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Summary 

 

To map the properties of seismic facies, we introduce 3D 

nonparallelism attributes that highlight lateral variation of 

parallelism of reflectors and their energy. The 
nonparallelism attributes provide quantitative measures of 

reflector dips by extracting statistical components of the 3D 

seismic amplitude volume. Many seismic attributes 

computed by a fixed window, exhibit a “salt and pepper” 
classification, which is more often seen on karst collapse 

features, salt dome, and mass transport complex facies. In 

our workflow, we also propose a 3D structure-oriented 

adaptive Kuwahara filtering technique to precondition 
seismic attributes for subsequent machine learning 

classification. The new adaptive Kuwahara filtering method 

is more efficient than the original 3D Kuwahara filtering to 

increase facies discrimination of seismic attributes. We 
validate the statistic measure of reflector dips and statistic 

measure of seismic spectrum to map karst collapse facies. 

 

Introduction 

 

Dip attribute, measured reflector dipping angle, is significant 

to differentiate one complex deposition facies from 

surrounding facies. When asked “which dip is useful for 
machine learning in differentiating seismic facies?”, it could 

be some kind of continuity dip measurement rather than a 

specific dip or a dip component. The first statistical 

measurement of reflector dips was first proposed by Barnes 
(2003) and measures “parallelism” (or more precisely, 

deviation from parallelism) which is estimate by the standard 

deviation of vector dip. Reflector convergence and reflector 
rotation are also the statistic measures of structure (Marfurt 

and Rich, 2010). Lateral changes in reflector dips can be 

measured by curvature or aberrancy, while vertical changes 

in dips are measured by reflector convergence. In both cases, 
the strength of these anomalies rather than their strike or 

azimuth is the differentiating factor. 

 

Another kind of seismic attributes in seismic facies analysis 
is the amplitude attribute, which measure the magnitude or 

strength of reflectors in seismic amplitude volumes. 

Derivative approaches to measure amplitude variability are 

mean amplitude, root mean square (RMS) amplitude, and 
average amplitude. By Employing Hilbert Transform, one 

can compute instantaneous envelope and frequency, 

amplitude volume transform, and other complex trace 

amplitude attributes to measure amplitude vertical variation. 
For measuring lateral variation of amplitude, an alternative 

approach is to compute amplitude gradient along inline- and 

crossline-axis. When asked “which amplitude is useful for 

machine learning”, it could be the amplitude attribute that 

can exhibit either sharp edges of different facies, or strong 
amplitude contrast between each facies. Qi et al. (2014) 

found that the coherent amplitude gradients and its second 

derivatives of the coherent amplitude gradient are sensitive 

to subtle lateral amplitude discontinuities such as small (less 
than 1/4 wavelength) karst collapse features, and joints. 

 

3D image process filters are promising for lateral resolution 

improvement of seismic attributes. For seismic attribute 
image processing, Al-Dossary and Marfurt (2007) proposed 

a multistage median filter and compare with other statistic 

filters through noise rejection of curvature attributes. Qi et 

al. (2016) employed a structure-oriented Kuwahara filter to 
smooth interior textures and sharpen edges of coherence, and 

GLCM texture attribute images, which showed advanced 

classification with the Kuwahara filtered attribute rather than 

unfiltered attributes. 
 

Although there are many seismic facies classification 

techniques, instead of comparing which algorithms are 

better, in this paper we focus on the input attributes that are 
significant to improve facies classification. We implement 

data adaptive Kuwahara filtering to nonparallelism attributes 

in order to smooth interior materials of facies that gives rise 

to “blocked” facies. The filter also results in sharpen 
boundaries of different facies and increased resolution of 

facies analysis. We validate our new attribute by applying 

those attributes to a machine learning algorithm on real 

seismic datasets. 
 

Statistical measurements of structure dip and energy 

gradient vectors 

 

Let’s assume we have a volumetric estimate of dip in inline 

direction (x-axis), p, and crossline direction (y-axis), q, 

which are given as: 

𝑝 =
𝜕𝑡

𝜕𝑥
,                                     (1) 

and 

𝑞 =
𝜕𝑡

𝜕𝑦
,                                     (2) 

Then, in a J-sample analysis window, we can find the energy 

weighted (e.g. total energy, e) standard deviation of vector 

dip about its mean to be: 

𝜎𝑑𝑖𝑝 = {
∑ 𝑒𝑗[(𝑝𝑗−𝜇)(𝑝𝑗−𝜇)+(𝑞𝑗−𝑣)(𝑞𝑗−𝑣)]
𝐽
𝑗=1

∑ 𝑒𝑗
𝐽
𝑗=1

}

1/2

,     (3) 

where the weighted mean values are: 

𝜇 =
∑ 𝑒𝑗𝑝𝑗
𝐽
𝑗=1

∑ 𝑒𝑗
𝐽
𝑗=1

,                               (4) 

and 

𝑣 =
∑ 𝑒𝑗𝑞𝑗
𝐽
𝑗=1

∑ 𝑒𝑗
𝐽
𝑗=1

.                                (5) 
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Nonparallelism attributes 
 

The energy gradient measures the lateral variation in seismic 
energy (or alternatively RMS amplitude) along structural 

dip. For relatively conformal reflectors, the energy gradient 

is often a measure of thinning or thickening, or of the lateral 

change in impedance contrast between strata. We wish to 
differentiate such “organized” lateral changes in energy 

from chaotic changes, such as seen within salt domes, karst 

collapse, gas chimneys, overpressured shales, and some 

areas of mass transport deposits. In this case, we will not 
weight the results. The energy deviation of volumetric 

estimate of inline energy gradient, g, and crossline energy 

gradient, h, is: 

𝜀𝑒 = ∑ [(𝑔𝑗 − 𝑔̅)(𝑔𝑗 − 𝑔̅) + (ℎ𝑗 − ℎ̅)(ℎ𝑗 − ℎ̅)]𝐽
𝑗=1 ,   (6) 

where 𝑔 =
1

𝐽
∑ 𝑔𝑗
𝐽
𝑗=1 , and ℎ =

1

𝐽
∑ ℎ𝑗
𝐽
𝑗=1  are the statistical 

mean of inline energy gradient, g, and crossline energy 

gradient, h. Then, the covariance of vector dip and energy 

𝐶𝑐𝑜𝑣 can be defined as: 

 

𝐶𝑐𝑜𝑣 = {
∑ {[𝑒𝑗 𝑛̅(𝑝𝑗−𝜇)(𝑔𝑗−𝑔̅)]

2
+𝑒𝑗𝑛̅(𝑞𝑗−𝑣)(ℎ𝑗−ℎ̅)}

2
𝐽
𝑗=1

∑ 𝑒𝑗
𝐽
𝑗=1

}, (7) 

where vector  𝑛  is the normal vector of dip vectors and 

shown as: 

𝑛𝑗̅ = [
1

(𝑝𝑗−𝑝̅)(𝑞𝑗−𝑞̅)+1
]
1/2

,                         (8) 

where 𝑝 and 𝑞 is the statistical mean of vector dips p and q. 

Equation 3, 6, and 7 are the nonparallelism attributes, which 

measure reflector’s both nonparallelism and strength along 
structure dips. Because of subtraction of energy-weighted 

mean, the deviation of vector dip (Equation 3) rather than 

coherence or the GLCM texture attributes, is more sensitive 

to the reflectors that are compacted closely or combined with 
chaotic reflections. The deviation of volumetric energy 

gradient indicates lateral variation of seismic amplitude, 

while the covariance of vector dip and energy gradient 

highlights deformed reflectors that are chaotic, high 
amplitude, and rotated. Among these three attributes, the 

deviation of vector dip and energy exhibits. 

 

Data Adaptive Kuwahara Image Processing 

 

When used for seismic facies analysis, the fixed window 

Kuwahara window size needed for one facies may be 

inappropriate for a second facies. Likewise, as seismic 
resolution decreases with depth, a fixed window size may 

oversmooth shallow features and undersmooth deeper 

features. To address this shortcoming, we modify the 

analysis window of the 3D structure-oriented Kuwahara 
filter to be adaptive along lateral and vertical axes. Lin et al. 

(2014) used an adaptive window for coherence computation 

that define both the lateral and vertical size of the analysis 

window based on smoothed peak frequency. The traditional 
5×5×5-voxel 3D Kuwahara filter searches 27 overlapping 

sub-windows and applies the median m in the overlapping 

window that has the smallest mean-normalized standard 
deviation σ/μ.  

 

 
Figure 1. Cartoon of 3D adaptive Kuwahara filtering. The 5×5×5 or 

125-sample analysis window is centered about the red voxel. The 

cartoon shows only nine of the 3×3×3 or 27 sub-windows that 

contain the red cube. The size of sub-window is adaptive, and 

increases in size with decreasing seismic resolution, defined by the 

local frequency of the seismic amplitude. The output is the median 

of the sub-window that has the smallest mean-normalized standard 

deviation. 

 
We follow Lin et al. (2014) and Qi et al. (2015), and define 

the size of the adaptive Kuwahara searching window by the 

smoothed average power spectrum at each voxel. The 

average power spectrum is  

𝑃𝑎𝑣𝑔(𝑡, 𝑓) =
1

𝐽(2𝐼+1)
∑ ∑ 𝑢𝑗

2(𝑡 + 𝑖∆𝑡, 𝑓)𝐼
𝑖=−𝐼

𝐽
𝑗=1 ,      (9) 

where t is time sample, I is half length of the vertical analysis 

window, and 𝑢𝑗 is the spectral magnitude of the jth trace. The 

average power spectrum is averaged over all traces and 2I+1 

vertical samples. The peak frequency at time t is the 
frequency at which is associated with the maximum power 

spectrum. The resolution of spectrally balanced data is 

determined not only by the peak frequency, but also by the 

highest useable frequency. Suppose that the average power 
spectrum of the analysis points with its H neighboring voxels 

is f, first of all, we need to define the reference frequency 

𝑓𝑟𝑒𝑓 of the adaptive analysis window at a given time t: 

𝑓𝑟𝑒𝑓 (𝑡) = 𝑓𝑝(𝑡) −
(∑ 𝑃𝑎𝑣𝑔

𝐹𝑝
𝑓=1

(𝑡,𝑓)−𝑝 ∑ 𝑃𝑎𝑣𝑔(𝑡,𝑓)
𝐹
𝑓=1 )

𝑃𝑎𝑣𝑔(𝑡,𝐹𝑝)
𝛥𝑓,         (10) 

where p is a percentile of the average power spectrum (in 

our work P=70%), fP is the corresponding frequency. ∆𝑓 is 

the frequency increment between analysis window sizes in 

the computation of the average time-variant power 

spectrum. Then, the window height ΔT of the adaptive 
analysis window at a given time t can be defined as 
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Nonparallelism attributes 
 

𝛥𝑇(𝑡) =
𝑏𝑃

2𝑓𝑟𝑒𝑓(𝑡)
,                         (11) 

Parameter b=0.01 is a fixed pre whitening factor. Using a 

reference velocity, v(t), the two-way travel time window 

height ΔT corresponds to a spatial vertical height ΔZ,  

𝛥𝑍(𝑡) = 𝑣(𝑡)
𝛥𝑇(𝑡)

2
,                                (12) 

Figure 1 shows a cartoon of Kuwahara overlapping windows 

containing the red analysis point.  In each window we 
compute the median m, the mean μ, and the standard 

deviation σ. The result of the Kuwahara searching window 

𝑤𝑙  at an analysis point t is: 

𝑑 = 𝐴𝑟𝑔( min
𝑑∈{𝑤𝑙|𝑙∈1,2,3…𝐿}

(
𝜎𝑑

𝜇𝑑
)).                  (13) 

Thus, the filtered attribute will be the value of 𝑚𝑑 associated 

with the window having the minimum value of normalized 

standard deviation 
𝜎𝑑

𝜇𝑑
. 

 

 
Figure 2. Cropped vertical slices through the deviation of vector dip 

attribute, (a) before Kuwahara filtering, (b) after 3D Kuwahara 

filtering with a fixed 3×3×3 analysis window, (c) after 3D Kuwahara 

filtering with a fixed 5×5×5 analysis window, and (d) after adaptive 

Kuwahara filtering where the window size varies between 3×3×3 

and 5×5×5.  

 

The 3D structure-oriented adaptive Kuwahara filter searches 
all windows containing a given voxel. The filtered attribute 

will have a smoothed facies that is shown as a blurred 

internal texture, and sharpened edges between each facies. 

The smoothness is defined by local average spectrum. The 
result of 3D adaptive Kuwahara filtering may somewhere 

look like the result of the fixed-window Kuwahara filtering 

computed with a large analysis window. However, one of the 

advantages is that the computation cost of the adaptive 
window is less than a large fixed window, because not any 

sub-windows should be equally large.  

 

Figure 2 shows an example of application of the 3D adaptive 
Kuwahara filter to the deviation of vector dip in chaotic 

features delineation. We first apply the original 3D 

Kuwahara filtering results computed with a fixed 3×3×3 

analysis window, which is shown in Figure 2b. Note that red 
polygon indicates chaotic features, and the write color 

texture indicate another feature. Kuwahara filtering smooths 

the internal details of each features and also sharpens the 

boundary. Figure 2c shows the original 3D Kuwahara 
filtering result computed with a fixed 5×5×5 analysis 

window, and Figure 2d shows the result of our 3D adaptive 

Kuwahara filter. Note that, the original Kuwahara filtering 

with a large window results in a better internal material, but 
a blurred edge. However, because using adaptive windows 

defined by local average spectrum, the new adaptive 

Kuwahara filtering not only smooths low frequency internal 

textures of chaotic features, but also sharpens high frequency 
and energy chaotic feature boundaries. 

 

 

 
Figure 3. Time slices at t = 0.72 s through (a) the seismic amplitude 

volume, (b) dip deviation, (c) energy deviation, and (d) covariance 

of dip and energy, mapping karst collapse features on Fort Worth 

Basin. Note yellow polygons indicate karst collapse features that are 

also painted facies of interest for this dataset. 

 

Application 

 
Our test dataset was acquired from the Fort Worth Basin by 

using 16 live receiver lines forming a wide-azimuth survey. 

The dataset was time migrated with a 55× 55 ft bin size to 

image the Barnett Shale and the underlying Ellenburger 
carbonate formation, which is characterized by karst and 

solution collapse features. Figure 3a shows the time slice 

through the seismic amplitude volume, where carbonate is 

the dominant formation. 
 

Figure 3b-3d show the proposed three nonparallelism 

attributes. The deviation of vector dip exhibits karst edges 

and reflector flexures between the layers of Barnett Shale 
and Ellenburger formation. The deviation of energy gradient 

highlights high energy collapse features and small karst 
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Nonparallelism attributes 
 

features, which of size is smaller than ¼ wavelength and 
showing as scatter lighting dots on Figure 3b. The 

covariance of vector dip and energy exhibits incoherent karst 

edges and faults that are like anomalies in coherence. Figure 

4 shows the nonparallelism attributes after the 3D structure-
oriented adaptive filtering. Note that the karst collapse facies 

is piecewise smoothed. Compared with original attributes, 

the contract between karst facies and carbonate facies is also 

increased. Figure 5a shows the generative topographic 
mapping (GTM) classification of karst collapse with 

nonparallelism attributes, and spectral bandwidth, GLCM 

entropy, GLCM variance, spectral roughness, as input. 

Figure 5b shows the GTM classification with the same 
attributes but after adaptive Kuwahara filtering. Note that 

Figure 5b better exhibits karst facies than Figure 5a, which 

is much easier for automatic computer segmentation. Figure 

6 shows the karst collapse probability volume computed 
from the workflow proposed by Qi et al. (2016). 

 

 

 
Figure 4. Time slices at t = 0.72 s through (a) dip deviation, (b) 

energy deviation, and (c) covariance of dip and energy after the 

adaptive Kuwahara filtering. Note the Kuwahara filtering smooth 

increases discrimination between karst collapse facies and other 

conformal facies. 

 

Conclusions  

 

Not like human interpreters, the computer can detect facies 

edges by fewer voxels. Thus, if there are not sharp edges or 

“salt and pepper” anomalies exist on facies edge, the 
accuracy of computer-assisted classification will be very 

low. We therefore propose the nonparallelism attributes and 

implement 3D structure-oriented adaptive Kuwahara filter to 

smooth interior seismic facies and sharpen edges. The 
adaptive Kuwahara filtering technique performs better than 

the original 3D Kuwahara filter by adjusting the size of sub-

windows for an analysis window, which reduces the 

computation cost and results in sharper edges at reflections 
with a high frequency band such as karst edges, and 

smoother interior at reflections with a low frequency band 

such as chaotic materials. The GTM with the Kuwahara 

filtered attributes allows to cluster facies of interest. 
 

 
Figure 5. Time slices at t = 0.72 s through (a) the GTM classification 

with the attributes as input before Kuwahara filtering, and (b) the 

GTM classification with the adaptive Kuwahara filtered attributes 

as input. Note the GTM classification with the adaptive Kuwahara 

filtered attributes as input exhibits clearer and smoother karst 

collapse facies. 

 

 
Figure 6. 3D karst collapse probability volume co-rendered with 

seismic amplitude computed through the workflow (Qi et al., 2016) 
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