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Abstract
Seismic attributes are a well-established method for highlighting subtle features buried in seismic data in
order to improve interpretability and suitability for quantitative analysis. Seismic attributes are a critical
enabling technology in such areas thin bed analysis, 3D geobody extraction, and seismic geomorphology.
When it comes to seismic attributes, we often suffer from an "abundance of riches" as the high
dimensionality of seismic attributes may cause great difficulty in accomplishing even simple tasks. Spectral
decomposition, for instance, typically produces 10's and sometimes 100's of attributes. However, when
it comes to visualization, for instance, we are limited to visualizing three or at most four attributes
simultaneously.

My co-authors and I first proposed the use of latent space analysis to reduce the dimensionality of seismic
attributes in 2009. At the time, we focused upon the use of non-linear methods such as self-organizing
maps (SOM) and generative topological maps (GTM). Since then, many other researchers have significantly
expanded the list of unsupervised methods as well as supervised learning. Additionally, latent space methods
have been adopted in a number of commercial interpretation and visualization software packages.

In this paper, we introduce a novel deep learning-based approach to latent space analysis. This method is
superior in that it is able to remove redundant information and focus upon capturing essential information
rather than just focusing upon probability density functions or clusters in a high dimensional space.
Furthermore, our method provides a quantitative way to assess the fit of the latent space to the original data.

We apply our method to a seismic data set from the Canterbury Basin, New Zealand. We examine the
goodness of fit of our model by comparing the input data to what can be reproduced from the reduced
dimensional data. We provide an interpretation based upon our method.

Introduction
Seismic attributes offer a powerful method for improving the interpretation process of seismic data. Seismic
attributes enhance subtle features that are not readily apparent in the data. Seismic attributes extract
information that is 3D in nature and not visible in seismic slices, emphasis coherent information, and allow
for the extraction of spectral information. Barnes (2007) argued for selecting only attributes that were not
correlated with one another. We would tend to disagree, believing that sometimes that difference variations
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in correlated attributes are meaningful. However, even if we restrict ourselves to minimally correlated,
meaningful (task dependent) attributes, we will still have many attributes to choose from.

A common workflow would be to look at a number of different attributes in succession, interpreting
those that made sense or were preferred by the interpreter. More advanced workflows could involve the
multi-attribute visualization using color blending (Marfurt, 2015). Proper use of color blending is especially
challenging, and expert level skills in both seismic attributes and visualization is often required to properly
visual multiple attributes.

Beyond the issues with visualization, a large number of seismic attributes pose considerable mathematical
complications. For instance, in the case of six attributes, mathematically modeling the original data set
requires constructing models in a 6D vector space. Bellman's Curse of Dimensionality (Bellman, 1957;
Wallet, 2013) dictates that all points in high dimensional space become outliers. Therefore, beyond just
concerns around visualization, reducing the dimension of the attribute space is necessary for such tasks as
pattern recognition and other machine learning applications.

Dimensionality reduction and latent space learning
A number of methods for doing dimensionality reduction of multiple attributes exists. The most basic
and most common is attribute selection. As suggested above, the interpreter hand selects the attributes
believed to be most useful. Hand selection has the advantage in that it forces the interpreter to give careful
consideration to the choice of attributes. However, this method ignores the fact that the excluded attributes
likely have useful information which could contribute to the task at hand.

Wallet (2013) proposed an interactive method of constructing linear combinations of attributes. This
method has the advantage that it allowed the interpreter to consider spatial information when combining
attributes. However, this method is labor intensive and relies heavily upon the skill and perception of the
interpreter.

Most current work in reducing the dimensionality of attributes spaces focused upon latent space learning.
The concept behind latent spaces is that while the attribute space is itself high dimensional, most of the
associated probability mass lies in a lower dimensional, hidden or latent space. The challenge is then to
learn a (possibly nonlinear) projection from the higher dimensional space to a lower dimensional space that
preserves the embedded information.

Guo et al. (2006) used principal component analysis (PCA) to combine multiple attributes. This method
is simple, often effective, and widely available in a large number of software platforms. Additionally, the
reliance upon eigenvalue decomposition allows for a quantitative assessment of how much information
was retained by the process. Furthermore, under the assumption of normality (Gaussian distributions), the
retained information is statistically independent. However, PCA is limited by its linear nature, the definition
of variance as information, and the failure of the normality assumption.

Self-organizing maps (SOM) (Coleou et al., 200x; Roy et al., 2013) is a commonly used method
of dimensionality reduction that has been implemented in a number of commercially available seismic
interpretation platforms. Conventionally considered a clustering algorithm, Wallet et al. (2009) view it as
a latent space learning method where a mesh of nodes are deformed to form a lower dimensional surface
approximating the input data in the higher dimensional space. This has proven to be a powerful method for
dealing with multiple attributes. However, SOM lacks a measure of goodness-of-fit or other quantitative
method for assessing the results. Additionally, computational limitations tend to restrict the projected space
to no more than 2D.

There exist a number of other methods for doing latent space learning. Generative topological maps
(GTM) (Wallet et al., 2009) model the latent space as a mesh of Gaussian terms and use an expectation-
maximization (EM) algorithm (Dempster et al., 1977) to optimize the fit. EM results in a probability
(generative) model. However, we are unaware of any work that exploits this fact, and GTM is not currently
available in any commercial software. Diffusion maps (Wallet et al., 2014) performs eigen-analysis on a
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matrix of inter-point similarities. Unfortunately, this method is computationally intractable with modern
computers even when dealing with moderate size seismic data volumes.

In this paper, we propose a new method of latent space learning for visualization of seismic data based
upon a deep learning technique, autoencoders. Autoencoders remove redundant information while retaining
information that is designed to reproduce the original, high dimensional data. In this way, the method
removes information that is repetitive due to correlation while retaining independent information to the
degree possible as dictated by the input data, the retained number of dimensions, and the topology of the
underlying neural network.

Autoencoders
An autoencoder is a type of neural network algorithm aimed to compress (encode) data in an unsupervised
manner (Liou et al., 2014). It consists of two steps: (1) compressing the input data domain into a smaller,
lower-dimension encoded data domain, and (2) decompressing the encoded data domain back to the original
data domain while trying to minimize the difference between the decompressed data and the input data. It
has been widely used for data denoising (Vincent et al., 2010) and image recognition (Makhzani and Fray,
2013).

Key to the functioning of an autoencoder is a choke point, often called the code. The code consists of a
layer with a limited number of nodes. If the output of these nodes allows for the reproduction of the input
data then the information contained in the input data is adequately captured in this code. The network output
at the code is thus a learned latent space for the input data, containing a lower dimensional representation
of the higher dimensional data set.

Commonly, the code is used as an input into a follow-on neural network tasked with pattern recognition
or other similar task. Though not commonly acknowledged in the literature, autoencoders produce a learned
latent space, and the code could be used as input to other methods including clustering, probability density
function (PDF) estimation, and visualization. Our workflow involves using an autoencoder with a 3D code.
Each node of the code is associated with a primary color, red, green, and blue (Figure 1). In this way, the
code can be visualized in image format as an RGB color image.
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Figure 1—An example autoencoder with a three node code. Each node
of the code is associated with a primary color, red, green, and blue.

Application and Discussion
To demonstrate the utility of our approach, we applied it to a seismic survey located on the Canterbury
Basin, offshore New Zealand (Figure 2). The Canterbury Basin underwent multiple stages of rifting, passive
subsidence, and minor uplift since the mid-Cretaceous (Sutherland and Browne, 2003). Sediments in the
basin were deposited in a major transgressive-regressive cycle driven by tectonics (Zhao et al., 2016). During
the middle to late Cretaceous, rifting and subsidence created the major structure of the Canterbury Basin,
allowing a thick layer of clastic, coaly sediment to be deposited (Sutherland and Browne, 2003). From the
late Cretaceous to the mid-Tertiary, the basin entered a transgression and was gradually filled with fluvial
deposits, marine sandstone, and massive mudstones. Toward the mid-Tertiary, organic-rich black shales
were deposited, followed by widespread limestones. The Canterbury Basin contains more than 6000ft of
late Cretaceous to mid-Tertiary deposits (Cozens, 2011). From the late Tertiary to recent time, due to uplift
and minor inversion in the NW, the basin entered a regression. Coarse clastic and shallow marine sediments
were deposited in the northern and western parts of the basin, while mudstone was continued to be deposited
in the eastern part of the basin (Sutherland and Browne, 2003). The seismic survey images the transition
zone of the continental rise and continental slope and contains many paleo-canyons and turbidite deposits
(Zhao et al., 2016).

In term of petrology, primary source rocks are late Cretaceous coaly sediments and mid-Tertiary organic-
rich black shales. Reservoir rocks include late Cretaceous fluvial and marine sandstones, early Tertiary
sandstones, and late Tertiary limestones. Prominent seal rocks include late Cretaceous fluvial mudstones
and Tertiary regional marine mudstones (Sutherland and Browne, 2003).
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Figure 2—This map shows the turbidite channel system for a portion of the Canterbury Basin, New Zealand.
The black rectangle shows the location of the Waka 3D while the red rectangle designates the portion of

the survey used in this work. The colors represent the depth for a portion of the basin. (Zhao et al., 2016).

A Miocene turbidite system was interpreted using a phantom horizon slice tied to a picked continuous
reflector below the turbidite system by Zhao et al., (2016). Figures 3-5 show the seismic data, the picked
horizon, and seismic amplitudes extracted along a phantom horizon 200 ms deeper.

Figure 3—Time slice through the amplitude volume at t=1.88s looking downdip.
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Figure 4—The picked horizon looking downdip.

Figure 5—Phantom horizon slice 200 ms below the phantom horizon through the seismic amplitude volume.
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Six seismic attributes, coherent energy, GLCM entropy, GLCM homogeneity, curvedness, peak
frequency, and peak magnitude, were calculated and extracted for each point in the interpreted horizon.
These were chosen for their known utility in mapping architectural elements in turbidite systems. In
particular:

– Coherent energy is the energy of a 3-trace by 3-trace structure-oriented window of amplitude data,
resulting in high values for strong, coherent reflectors.

– Gray Level Co-occurrence Matrix (GLCM) homogeneity is computed in a 5-trace by 5-trace
structure-oriented window and measures the amplitude smoothness along structure. In contrast,
GLCM entropy measures the randomness is lateral amplitude variation along structure.

– Curvedness is the magnitude of structural curvature, sensitive to both anticlinal and synclinal features,
and is thus sensitive to both negative channel axes and positive channel levees.

– Peak frequency and peak magnitude are two spectral decomposition attributes that are sensitive to
layer thickness.

For each voxel on the horizon, a 6D attribute vector was constructed, and an autoencoder was trained to
reproduce the input data. The underlying neural network consisted of five hidden layers including a code
of three nodes. The original attributes as well as the reconstructed data can be found in Figure 6 Figure 11.
Examining these figures shows that the attributes were accurately recreated albeit with somewhat reduced
contrast. This reduced contrast is a scaling issue, and it in no way impacts the contained information. We
could have chosen to rescale the images, but we did not for the purposes of comparison.

Figure 6—Coherent energy attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed coherent energy attribute.
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Figure 7—GLCM (entropy) attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed GLCM (entropy) attribute.

Figure 8—GLCM (homogeneity) attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed GLCM (homogeneity) attribute.
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Figure 9—Curvedness attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed curvedness attribute.

Figure 10—Peak frequency attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed peak frequency attribute.
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Figure 11—Peak magnitude attribute extracted along the picked horizon. The left image shows
the original attribute and the right image shows the reconstructed peak magnitude attribute.

After examining these images, we concluded that the three modeled latent variables have done a good
job of encoding the input attributes, with the output of the network closely matching the input. Because the
coding retains the information inherent in the data set, the code is a reasonable latent space representation
of the data. The three latent space images based upon the outputs at the code nodes are shown in Figure 12.

Figure 12—Encoded latent attributes. Ordering and definition of black or white being a low value is arbitrary.
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A 3D latent space was chosen to facilitate visualization using an RGB color map. For the purposes of
this visualization, the ordering of the attributes is arbitrary. Also, the output at the code layer ranges in value
from zero to one. Each of these will be used to represent intensity of a color from black to red, green, or blue
respectively. There is nothing inherent about the orientation of these coded attributes, and their values may
just as properly be reversed in the visualization, i.e. black areas in the images could have been displayed in
white and white areas could have been displayed in black with no change in meaning.

Given three images to view as a RGB image, there are 3×2×1 or six different ways to choose the ordering.
Within each ordering, there are 23 or eight different ways to choose the low to high orientation of the images.
Therefore, there are 48 different ways to visualize the output of a three attribute code in image format.
Figure 13 shows eight different orientation sets based upon the ordering in Figure 12 with the left to right
images being display as red, green, and blue respectively.

Figure 13—Eight different images that can be formed from one ordering of the code attributes.
Each one uses a different color encoding as to whether a high or low value is represented as black.
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In making the decision on which ordering and orientation to use, it is legitimate to consider aesthetics
in these choices, i.e. optimizing according to the preference of the interpreter. Even within this decision,
different configurations may tend to emphasis different architectural elements and geological features, such
that it may be useful to use multiple images sequentially. However, our recommendation is to animate
through all choices and to make a decision as to which is best suited according to the preferences of the
interpreter.

Figure 14 shows one of the images from Figure 13 with an interpretation of various architectural elements
shown using different color arrows. The shown image has the red channels color bar reversed such that high
values are black and low values are red. The blue and the green channels are shown such that low and high
values give black and full colors respectively. The interpretation is based upon the authors' knowledge of
seismic geomorphology as well as a careful examination of the 3D profiles of the interpreted architectural
elements. This image shows a great deal of detail and internal structure to the interpreted features. A full
interpretation of this image would integrate well logs that would be used to calibrate to interpretation.

Figure 14—An RGB composite image with a possible interpretation. Red arrows denote a sinuous
channel complex. Yellow arrows denote a possible sand filled channel. Black arrows denote

possible mud filled channels. White arrows denote possibly sand filled lateral accretion packages.
Purple arrows indicate likely fans and lobe deposits. Green arrows denotes a likely levee overbank.
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Conclusions
We have presented a powerful new method for doing latent space visualization of seismic attributes using
a deep learning technique, autoencoders. This method removes redundant information by forcing a concise
encoding of the data that allows for the reproduction of the original information. Encoding allows for
focusing upon preserving information rather than removing supposed noise. This focus upon preservation
is important since the definition of noise is relative to the task for which the data is intended. Unlike SOM,
our method allows for an easy way to assess the goodness of information preservation by comparing the
reproduced data with the input data.

We have demonstrated that our method is effective and produces images with considerable
interpretational value on horizon slices. Future work is necessary to assess its power in 3D applications
including thin bed mapping and 3D modeling of architectural elements. Additionally, the incorporation of
information from well logs would allow for calibration of the seismic data to facies, allowing for a more
complete and definitive interpretation.

In the future, we will compare the results of our workflow to other methods such as PCA and SOM. The
literature currently lacks work comparing different methods of latent space analysis of seismic attributes.
While we can assess strengths and limitations of various methods based upon their assumptions and
implementations, there is no practical knowledge of what methods work best in which situations and for
which tasks.

Finally, we will continue to look for ways to incorporate spatial information into the process. Seismic
data are inherently spatial in nature, and the definition of information should include a component of
spatial variations. Our method, as well as all methods of latent space learning that we are aware of, do not
incorporate spatial information in the learning process.
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