111374
http://dx.doi.org/10.3390/rs11111309
http://dx.doi.org/10.1190/segam2018-2998567.1
http://dx.doi.org/10.1190/segam2019-3215401.1
https://developers.google.com/machine-learning/glossary/
https://developers.google.com/machine-learning/glossary/
http://dx.doi.org/10.1145/1869790.1869829
http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.3390/rs11131617


Remote Sens. 2020, 12, 86 20 of 20

55. Xu, R.; Tao, Y.; Lu, Z.; Zhong, Y. Attention-Mechanism-Containing Neural Networks for High-Resolution
Remote Sensing Image Classification. Remote Sens. 2018, 10, 1602. [CrossRef]

56. Keras: The Python Deep Learning Library. Available online: https://keras.io (accessed on 15 November 2019).
57. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;

et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

58. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS’10),
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.

59. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

60. Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of the
COMPSTAT’2010, 19th International Conference on Computational Statistics, Paris, France, 22–27 August
2010; pp. 177–186. [CrossRef]

61. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.

62. Tieleman, T.; Hinton, G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent
magnitude. Neural Netw. Mach. Learn. 2012, 26–30.

63. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
64. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
65. Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The Marginal Value of Adaptive Gradient Methods

in Machine Learning. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Long Beach,
CA, USA, 2017; pp. 4148–4158.

66. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional
Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging
2016, 35, 1299–1312. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs10101602
https://keras.io
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/10.1109/TMI.2016.2535302
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Glossary 
	Data 
	UCMerced: Univeristy of California Merced Land Use Dataset 
	AID: Aerial Image Dataset 
	PatternNet 

	Convolutional Neural Networks (CNNs) 
	Methods 
	Model Split 
	Stochastic Gradient Descent versus Adaptive Optimization Methods 
	General to Specific Layer Transition of CNN Models 

	Results 
	Stochastic Gradient Descent versus Adaptive Optimization Methods 
	General to Specific Layer Transition of CNN Models 

	Discussion 
	Conclusions 
	References

