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Convolutional neural networks as aid in core lithofacies classification

Rafael Pires de Lima', Fnu Suriamin®, Kurt J. Marfurt®, and Matthew J. Pranter®

Abstract

Artificial intelligence methods have a very wide range of applications. From speech recognition to self-
driving cars, the development of modern deep-learning architectures is helping researchers to achieve new
levels of accuracy in different fields. Although deep convolutional neural networks (CNNs) (a kind of deep-
learning technique) have reached or surpassed human-level performance in image recognition tasks, little
has been done to transport this new image classification technology to geoscientific problems. We have devel-
oped what we believe to be the first use of CNNs to identify lithofacies in cores. We use highly accurate models
(trained with millions of images) and transfer learning to classify images of cored carbonate rocks. We found
that different modern CNN architectures can achieve high levels of lithologic image classification accuracy
(approximately 90%) and can aid in the core description task. This core image classification technique has
the potential to greatly standardize and accelerate the description process. We also provide the community
with a new set of labeled data that can be used for further geologic/data science studies.

Introduction

Advances in deep learning and artificial intelligence
promise to not only drive our cars but to also taste our
beer (Gardner et al., 1994; Daily et al., 2017). Specifi-
cally, recent advances in the architecture of deep-learn-
ing convolutional neural networks (CNNs) have
brought the field of image classification and computer
vision to a new level. Very deep CNNs emerged in 2014
and have achieved new levels of accuracy in several ar-
tificial intelligence classification problems (Szegedy
et al., 2014). The current benchmark in object category
classification and detection, called ImageNet, consists
of hundreds of mixed-object categories and millions
of images (Deng et al.,, 2009; Russakovsky et al.,
2015), and it is commonly used to train CNNs. Current
CNN models are able to differentiate the image of a
leopard from that of a container ship; moreover, they
can differentiate images of leopards from their biologi-
cal cousins — cheetahs and snow leopards (Krizhev-
sky et al., 2012).

Although machine learning has been significantly
used in geoscience fields, the application of this tech-
nique in core-based lithofacies identification, a key
component to better understanding oil and gas reser-
voirs, is still limited. Machine-learning techniques have
been intensely used to aid seismic-facies classification

(de Matos et al., 2007, 2011; Roy et al., 2014; Qi et al.,
2016; Zhao et al., 2016, 2017; Qian et al., 2018), electrof-
acies classification (Allen and Pranter, 2016), lithofa-
cies classification from well logs (Baldwin et al,
1990; Zhang et al., 1999; Bestagini et al., 2017), to pre-
dict permeability in tight sands (Zhang et al., 2018), and
even for seismicity studies (Kortstrom et al., 2016; Perol
et al., 2018; Sinha et al., 2018; Wu et al., 2018). Cored
wells are important because they are the only data that
provide the ground truth of subsurface reservoirs in-
cluding the lithofacies variations. The goals of core-
based rock-type descriptions are to identify key lithof-
acies and facies associations; evaluate facies stacking
and identify and interpret depositional environments;
evaluate the relationships among porosity, permeabil-
ity, and lithofacies; and help operators to identify opti-
mal zones for designing completions. Traditional core-
based lithofacies identification is challenging because it
is costly, time consuming, and subjective (e.g., different
geologists describing the same core might yield differ-
ent results). To address some of the core-based lithof-
acies identification challenges, we evaluate whether a
CNN can help a specialist on their image-recognition
task.

CNN goes hand in hand with the construction and
archival of digital databases. Many museums are now
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busy digitizing and sharing their collections (Blago-
derov et al., 2012; Ellwood et al., 2015) With the excep-
tion of core measured by deep-sea drilling projects and
the like (e.g., NOAA, 2016), core images are not readily
available. As an example, more than 100 mi of cores are
stored in the Oklahoma Petroleum Information Center,
managed by the Oklahoma Geologic Survey. Other
states and countries have similar repositories (USGS
Core Research Center, 2018). Further digitization of this
valuable resource resulting in core images will not only
facilitate access to data for traditional analysis but will
also provide the information needed to build and cali-
brate innovative machine-learning algorithms. The
work we use here has the potential to organize many
miles of slabbed cores into a reliable and coherent sys-
tem easily accessible to a variety of users.

In this paper, we provide one of the first attempts to
conduct automated core lithofacies classification using
CNN. We begin with an overview of the methodology,
which includes data preparation and transfer learning.
The details of the CNN method are summarized in tuto-
rial form in Appendix A. Then, we apply CNN to our
core data set, and we use confusion matrices, test
and validation accuracies, as well as precision, recall,
and the F1 score (Fawcett, 2006) computed with the fi-
nal test set as a means to analyze our results. We con-
clude with a summary of our findings and suggestions
on how our workflow can be extended and improved.

Methodology

The deep-learning methodology and CNN techniques
are now very well-disseminated in diverse fields. LeCun
et al. (2015) present details in the construction and the
value of deep learning. Dumoulin and Visin (2016) give
details on convolutions and other arithmetic steps
used in deep-learning algorithms. Although carefully
constructed interative papers have been published de-
tailing CNN image transformations and image under-
standing (e.g., Olah et al., 2017, 2018), CNN may
appear to be “magic” and therefore somewhat suspect
to the practicing geoscientist. For this reason, Appen-
dix A provides a tutorial that looks under the covers,
providing a simple CNN application to classify images
into three groups. The work for this paper was devel-
oped using open-source computational packages de-
scribed by Hunter (2007), Chollet (2015), and Abadi
et al. (2016)

When used for image recognition tasks, CNN models
need examples (images) to understand the properties of
each “class” that they try to discriminate. Part of the
parameters learned for a primary task (such as the Im-
ageNet classification) can be transferred to a secondary
task (e.g., lithofacies classification) through the use of
transfer learning (Pan and Yang, 2010; Oquab et al.,
2014; Yosinski et al., 2014). Our work focuses on using
transfer learning of complex CNN architectures to
serve our specific image recognition task. The following
subsections detail how we prepared our data sets and
give a brief explanation of transfer learning.

Data preparation

We used cores described using traditional methods
published by Suriamin and Pranter (2018), capturing
images using modern photographic equipment to gener-
ate the set of labeled data to feed our CNN. The total
section used for this project consists of approximately
700 ft from one core from the Mississippian limestone
and chert reservoirs in the Anadarko Shelf, Grant
County, Oklahoma. The set of core images shown in
Table 1 includes 17 different lithofacies. Two pairs of
lithofacies exhibit similar lithology and appearance;
we grouped these into a single class for this project.
We carefully cropped the images in a standardized fash-
ion, providing consistent input to the CNN. We used a
sliding window technique to extract consistent squared
cropped sections from the original core images (Fig-
ure 1), generating 180 x 180 pixels images representing

Table 1. Class number assigned to each lithofacies in
the core used in this study.

Class Lithofacies Training set Test set
01 Chert breccia in greenish shale 218" 3
matrix .
02 Chert breccia 236 3
03 Skeletal mudstone- 258" 4
wackestone .
04 Skeletal grainstone 160 3
05 Splotchy packstone grainstone 344" 4
06 Bedded skeletal peloidal 416" 4
packstone-grainstone
07 Nodular packstone-grainstone 445 11
08 Skeletal peloidal packstone-  Not used Not used
grainstone
09 Bioturbated skeletal peloidal 795 19
packstone-grainstone .
10 Bioturbated mudstone- 150 4
wackestone
11 Brecciated spiculitic Not used Not used
mudstone
12 Intraclast spiculitic mudstone Not used Not used
13 Spiculitic mudstone- 3077 79
wackestone
14 Argillaceous spiculitic

mudstone-wackestone

15 Glauconitic sandstone Not used Not used
16 Shale 789 17
17 Shaly claystone

Total number of images in each set 6888 151

Note: Classes 13-14 and 16-17 in bold exhibited a similar lithology and
appearance so are combined into two classes instead of four. During training,
the training set data are further split: 10% are randomly selected to be part of
a validation set, and 5% are randomly assigned as a training test set. The
proportion used for validation and test splitting is commonly dependent on the
number of samples available and the type of machine-learning model being
trained. CNN models usually improve with more examples; therefore, we
selected a smaller percentage to be part of the validation and test sets. The last
column of this table (the test set) comprises the selected images described in
Figure 1, and it is the test set used for further analysis in this paper. Classes
with fewer than 30 original images were not used in this study (modified
from Suriamin and Pranter, 2018).

*Classes that were augmented by horizontally flipping the images.
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roughly 2 x 2 in of cored rock. Note in Figure 1 that the
heavily damaged rock is not present in the images used
for training/testing. We chose to eliminate these images
because they would increase variability within the
class. Ideally, more core data would provide sufficient
images to define damaged classes. The sliding window
cropping process augments the number of images of
our initially small collection, thereby further generaliz-
ing the CNN. Some classes contained less than 300 im-
ages. To augment the representation of those classes,
we doubled the number of input images by flipping
the image horizontally. Then, we select approximately
2% of the original data for each class to serve as the test
data. During training, 5% of the total training data are
randomly selected to be part of the training test. The
training test set is used for an overall performance
evaluation. We provide more detailed analysis using
the test set. The selection of images to be part of the
test has a higher standard than the images selected
to be part of the training test. Because each image se-
lected to be part of the test set forces us to discard its
neighbors (Figure 1), we select only 2% of the original
data to be part of the test set.

Even after image augmentation, Table 1 shows that
some classes have a significantly larger number of im-
ages than others. This difference in amount of labeled
data for different classes is referred to as class imbal-
ance (Japkowicz and Stephen, 2002; Buda et al., 2018)
and can cause undesirable effects when training classi-
fiers. In this study, we did not notice a significant bias
caused by such class imbalance. Therefore, although
we did not augment it, we chose to retain all of the
images in the most common 13-14 Spiculitic mud-
stone-wackestone class. In contrast,
we removed from analysis classes repre-
sented by less than 30 images in which
the initial testing indicated that these
undersampled classes were reducing
CNN accuracy.

|

4_44‘

Transfer learning

Transfer learning is a powerful tech-
nique that can be used to address the
shortage of sufficient domain-specific
training data (Carranza-Rojas et al.,
2017). In transfer learning, the learned
parameters of a base model trained on
a base data set are applied to a different
task (Yosinski et al., 2014). In our appli-
cation, we use a CNN model trained to
identify the images of the ImageNet
challenge to classify lithofacies in core
(Figure 2). ImageNet is a data set con-
sisting of thousands of classes ranging
from biological and household images
to vehicles and bridges; to our knowl-
edge, no rock or core images were in-
cluded in its construction. Another
advantage of using transfer learning is

5
K]
]

this project.

to reduce the training computation time by using the
trained layers as feature extractors (Appendix A) and
rather training only a new classification layer. Exam-
ples of transfer learning include Carranza-Rojas et al.
(2017) for herbarium specimens, Esteva et al. (2017)
for skin cancer classification, and Gomez Villa et al.
(2017) for camera-trap images. Tajbakhsh et al
(2016) use different medical imaging applications and
perform a comparison between CNNs trained from
scratch with the pretrained CNNs. The authors found
that using a pretrained CNN frequently outperforms a
CNN model trained from scratch especially when lim-
ited training data are available.

When CNNs are trained with natural images, the first
layers of the deep neural network learn features that
are useful to identify textures or colors. This behavior
is quite common in CNN models; the analysis is reeval-
uated if the initial layers learn image properties other
than color or texture. Because of this CNN character-
istic, models with good performance trained on the
ImageNet challenge (e.g., Krizhevsky et al., 2012; Si-
monyan and Zisserman, 2014; Szegedy et al., 2014,
2015; He et al., 2016; Zoph and Le, 2016; Zoph et al.,
2017; Sandler et al., 2018) can be successfully retrained
for new, field-specific classification problems (e.g.,
Tajbakhsh et al., 2016; Carranza-Rojas et al., 2017; Es-
teva et al., 2017; Gomez Villa et al., 2017; Norouzzadeh
et al., 2018).

In this project, we evaluate transfer learning using
four different trained models: InceptionV3 (Szegedy
et al., 2015) consisting of 48 layers, ResNetV2 — imple-
mented with 50 layers (He et al., 2016), MobileNetV2
(Sandler et al., 2018) with 20 layers, and NASNet (Zoph

Figure 1. The image augmentation of a photographed core, the core using a
sliding window of cropped image. This approach provides the CNN with a
greater amount of training data. The blue rectangle shows images that were
never used during training (the test data). The cropped images crossed were
discarded from the data sets (damaged rocks). The green arrow indicates a ran-
dom image that could have been selected to be part of the test set. When an
image like this is selected, the overlapping neighboring images are also removed
from the training set. The separation of test data was the same for all classes in
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and Le, 2016; Zoph et al., 2017) with 20 layers. These
models and the learned parameters are publicly avail-
able and can be downloaded from TensorFlow Hub
(2018) website. Each one of the CNN models requires
different-sized images as input: 299 x 299 pixels for In-
ceptionV3, 224 x 224 pixels for ResNetV2, 224 x 224
pixels for MobileNetV2, and 331 x 331 pixels for NAS-
Net. Because our images are 180 x 180 pixels in size,
we use simple bilinear interpolation to conform to
the size of the transfer learning model used. As de-
scribed in Appendix A, all subsequent layers are depen-
dent on the size of the input data. Appendix A shows
how transfer learning is achieved by using the convolu-
tional layers as feature extractors for our core images
thereby facilitating the training of a densely connected
classification layer.

Carranza-Rojas et al. (2017), Esteva et al. (2017), and
Gomez Villa et al. (2017) each use some 100,000 images
in their data sets to perform transfer learning. Although
we have a significantly smaller data set consisting of
less than 7000 images, we still achieved a high level
of accuracy as presented in the next section. We use
confusion matrices, test and validation accuracy, and
precision, recall, and F1 score (Fawcett, 2006) com-
puted with the final test set as a means to analyze
our results.

Figure 2. Flowchart summarizing the workflow used in this
paper. We begin with photographic images of the slabbed
core, followed by simple image processing and data augmen-
tation to generate our core image database. The CNN models
that we use as feature extractors were previously trained us-
ing millions of images on the ImageNet challenge. We then use
transfer learning and reuse the ImageNet data set classifica-
tion CNN weights. Finally, we train the last layer to provide
the desired core image classification.
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Results

In this section, we present the overall results that we
obtained as well as examples of the classifications per-
formed by the retrained CNNs. Because the results of
the four chosen CNNs are similar, in this section we
show details of the ResNetV2 retrained CNN (apart
from the training test set in Table 2). Plots and tables
regarding the other three CNNs are presented in
Appendix B.

The results for the training test data set are showed
in Table 2.

These training tests accuracies were achieved after
5000 iterations using a gradient descent algorithm.
Figure 3 shows the training and validation accuracy re-
sult for each step of the gradient descent. The CNN
quickly reaches satisfactory levels of accuracy. After
performing feature extraction, only the last classifica-
tion layer needs to be trained. The training time in a sin-
gle-core CPU with 3.60 GHz clock speed does not
exceed 1 h for our data set for any of the four CNN mod-
els used. Access to graphical processing units provides
even greater computation speeds.

Table 2. Training test set data results for the different
models used for transfer learning.

Model Training test accuracy
InceptionV3 05
ResNetV2 von
MobileNetV2 0.0
NASNet 000
1.0
1‘,,»\ UL \"'ll“lr
il mﬂ"mf MIIHP,‘MHWI AT
0.9 |r"||, i
0.8~‘
0.7 4
0.6
—— Validation
—— Train
° 0 1000 2000 3000 4000

Figure 3. Validation and training accuracy for the ResNetV2
training. Note that after approximately 1000 iterations, the
gains are marginal. Because the cost of training the classifica-
tion layer is inexpensive compared with training the entire
model, we can afford to let the model train for many steps.



Downloaded 07/31/19 to 68.97.115.26. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Figure 4 shows representative images from the test when assigning the classes, we can define an accept-
data set classified using the retrained ResNetV2. Be- able threshold to accept a given prediction. Choosing
cause the CNN provides different levels of probability different values for this threshold value is also a com-

monly used tool to analyze the performance of a clas-
sifying algorithm. Ferri et al. (2003), Everson and
Fieldsend (2006), and Fawcett (2006) give details of

Table 3. Precision, recall, F1 score, and support for the receiver operating characteristics graphs that arise

the classification performed by the retrained when performing such an analysis. In this paper, we
ResNetV2. choose the threshold to be 0.30; this means that we ac-

cept the image classification given by the CNN when
any possible class receives a probability higher than
0.30. This value was chosen so that all images would
01 1.00 1.00 1.00 3 be classified, even if the CNN is not very confident.

Class Precision Recall F1 score Support

02 1.00 0.33 0.50 3 Such a threshold value is enough for our model to as-
03 0.80 1.00 0.89 4 sign a class for each one of the images in the test set.
04 1.00 1.00 1.00 3 Figure 5 shows the confusion matrix generated when

the test set is classified by the retrained ResNetV2. Pre-
05 0.67 1.00 0.80 4 . . .

cision, recall, F'1 score, and support as well as weighted
06 0.75 0.75 0.75 4 precision, recall, and F1 score are presented in Table 3.
07 0.89 0.73 0.80 11 All these metrics range from 0 (poor performance) to 1
09 0.90 0.95 0.92 19 (good performance). Precision and recall indicate how
10 0.57 1.00 0.73 4 often the model was correct predicting the analyzed
13-14 0.99 0.95 0.97 79 class. Precision is defined as the ratio of true positives
16-17 0.94 0.94 0.94 17 and the sum of true positives and false positives. Recall
Weighted 0.93 0.92 0.92 is defined as the ratio between true positives and the

sum of true positives and false negatives. F'1 is the har-

Note: The last row shows the weighted values for each one of the metrics. monic average of precision and recall.
c)
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Figure 4. Examples of the classification performed by the retrained ResNetV2. (a) The CNN very confidently assigned the image
to the correct class (class 07, Nodular packstone-grainstone). (b) Again, the CNN provides a high level of confidence to assign the
image to the correct class (class 10, bioturbated mudstone-wackestone). (¢) The CNN still assigns the image to the correct class,
but with lower confidence (class 01, chert breccia in the greenish shale matrix is the correct class). (d) The image shows an
example in which the CNN failed to correctly assign the class. The CNN assigned a higher confidence for class 03 (skeletal mud-
stone-wackestone, with 0.45 probability), whereas the correct class is actually class 06 (bedded skeletal peloidal packstone-
grainstone, 0.29 probability, the yellow arrow in the image). Setting a confidence threshold of 0.50 or greater would identify this
classification as “ambiguous,” calling for human intervention.



Downloaded 07/31/19 to 68.97.115.26. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Discussion

To our knowledge, this is the first study conducted
using slabbed core image classification using CNNs.
With comparable metrics for all the CNN architectures
tested, we observe a high level of concordance (and
confidence) between the expert labeled data and the
classifications suggested by the CNNs. Using the meth-
odology that we presented in this paper, a user can ob-
tain the probability that a standardized picture of a core
belongs to one of the described lithofacies even if the
user has little experience with the core description.
This capability can not only accelerate the interpreta-
tion of large data volumes by using nonexpert technol-
ogists, but it can also identify inconsistencies in the
interpretation between different experts working on
the same data. This potential inconsistency suggests
that we construct a human interpreter confusion ma-
trix comparing multiple interpretations of the same
core. This confusion matrix can then be constructed
from a single interpreter and the CNN. Identification
of such inconsistencies within teams composed of
members with different backgrounds promises to
facilitate data comprehension and accelerate project
advancement. Even though we use a relatively small
database of images, Figure 5 and Table 3 show that
the retrained ResNetV2 achieved high levels of accu-
racy. The remaining three architectures’ (InceptionVs,
MobileNetV2, and NASNet) results also show high lev-
els of accuracy (Appendix B).

When performing a core description, a human inter-
preter relies on texture, structures, and pattern analy-
sis to define the lithofacies being analyzed. In this
manner, the classification performed by CNNs some-
what mimics human classification. Nonetheless, when
a geologist is describing a rock, other rock properties
(not visual properties) can be analyzed by the inter-
preter. Does the mineral react with acid? How hard
is the mineral? Therefore, when using
CNN models, the user needs to remem-
ber that the best result that the CNN can
provide is only the best result achieved
by a visual (and strictly nontactile)
analysis of an image. We can, however,
modify the deep-learning architectures
to be multidimensional. Especially, the
digital images can be augmented by

a)

True label

13.14{ 000 000 000 000 0.01 000 0.0

16 174 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Although there are visual similarities between the
carpet and the images in the training set, the resulting
classification demonstrates the necessity of quality con-
trolling CNN output.

Because the CNN models are trained with expert la-
beled data, such expertise is abstractly maintained in
the different parameters optimized in the CNN. Conse-
quently, we can absorb interpretations performed by
different specialists and save them in unique CNN
models. Such a data capture would provide a way of
sharing geologic knowledge across great distances.

Normalized confusion matrix

1.0
01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

024 0.00 033 000 0.00 000 000 033 033 000 0.00 0.00

034 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

054 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6

064 0.00 000 025 0.00 0.00 0.00 0.00 0.00 0.00 0.00

074 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.18 0.00 0.00

0.4

094 0.00 000 0.00 0.00 0.05 0.00 0.00

104 0.00 0.00 0.00 0.00 0.00 0.00 0.00
to.z

& & > P FF QP N A
DN o4
Predicted label

Figure 5. Normalized confusion matrix of the retrained Re-
sNetV2 applied to the test set. Refer to Table 1 for the class
lithofacies and the number of images for each class.

measures of resistivity, density, X-ray
fluorescence, Fourier transform infra-
red spectroscopy, and other measures 09 1
to produce an even more powerful tool.

In the architecture that we used here,
any image used as an input to the CNN
classifier will predict that the image be- 021
longs to one or more of the CNN’s

Class
o O o
s 0o

learned classes. This means that the
CNN will never declare the image to
be none of the predefined classes. Fig-
ure 6 shows an image of a carpet classi-
fied by the retrained ResNetV2.
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000 025 050 075 1.00
Probability

Figure 6. (a) A photographic image of a carpet classified by the ResNetV2 and
(b) examples of images from the class 4 training data set. The CNN is 70% con-
fident that the carpet belongs to class 4 — Skeletal grainstone.
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Geoscientist working in challenging (or unfamiliar)
geologic settings can access the knowledge of a wide
range of experts through the use of properly trained
CNNs.

Human geoscientists will not be replaced by machine
learning. Clearly, expert geoscientists are required to
construct the labeled training data. Expert scientists
are also required to quality control the prediction, per-
haps manually examining all predictions that exhibit
less than a threshold of confidence. Emulating the ap-
proach of human geoscientists who subliminally apply
models of deposition and diagenesis while examining
the core will be very difficult. Linking different litholo-
gies within a parasequence is a part of human interpre-
tation. At the present, computers have a difficult time
with such geoscientific image segmentation problems.

Suggestions for further study

During the course of the work, we had access to pic-
tures of a single core, and we presented the results that
we obtained using modern CNN models for classifica-
tion for that single interpreted core. We envision that
the process used in this paper can be used to greatly
accelerate the interpretation of multiple cores. Users
can achieve such multicore interpretation result with
a more iterative approach: An experienced expert la-
bels the key lithofacies of the region; the CNN is then
trained and classifies the remaining cores. The results
of such classification are then evaluated by the expert
— a form of active learning (Settles, 2012; Sener and
Savarese, 2018). If necessary, the user can retrain the
CNN with a now-increased set of labeled images (the
originally expert-labeled images and the new CNN-la-
beled images). In this manner, many miles of core
can be interpreted with lower effort. Several new chal-
lenges can arise when working with historical data of
lesser quality, different formats, with different interpre-
tations, and from different well locations sampling dif-
ferent geology. This paper shows one successful
application of a growing technology; however, different
evaluations need to be addressed for every specific
task. When these extra variables exist, such as poor-
quality data or multiple wells with inconsistent interpre-
tations, it is likely that the performance will be nega-
tively affected.

For this project, we relied on standardized core pic-
tures and a simple sliding window to extract images.
Therefore, it is reasonable to assume that some images
will show more than one lithofacies. Different ways of
data acquisition can further improve the results of CNN
models.

Conclusion

In this paper, we provide one of the first attempts to
conduct automated core lithofacies classification using
CNNs. The methodology we use does not depend on
specialized bench work and can be applied to existing
images of slabbed cores.

Efforts in data digitization are important initiatives to
preserve scientific knowledge, and the approach we use
here can be improved with information generated from
such endeavors. The development of customized core
databases can be of extreme value for companies
and researchers that have work that is dependent on
core descriptions. When operators need to reevaluate

prospective plays — due to new acreage acquisition
or to update the geologic knowledge with modern geo-
logic information — thousands of feet of expensive

slabbed core might be overlooked due to time and per-
sonnel constraints. Further development of the project
that we present here will ultimately speed up the proc-
ess of core description with the use of slabbed core-spe-
cific CNN models.

Using the technology that we applied in this paper,
an experienced geologist describes a small percentage
of the core using traditional, careful, and standardized
“visual and tactile” lithologic description and then uses
that information to train a CNN. The trained CNN can
then classify the remaining core — the geologist can
quality control the results and will have more time to
work on the necessary details. The methodology that
we used here can be used to standardize interpretation
in large collections of core data. Because interpretation
might be subjective, teams can choose to maintain “the
best” interpreter knowledge abstractly captured by a
CNN trained with data labeled by the most experienced
geologist or to train a CNN using only new concepts. A
task that would be infeasible now (having different spe-
cialists interpreting miles of core) can be achieved with
the help of CNN models.
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Appendix A

CNNs intuitions
Although deep learning and CNNs seem to have be-
come buzzwords, the intuition of how these techniques
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work might be obscured for some of us. Although
CNN models are becoming increasingly complex, the
building blocks are very familiar to geoscientists. Con-
volutions — performed in one, two, three, or n-dimen-

sions — are the same operations we
become familiarized when dealing with
a seismic wavelet convolving with the
earth’s reflectivity series. Many seismic
attributes are also based on convolu-
tions. Many apps and software offer the
user the option to extract the edges of
an image — or to blur such an image.
These are just a few of many convolu-
tion operations that we commonly
encounter. Our objective with this ap-
pendix is to give a short and informal
overview of the essentials of CNNs.

When using CNNs for image classifi-
cation tasks, the models use the resulted
filtered image (an image convolved with
a convolution kernel) as input to an-
other operation (or the next layer).
The deep-learning nomenclature comes
from this pattern — the input of a layer
is used as the input to the next one.

In this appendix, we have an easy
task for a CNN: to classify three classes
of very distinct images (Figure A-1).
Each class has 10 examples of RGB
images 180 x 180 pixels that were ex-
tracted from pictures of a slabbed core
in the Mississippian limestone and chert
reservoirs. Geologists can easily tell the
difference between the classes and could
probably correctly name the lithofacies
even with these low-resolution images.
The CNN actually needs the interpreter
(the domain expert) to correctly label
the images and separate them — in

our simple example we are calling the lithofacies class
1, class 2, and class 3.

We design a not-so-deep CNN shown in Figure A-2.
This CNN is composed of six layers: convolution, max

Convolution 1 Max pooling
— —_—
3x3x3 2x2
Strides: 1x 1 Strides: 1x 1
89x89x6
180x180x 3 178 x178x6
L Convolution 2 Max pooling Flatten Dense
— —
3x3x6 2x2
Strides: 1x 1 Strides: 1 x 1 Softmax
8989 x3 43x43x3

5547 x1

Figure A-2. A simple CNN. The golden hexagons show images displayed in the
next figure. In this toy example, a set of images with a size of 180 x 180 pixels is
input to a CNN with six layers. The first layer is a set of six convolution kernels
with a size of 3 X 3 X 3. The value of the third dimension is the same as the value
of the number of channels of the previous layer. Note that after the first convo-
lution, the object reduces in height and width, but its number of channels in-
creases. For the next step, a max pooling (an operation in which we extract
the maximum value of a submatrix of the input) further reduces the height
and width. This “thinner” object is then input to another convolution layer fol-
lowing by another max pooling. After the last max pooling, the layer is then flat-
tened, meaning that all its values are stored as a single vector. The last layer uses
as input all the values of the flattened vector to compute the probability that the
input image belongs to one of three classes. Note that with this architecture,
whatever is used as input will output some probability of belonging to one of
the three classes. The kernels of the convolutional layers and the softmax of
the last layer are the parameters that need to be trained for this neural network.
In this example, we need to train a total of 16,977 parameters. For convolution 1,
we need to train 3 X 3 X 3 X 6 + 6 (bias) = 168 parameters and for convolution 2,
165 parameters. The dense layer is responsible for 16,644 parameters that need
training. These ratios (convolution and dense parameters) should not be used as
a comparison with more complex CNNs such as the one we used in the main
body of this study; truly deep CNN will have many more convolution parameters
to be optimized.
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Figure A-1. Our very simple set of images used in a toy CNN example. We highlighted the image in class 3 that is used as an
example in Figure A-3. Because all images are very similar in their set, this is an easy task for CNN models and we can achieve high

accuracy with a simple network.

SF34 Interpretation / August 2019




Downloaded 07/31/19 to 68.97.115.26. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

pooling, convolution, max pooling, flatten, and dense
layers. The pooling layer extracts statistics of submatri-
ces of the input data. In this case, we are using maxi-
mum (max); therefore, these operations look at a
submatrix of the input and keep the maximum value
of that submatrix to be the input for the next layer.
The flatten layer restructures the data to be a single col-
umn vector. The dense layer is the traditional neural
network composed of a linear transformation followed

Flatten-dense

Probability results:

I > D Class 1: 0.00

Class 2: 0.00
Class 3: 1.00

Figure A-3. Simplified workflow and the resulting images ex-
tracted from different layers when the figure on the top left is
input to the CNN shown in Figure A-2 after training. The
golden hexagons can be used for easier reference between
this figure and Figure A-2. Note how the set of weights (the
convolutional kernels) learned by this CNN learns how to
identify edges in the input image. This is a common behavior
in CNNs when used with natural images (Yosinski et al., 2014).
In a sense, much as a trained geologist, the CNN learns how to
identify different patterns. Note that the image in frame a is a
simple decomposition of the original image; therefore, we
choose to display them as the red-green-blue color. The im-
ages in frames b and c are results of different “filters” applied
in different steps of the CNN and are composed of a single
channel (the convolution kernels have different sizes as
shown in Figure A-2). We choose to display these images
in grayscale.

by a nonlinear transformation (softmax in this case)
that are densely connected, i.e., each one of the ele-
ments is connected to each one of the neurons in the
upcoming neuron. The output of the dense layer is
the probability that an image belongs to classes 1, 2,
or 3.

During training, all of the randomly started param-
eters are optimized to reduce the cost function. The
cost function is commonly defined as the sum of the
loss/error of an image being assigned in the wrong
class in the training set. This simple example has only
a training set; we did not set the validation and test set
as would be appropriate for a real machine-learning
methodology. Therefore, after training, we have this
set of parameters that can take an image, perform dif-
ferent operations on that image, and come up with a
value of how probable the image belongs to one of
the training classes. This image transformation is dis-
played in Figure A-3. Note that the CNN very confi-
dently sets the image as belonging to class 3 (with
1.00 confidence). This result can be achieved because
the classes are very well-defined, and the images have
low variance (all images in the same class are very sim-
ilar to each other). As can be seen in Figure A-3, this
small CNN trained convolutional kernels that are very
good to detect edges. If we wanted to use transfer
learning with this CNN, we would “delete” the last
layer (softmax, gold hexagon d) and add a new clas-
sification layer.

Appendix B
InceptionV3, MobileNetV2, and NASNet metrics

In this appendix, we show the metrics for the re-
trained CNN models not presented in the main text.

Table B-1. Precision, recall, F1 score, and support for
the classification performed by the retrained
InceptionV3.

Class Precision Recall F1 score Support
01 0.75 1.00 0.86 3
02 0.33 0.33 0.33 3
03 0.50 0.75 0.60 4
04 0.67 0.67 0.67 3
05 0.60 0.75 0.67 4
06 0.50 0.75 0.60 4
07 0.82 0.82 0.82 11
09 0.75 0.79 0.77 19
10 0.80 1.00 0.89 4
13-14 0.96 0.86 0.91 79
16-17 0.88 0.88 0.88 17
Weighted 0.85 0.83 0.84

Note: The last row shows the weighted values for each one of the metrics.
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InceptionV3

Training and validation accuracy results for each
step of the gradient descent are presented in Fig-
ure B-1. Figure B-2 shows the confusion matrix gener-
ated when the test set is classified by the retrained
InceptionV3. Precision, recall, F1 score, and support
as well as weighted precision, recall, and F1 score
are presented in Table B-1.

MobileNetV2

Training and validation accuracy results for
each step of the gradient descent are presented in
Figure B-3. Figure B-4 shows the confusion matrix

Table B-2. Precision, recall, F1 score, and support for
the classification performed by the retrained
MobileNetV2.

Class Precision Recall F1 score Support
01 1.00 0.67 0.80 3
02 0.40 0.67 0.50 3
03 0.75 0.75 0.75 4
04 0.67 0.67 0.67 3
05 0.75 0.75 0.75 4
06 0.57 1.00 0.73 4
07 0.90 0.82 0.86 11
09 0.75 0.79 0.77 19
10 0.80 1.00 0.89 4
13-14 0.96 091 0.94 79
16-17 0.94 0.88 0.91 17
Weighted 0.89 0.87 0.87

Note: The last row shows the weighted values for each one of the metrics.

Table B-3. Precision, recall, F1 score, and support for
the classification performed by the retrained NASNet.

Class Precision Recall F1 score Support
01 0.75 1.00 0.86 3
02 0.67 0.67 0.67 3
03 0.50 0.75 0.60 4
04 0.60 1.00 0.75 3
05 0.43 0.75 0.55 4
06 0.50 0.75 0.60 4
07 0.69 0.82 0.75 11
09 0.77 0.68 0.72 19
10 0.80 1.00 0.89 4
13-14 0.93 0.81 0.87 79
16-17 0.81 0.77 0.79 17
weighted 0.82 0.80 0.80

Note: The last row shows the weighted values for each one of the metrics.
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generated when the test set is classified by the re-
trained MobileNetV2. Precision, recall, F1 score, and
support as well as weighted precision, recall, and
the F1 score are presented in Table B-2.

NASNet
Training and validation accuracy results for each
step of the gradient descent are presented in

oig 1 ‘ “‘ ‘( | ;" “ ‘l' " ““ "ﬂ? ! MN‘M u '\1"\‘,’ 'w{ .‘,N“ “l‘\w q' ‘lw
il
i

Figure B-1. Validation and training accuracy for the Incep-
tionV3 training. Note that after approximately 2000 iterations,
the gains are marginal. Because the cost of training the clas-
sification layer is inexpensive, we can afford to let the model
train for many steps.
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Figure B-2. Normalized confusion matrix of the retrained In-
ceptionV3 applied to the test set. Refer to Table 1 in the main
text for class lithofacies and the number of images for each
class.
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Figure B-5. Figure B-6 shows the confusion matrix gen-
erated when the test set is classified by the retrained
NASNet. Precision, recall, the F1 score, and support
as well as weighted precision, recall, and the F1 score
are presented in Table B-3.

0.7 1
0.6 1
—— Validation
—— Train
0.5 T T T T
0 1000 2000 3000 4000

Figure B-3. Validation and training accuracy for the Mobil-
NetV3 training. Note that after approximately 1000 iterations,
the gains are marginal. Because the cost of training the clas-
sification layer is inexpensive, we can afford to let the model
train for many steps.
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Figure B-4. Normalized confusion matrix of the retrained
MobileNetV2 applied to the test set. Refer to Table 1 in the
main text for class lithofacies and the number of images
for each class.
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Figure B-5. Validation and training accuracy for the NASNet
training. Note that this architecture takes longer to increase
its accuracy.
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Figure B-6. Normalized confusion matrix of the retrained
NASNet applied to the test set. Refer to Table 1 in the main
text for the class lithofacies and the number of images for
each class.
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