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Abstract

Seismic coherence is commonly used to delineate structural and stratigraphic discontinuities. We generally
use full-bandwidth seismic data to calculate coherence. However, some seismic stratigraphic features may be
buried in this full-bandwidth data but can be highlighted by certain spectral components. Due to thin-bed tuning
phenomena, discontinuities in a thicker stratigraphic feature may be tuned and thus better delineated at a lower
frequency, whereas discontinuities in the thinner units may be tuned and thus better delineated at a higher
frequency. Additionally, whether due to the seismic data quality or underlying geology, certain spectral com-
ponents exhibit higher quality over other components, resulting in correspondingly higher quality coherence
images. Multispectral coherence provides an effective tool to exploit these observations. We have developed the
performance of multispectral coherence using different spectral decomposition methods: the continuous wave-
let transform (CWT), maximum entropy, amplitude volume technique (AVT), and spectral probe. Applications to
a 3D seismic data volume indicate that multispectral coherence images are superior to full-bandwidth coher-
ence, providing better delineation of incised channels with less noise. From the CWT experiments, we find that
providing exponentially spaced CWT components provides better coherence images than equally spaced com-
ponents for the same computation cost. The multispectral coherence image computed using maximum entropy
spectral voices further improves the resolution of the thinner channels and small-scale features. The coherence
from AVT data set provides continuous images of thicker channel boundaries but poor images of the small-scale
features inside the thicker channels. Additionally, multispectral coherence computed using the nonlinear spec-
tral probes exhibits more balanced and reveals clear small-scale geologic features inside the thicker channel.
However, because amplitudes are not preserved in the nonlinear spectral probe decomposition, noise in the
noisier shorter period components has an equal weight when building the covariance matrix, resulting in in-
creased noise in the generated multispectral coherence images.

Introduction
Seismic coherence is a measure of the similarity be-

tween the waveforms or traces in seismic data volumes.
It is a powerful tool to delineate seismic discontinuities
such as faults and stratigraphic edges, incoherent zones
such as the karst collapse and mass transport com-
plexes, as well as areas contaminated by seismic noise.
Bahorich and Farmer (1995) evaluate 3D seismic discon-
tinuity coherence by calculating the maximum crosscor-
relation value with neighboring traces. Marfurt et al.
(1998) develop a more robust coherence estimation
method, which is based on a multitrace semblance algo-
rithm, to improve the noise reduction ability. Gerszten-
korn and Marfurt (1999) introduce another coherence
calculation method, which is realized by calculating

the energy ratio between the dominant eigenvalues and
the sum of all eigenvalues of the covariance matrix, to
improve the lateral resolution. Marfurt et al. (1999) fur-
ther improve the algorithm, which considers the struc-
tural dip effect on the coherence estimation, to provide
better results.

Coherence is generally calculated from the full-band-
width seismic data. The quality of the coherence images
is dependent on the quality of the input seismic data,
which could be improved using structure-oriented filter-
ing (SOF), spectral balancing, and other postmigration
data conditioning methods (Chopra and Marfurt, 2007).
Furthermore, different spectral components often illumi-
nate different geologic features (Partyka et al., 1999),
where Peyton et al. (1998) find that the 36 Hz spectral

1The University of Oklahoma, ConocoPhillips School of Geosciences, Norman, Oklahoma, USA. E-mail: bin.lyu@ou.edu (corresponding author);
jie.qi@ou.edu; tao-zhao@ou.edu; kmarfurt@ou.edu.

2University of Georgia, College of Engineering, Athens, Georgia, USA. E-mail: fangyu.li@uga.edu.
3The University of Oklahoma, ConocoPhillips School of Geosciences, Norman, Oklahoma, USA and Chengdu University of Technology,

Chengdu, China. E-mail: ying.hu-1@ou.edu.
4The University of Texas of the Permian Basin, Geology Program, Odessa, Texas, USA. E-mail: verma_s@utpb.edu.
Manuscript received by the Editor 3 July 2019; revised manuscript received 27 September 2019; published ahead of production 25 October 2019;

published online 20 December 2019. This paper appears in Interpretation, Vol. 8, No. 1 (February 2020); p. T115–T129, 16 FIGS.
http://dx.doi.org/10.1190/INT-2019-0124.1. © 2020 Society of Exploration Geophysicists and American Association of Petroleum Geologists. All rights reserved.

t

Technical papers

Interpretation / February 2020 T115Interpretation / February 2020 T115

D
ow

nl
oa

de
d 

03
/0

8/
20

 to
 6

8.
22

8.
16

8.
19

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2FINT-2019-0124.1&domain=pdf&date_stamp=2019-12-20


component image among the results between 20 and
50 Hz could best delineate the edges of incised valleys
in a Red Fork, Oklahoma Formation. Marfurt and Kirlin
(2001) and Laughlin et al. (2002) show that the thickness
of the channels is strongly related with their spectral
amplitude due to the thickness tuning: A lower peak
frequency indicates thicker formations, whereas a higher
peak frequency indicates thinner formations. Zeng
(2015) interprets the spatial geometry and stacking pat-
tern of seismically thin beds using a seismic sedimentol-
ogy-based approach. An observation was obtained from
a synthetic model that one can characterize a thin-bed
depositional system by a seismic-geomorphologic pat-
tern of the same spatial shape on sequential relative geo-
logic time slices, but the amplitude, phase, and polarity
would vary depending on the estimated seismic wavelet.
Hardage (2009) and Lyu et al. (2018) report that certain
spectral components of the seismic data provide higher
quality results over the other components.

Alaei (2012) and Li and Lu (2014) compute coherence
from different spectral components and corendered
them using red, green, and blue (RGB) blending to illu-
minate channels, caves, and karsts. Wang et al. (2018)
develop a 3D geosteering coherence attribute and use
it to detect deep-formation discontinuities. Wang et al.
(2019) further use the multispectral-phase information
to combine the geosteering coherence and display the
result using RGB blending. Noticing that such analysis
was limited to only three spectral coherence volumes,
Marfurt (2017) and Li et al. (2018) generalize these con-
cepts by introducing what they called multispectral co-
herence, in which the covariance matrices from each
band-pass-filtering bank are added prior to computing
the coherence attribute. The case studies of channel
boundary highlighting (Li et al., 2018) and fault enhance-
ment (Lyu et al., 2019) indicate the effectiveness of
this multispectral coherence method. Qi et al. (2019)
and Chopra and Marfurt (2019) generalize this concept
further to compute coherence not only from multiple
spectral components but also from multiple azimuth and
offset components.

There are several popular seismic spectral decompo-
sition algorithms including the continuous wavelet trans-
form (CWT) (Sinha et al., 2005), matching pursuit
(Castagna et al., 2003; Liu and Marfurt, 2007), and a tech-
nique based on maximum entropy called constrained
least-squares spectral analysis (Puryear et al., 2012). This
latter approach has superior time and frequency resolu-
tion. Other techniques are similar to spectral decompo-
sition in that they enhance certain window spectral
components to facilitate the identification of lateral
discontinuities and vertical unconformities but do not at-
tempt to reconstruct the original data. Gao (2013) intro-
duces a spectral probe technique, which crosscorrelates
sines and cosines with the seismic data and outputs
the crosscorrelation coefficient as an attribute. A related
(also nonlinear) technique is called the amplitude vol-
ume technique (AVT) (Bulhões, 1999; Bulhões and de

Amorin, 2005), which enhances low-frequency informa-
tion in the seismic data.

Although more expensive than computing coherence
from a single full-bandwidth seismic volume, multispec-
tral coherence provides significantly enhanced images.
In this paper, we first examine which multispectral co-
herence provides better images: computed using equally
or exponentially sampled frequencies. We further exam-
ine whether multispectral coherence computed from the
high-resolution maximum entropy spectral decomposi-
tion provides higher resolution images. Besides the
CWT andmaximum entropy decompositionmethods, we
augment this relatively long list of decomposition algo-
rithms with the nonlinear spectral probe and AVT
methods.

We begin our paper by illustrating the generalized
workflow used to compute the multispectral coherence
from the original full-bandwidth seismic data. We then
discuss the theory of seismic spectral decomposition
methods. Next, we evaluate these methods using a 3D
seismic data volume with a complex suite of incised
channels, acquired over the southwest coast of North
Island, New Zealand. Finally, we conclude with a sum-
mary of our comments and recommendations.

Method
Multispectral coherence workflow

In Figure 1, we show the workflow to compute the
multispectral coherence attribute on the decomposed
spectral components from the original full-bandwidth
seismic data. The quality of the coherence images is de-
pendent on the quality of the input seismic data. Chopra
and Marfurt (2007) give suggestions to improve the seis-
mic data quality using some postmigration data-condi-
tioning methods.

There are different types of noise in the coherence
images. Marfurt and Alves (2014) discuss the pitfalls
in seismic interpretation caused by seismic noise and
processing errors. The coherence images may suffer
from two categories of noise: seismic noise and “geol-
ogy” noise.

Seismic noise, for example, the acquisition footprint,
random noise, and migration aliasing, plays a negative
role in delineating geologic features. The quality of the
coherence images is definitely decreased in the pres-
ence of such noise, which is expected to be suppressed
before coherence computation.

Another type of noise in coherence images is from
chaotic geology features such as fault damage zones,
or condensed sections, etc. These features also exhibit
discontinuities in the coherence images, which should
always be preserved. They are considered as geology
“noise” if we try to delineate the incised channel boun-
daries, but they may be geologic indicators for other
geology purposes (Marfurt and Alves, 2014).

In our workflow, we first perform SOF on the input
full-bandwidth seismic amplitude volume, to suppress
the seismic noise and improve the data quality. SOF
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is a robust filtering method, avoiding the smearing of
faults, fractures, and other seismic discontinuities.

Next, we decompose the full-bandwidth seismic data
after SOF into different spectral components. We evalu-
ate several different spectral decomposition methods,
including not only CWT and maximum entropy decom-
position but also the AVT and spectral probe methods.

We then build the covariance matrix, to combine
multiple coherence attributes together into a single vol-
ume. Dewett and Henza (2015) use a self-organizing
map method for combination. Sui et al. (2015) compute
coherence using only the spectral magnitudes without
phase information, which could not handle complicated
structures. To improve adaptability, we follow Marfurt
(2017) in building the covariance matrix using the spec-
tral voices, considering the spectral magnitude and
phase information.

The spectral voices are defined as

uðf l; tk; xm; ymÞ ¼ aðf l; tk; xm; ymÞ exp½iφðf l; tk; xm; ymÞ�;
(1)

where u represents the spectral voice of frequency f , a
is the magnitude component, φ denotes the phase
component, and l is the component number. The term
tk denotes the structurally interpolated time sample at a
distance ðxm; ymÞ from the coordinate origin point.

The spectral voice u in equation 1 and the corre-
sponding analytic trace uH are used to compute each
element Cmn of the covariance matrixC along the struc-
tures, which considers the magnitude and phase
components:

Cmn ¼
XL
l¼1

XK
k¼−K

½uðtk; f l; xm; ymÞuðtk; f l; xn; ynÞ

þ uHðtk; f l; xm; ymÞuHðtk; f l; xn; ynÞ�: (2)

We use equation 2 to build the covariance matrix
from different spectral components, which adapts to
complicated geologic structures. For a specific spectral
component, we can improve the quality of particular
structures in the coherence image because the signal
appears stronger than noise, further resulting in an
improvement in the combined coherence attribute.

The final step is to compute the coherence attributes
on the generated covariance matrix. The fact that co-
herence should be computed along structural dip has
been known for some time (Marfurt et al., 1999). In our
research, we used a gradient structure tensor method to
compute the inline and crossline dip attributes for the
following coherence computation. We can output the

Figure 1. A workflow showing the computation of multispectral coherence from the original full-bandwidth seismic data. In this
paper, we evaluate the impact of alternative decomposition algorithms, including CWT of equal-spacing and exponential-spacing,
and maximum entropy spectral decomposition that can reconstruct the original seismic data. We also evaluate the impact of
several nonlinear decomposition algorithms, including the AVT and spectral probe, which cannot reconstruct the original data
(the figure is modified from Marfurt, 2017).
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coherence volumes from each spectral component and
the combined multispectral coherence data set. In our
research, we use the energy-ratio method of Gerszten-
korn and Marfurt (1999) for coherence computation,

which is also used to provide the input for the fault skel-
etonization (Qi et al., 2016, 2019). This coherence com-
putation method is realized by calculating the energy
ratio between the dominant eigenvalues and the sum
of all eigenvalues of the covariance matrix. The details
of the energy-ratio method are shown in Appendix A.

Seismic spectral decomposition algorithms
Seismic spectral decomposition (Partyka et al., 1999)

is an important step in the multispectral coherence
computation workflow (Figure 1). We can decompose
the full-bandwidth seismic data into different spectral
components using linear or nonlinear decomposition
methods. In our research, we first evaluate the applica-
tion of CWT andmaximum entropy decomposition meth-
ods for multispectral coherence computation, which
could reconstruct the original full-bandwidth seismic
data.

CWT is defined based on the scaled and shifted
versions of a “mother wavelet,” which is a complex ex-
ponential of a frequency within a Gaussian temporal
window (Grossmann and Morlet, 1984). We perform
CWT by first crosscorrelating the library of these wave-
lets with seismic traces followed by summation over
time (Appendix B). CWT is widely used in seismic in-
terpretation, for example, Matos and Marfurt (2011) in-
dicate that we can use the Morlet complex wavelet
transform to detect the phase discontinuities and Davo-
gustto et al. (2013) use the spectral ridges and phase
residues to correlate with subtle stratigraphic features.

CWT provides time-scale maps instead of the time-
frequency spectrum produced by the short-time Fourier
transform over a chosen time window. Mother wavelet
selection is critical for CWT decomposition. Some fac-
tors should be considered during the selection pro-
cedure, such as the vertical resolution reduction due to
the side lobes of the wavelet (Castagna and Sun, 2006),

even though there is not an optimum
wavelet among the commonly used
ones. The short-time Fourier transform
uses a window with predefined length
to produce a time-frequency spectrum,
which has a fixed time-frequency resolu-
tion. On the contrary, there is no re-
quirement of predefining the window
length in the CWT method, resulting in a
better time resolution at higher frequen-
cies and a better frequency resolution at
lower frequencies.

However, the application of a sliding
temporal window in CWT limits the tem-
poral and frequency resolutions. Puryear
et al. (2012) analyze this fundamental is-
sue in spectral decomposition using a
thin-layer model surrounded by strong
reflections. They observe that a short
window is required to avoid the interfer-
ence, but a long enough window is pref-
erable to avoid incorrect estimation of

Figure 2. The location of the Tui3D seismic survey (the or-
ange star) and the structural style of the offshore Taranaki
Basin, New Zealand (after King et al., 1993; Infante-Paez and
Marfurt, 2017; Lubo-Robles and Marfurt, 2019). The data are
acquired by Veritas DGC Australia Pty in 2003, covering
approximately 352 km2. The acquisition parameters are
streamer separation 150 m, source separation 75 m, bin size
12.5 × 12.5 m, and time sample rate 4 ms.

Figure 3. (a) A representative vertical slice AA′ and (b) time slice at t ¼ 2.16 s
through the seismic amplitude volume at the level of several incised channels
(the green arrows in b).
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the notch location due to the window-smearing effect on
the spectrum. If we try to improve the frequency resolu-
tion, a longer window length is desirable but results in
poor time resolution.

To further improve the time and frequency resolu-
tion of the CWT spectral analysis, we use a maximum
entropy implementation of the short-time Fourier trans-
form to decompose full-bandwidth seismic data and
compute multispectral coherence. To reduce this win-
dow effect in seismic spectral analysis, the maximum
entropy algorithm solves an inverse problem using an
objective function to fit the data with the minimum of
sines and cosines. Different empirical criteria can be
used in inversion-based spectral analysis, for example,
Portniaguine and Castagna (2004) use an iteratively
reweighted least-squares regularization algorithm to in-
vert the normal equations for approaching the seismic
wavelet decomposition problem. We follow the con-
strained least-squares spectral analysis method of
Puryear et al. (2012), to compute the Fourier series co-
efficients as a function of time, which is inverted based
on a basis of truncated sinusoidal kernels for a moving
time window. It reduces the window smearing and pro-
vides a better resolution over the short-time Fourier
transform and CWT. An important parameter in this
iterative spectral analysis method is the number of iter-
ations. A larger number of iterations provide more ac-
curate least-squares approximations but consumes
more computation time.

Besides the CWT and maximum entropy decomposi-
tion methods, we further evaluate two nonlinear spectral
decomposition methods: AVT and the
spectral probe. Ten Kroode et al. (2013)
indicate the benefits of the super-low-fre-
quency information of seismic data. First,
it could reduce the side lobes of the
wavelet to improve the resolution. Sec-
ond, it suffers less from attenuation and
scattering, which helps the waves to pen-
etrate deeper in the earth. Furthermore,
it could assist in background model
building for seismic inversion and migra-
tion velocity analysis. Additionally, the
low-frequency seismic data could help
identify some geologic features, such
as faults (Hardage, 2009). Bulhões (1999)
and Bulhões and de Amorin (2005) de-
velop an AVT method to extract super-
low-frequency information from original
seismic data. Vernengo and Trinchero
(2015) and Vernengo et al. (2017) show
several case studies to indicate that the
AVT data volume could help highlight
geologic features. AVT is realized by a
nonlinear conversion of the full-band-
width seismic data. The steps of the con-
ventional AVT workflow (Bulhões, 1999)
include calculation of the root-mean
square (rms) of the seismic amplitude

followed by the inverse Hilbert transform. In our re-
search, we develop an optimized workflow using the
envelope instead of the seismic amplitude. The details
are illustrated in Appendix C.

We further evaluate another nonlinear spectral
probe algorithm to decompose full-bandwidth seismic
data and produce multispectral coherence images. Gao
(2013) originally computes a new attribute using a spec-
tral probe process to improve the precision and resolu-
tion of conventional seismic amplitude profiles for
geometric interpretation. It is implemented by consid-
ering a full wavelength of a cosine wave as a wavelet
probe and then crosscorrelating with the seismic data
(Appendix D). The spectral probe result can be consid-
ered as an approximation of a spectral voice subjected
to a short-window automatic gain control in a math-
ematically loose sense. The outputs of the crosscorre-
lation are normalized coefficients, ranging from −1.0 to
+1.0. The generated components using the spectral
probe method are insensitive to amplitude variation,
and they are acceptable for geometric attribute compu-
tation. The wavelet spectral probe analysis has a higher
computational efficiency compared with other Fourier
transform-based decomposition methods.

Data description
We perform a case study on a 3D field seismic data to

evaluate the multispectral coherence computation
workflow (Figure 1) using different spectral decompo-
sition methods. The Tui3D seismic survey is located in
the southwest coast of the North Island, New Zealand

Figure 4. Coherence attribute time slice at 2.16 s computed using the original
full-bandwidth seismic data, showing strong noise, which decreases its detect-
ability of the incised channels.

Figure 5. Coherence image computed using the SOF processed full-bandwidth
seismic data, showing better quality with less noise compared to the coherence
image computed using the original data (Figure 4).
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(Figure 2, after King et al., 1993; Infante-Paez and
Marfurt, 2017; Lubo-Robles and Marfurt, 2019). The
data are acquired by Veritas DGC Australia Pty in 2003,
which covers approximately 352 km2 offshore of the Tar-
anaki Basin. The streamer separation is 150 m, the source
separation is 75 m, and the bin size is 12.5 × 12.5 m. The
time sample rate of the original seismic data is 4 ms.

The Taranaki Basin is located above the subduction
zone where the Pacific Plate is subducting beneath the
Australian Plate (Yagci, 2016). The basin contains two
primary structural elements: the Eastern Taranaki
Graben Complex and the Western Platform. The Tui3D
survey is located on the Western Platform, which was
affected by the normal block faulting during the Late
Cretaceous-Eocene, but it remained relatively stable
during most of the Tertiary (Pilaar and Wakefield, 1984;
Lubo-Robles and Marfurt, 2019).

The Moki A sands unit is the target in our research,
which is deposited as a base of the slope turbidite and is
characterized by a major submarine meandering chan-
nel complex (Bussell, 1994). A geophysical challenge is
how to clearly delineate the boundaries of the incised

sinusoidal channels, such as the ones shown in a rep-
resentative vertical slice AA′ (Figure 3a) and time slice
at 2.16 s (Figure 3b) indicated by the green arrows in
Figure 3b.

Data conditioning
Libak et al. (2017) observe that the coherence attrib-

ute has the potential to identify small-scale displacement
in the case of noise-free synthetic data, but the detect-
ability will be decreased in the field seismic data due
to the presence of noise. This motivates us to perform
a noise attenuation process prior to coherence compu-
tation to improve the quality of coherence images.

There are several different types of noise attenuation
methods. We need to preserve subtle geologic features
such as minor channels, which are indicated by small-
scale edges in seismic data. We apply SOF on poststack
full-bandwidth seismic data, following the suggestion of
Chopra and Marfurt (2007). SOF is robust to suppress
the incoherent noise and coherent footprint artifacts,
but it preserves subtle geologic features.

The original full-bandwidth seismic data (Figure 3a
and 3b) are of good quality with a relatively high sig-
nal-to-noise ratio, but they still have some random
noise, which results in artifacts in the coherence attrib-
ute (Figure 4), decreasing its detectability of the incised
channels. We performed SOF on the original data to
suppress noise. The coherence image computed using
SOF-processed data (Figure 5) exhibits better quality
with less noise over the result from the original seismic
data (Figure 4).

Which spectral voices to choose in multispectral
coherence? CWT experiments

We first use the CWT method to decompose full-
bandwidth seismic data after SOF into different spectral
voices, followed by computation of the energy-ratio
coherence for each component. An important issue
in multispectral coherence is how to choose the appro-
priate components for computation among tens of de-
composed spectral voices. In Figure 6a, we show the
normalized spectrum of the SOF processed data in our
target area from 1.8 to 2.4 s. It is noted that the effective
frequency bandwidth ranges from approximately 8 to
95 Hz. We choose six CWT spectral voices within the
effective bandwidth, starting from the central frequency
10 Hz and ending with 85 Hz. We can use different spac-
ing method for choosing the spectral voices between
the starting and ending frequencies. A natural option
is to choose equally spaced CWT spectral voices with a
constant linear bandwidth. In Figure 6b, we show the
series of wavelets used in the equal-spacing method
with a constant 15 Hz increment, including central
frequencies 10, 25, 40, 55, 70, and 85 Hz. Another alter-
native to choose the CWT spectral voices is to use the
exponentially spaced components with a constant oc-
tave bandwidth. We show the wavelets used in the ex-
ponential spacing method in Figure 6c, using the same
starting and ending frequencies with the equal-spacing

Figure 6. (a) The normalized spectrum of the SOF processed
data in target area from 1.8 to 2.4 s, (b) the wavelets used in
equally spaced CWT with a constant linear increment, includ-
ing central frequencies 10, 25, 40, 55, 70, and 85 Hz, and (c) the
wavelets used in exponentially spaced CWT with a constant
octave bandwidth. Note that the lateral axis in (c) indicates
the constant exponent increment, resulting in CWT spectral
voices with central frequencies of 10, 15, 24, 36, 55, and 85 Hz.

T120 Interpretation / February 2020

D
ow

nl
oa

de
d 

03
/0

8/
20

 to
 6

8.
22

8.
16

8.
19

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



case. The lateral axis in Figure 6c indicates the constant
exponent increment in the exponential-spacing method,
resulting in spectral voices with the central frequencies
10, 15, 24, 36, 55, and 85 Hz.

In Figure 7, we show coherence images computed
using equally spaced CWT spectral voices. It is noted
that the channels with different scales are highlighted in
the coherence images from different components. The
boundaries of the thicker channels are much clearer in
the coherence images using the lower frequency voices,
such as the 10 (Figure 7a) and 25 Hz (Figure 7b) com-
ponents, whereas the thinner channels and the geologic
details inside the thicker channels are much clearer us-
ing the higher frequency voices, such as the coherence
images from the 40 (Figure 7c) and
55 Hz (Figure 7d) components. Artifacts
associated with the acquisition footprint
(the red arrows in Figure 7a, 7e, and 7f)
are stronger in the coherence images
computed from several spectral voices.
The quality seen in Figure 7f for the
85 Hz component is significantly lower,
resulting in a coherence image contain-
ing less useful information.

We then combine these different co-
herence volumes into a single coherence
data set using the workflow in Figure 1,
which is shown in Figure 8. It is noted
that this multispectral coherence com-

puted using the equally spaced spectral voices (Figure 8)
has less noise (red circles) and clearer channel bounda-
ries (green arrows) over the coherence image computed
using the full-bandwidth seismic data (Figure 5). Addi-
tionally, the multispectral coherence image reveals more
abundant structural details, such as the geologic features
inside the thicker channels.

We further use six exponentially spaced CWT spectral
voices to compute coherence volumes, which are cen-
tered at 10 (Figure 9a), 15 (Figure 9b), 24 (Figure 9c),
36 (Figure 9d), 55 (Figure 9e), and 85 Hz (Figure 9f).
The observations from Figure 9 are similar to the coher-
ence images computed using the equally spaced spectral
voices (Figure 7). The thicker channels are more high-

Figure 7. Coherence images computed using six equally spaced CWT spectral voices centered at (a) 10 Hz, (b) 25 Hz, (c) 40 Hz,
(d) 55 Hz, (e) 70 Hz, and (f) 85 Hz. Note that the boundaries of the thicker channels are much clearer in coherence images using
lower frequency spectral voices, whereas the thinner channels and the geologic details inside the thicker channels are more high-
lighted using the higher frequency components. Artifacts associated with the acquisition footprint (the red arrows in a, e, and f) are
stronger in the coherence images computed from several components. The quality seen in (f) for the 85 Hz component is signifi-
cantly lower resulting in a coherence image containing less useful information than the other components.

Figure 8. Multispectral coherence computed using six equally spaced CWT
spectral voices (Figure 7), providing an image with less noise (especially the
red circles) and clearer channel boundaries (especially the green arrows) than
full-bandwidth coherence (Figure 5).
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lighted in the coherence images using the lower
frequency CWT spectral voices, whereas the higher fre-
quency components provide much clearer images of the
thinner channels and small-scale geologic features.

In Figure 10, we show the multispectral coherence
image combined using the coherence volumes com-
puted from the exponentially spaced CWT spectral voi-
ces using the workflow in Figure 1. We can observe that
it appears to be of higher quality over the full-bandwidth
result (Figure 5). Especially, it is noted that the multi-
spectral coherence image using exponentially spaced
CWT components (Figure 10) exhibits fewer artifacts
and clearer channel boundaries (the green arrows in
Figure 10) over the multispectral coherence image us-
ing equally spaced CWT components
(Figure 8). We recommend computing
multispectral coherence using exponen-
tially spaced spectral voices.

Coherence on maximum entropy
decomposed components

We further use the maximum entropy
method to improve the resolution of the
CWT spectral voices by reducing thewin-
dow smearing effect in the spectral
analysis (Puryear et al., 2012). We choose
the exponentially spaced maximum en-
tropy spectral voices to compute multi-
spectral coherence.

The coherence images computed from each maxi-
mum entropy spectral voice are shown in Figure 11,
using the same starting and ending frequencies with
the ones in the CWT experiments. We take the 15 Hz
spectral voice component for example to compare the
coherence images computed using the maximum en-
tropy (Figure 11b) and CWT (Figure 9b) spectral voices.
It is noted that the coherence from the maximum en-
tropy spectral voice (Figure 11b) provides much more
detail and exhibits higher resolution (the red circle) of
the channel boundaries over the coherence using the
corresponding CWT component (Figure 9b). We can
get similar observations from the comparison of other
lower frequency spectral voice components. We then

Figure 9. Coherence images computed using exponentially spaced CWT components with central frequencies at (a) 10 Hz,
(b) 15 Hz, (c) 24 Hz, (d) 36 Hz, (e) 55 Hz, and (f) 85 Hz. The observations are similar with Figure 7, indicating that thicker channels
are more highlighted in lower frequency CWT spectral voices, whereas the higher frequency components provide much clearer
images of the thinner channels and small-scale geologic features. Noise in the 85 Hz component coherence (Figure 9f) is much
stronger than other components.

Figure 10. Multispectral coherence computed using six exponentially spaced
CWT components (Figure 9). Note that it exhibits fewer artifacts and clearer
channel boundaries (the green arrows) over multispectral coherence using
equally spaced CWT components (Figure 8).
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generate multispectral coherence (Figure 12) using the
maximum entropy spectral voices, which exhibits
higher resolution of small-scale features (the green
arrows in Figure 12) over the multispectral coherence
image computed from the corresponding CWT compo-
nents (Figure 10).

In Figure 13, we use an example of the enlarged ver-
tical amplitude slice to illustrate the reason why the mul-
tispectral coherence works. Figure 13b and 13c shows
the 24 and 36 Hz spectral voice components using the
maximum entropy decomposition from the full-band-
width seismic amplitude (Figure 13a). Compared with
the full-bandwidth data (the red circles in Figure 13a),
the boundaries of the thicker channels are much sharper
in the 24 Hz component (the red circles in Figure 13b),
whereas the thinner channel boundaries
are sharper and clearer in the 36 Hz spec-
tral voice (the red circles in Figure 13c).
The channels with different scales are
more highlighted in specific spectral
voices, resulting in improved images of
channel boundaries in the multispectral
coherence.

Coherence on AVT data volume
We use an optimized nonlinear AVT

algorithm (Appendix C) to extract the
super-low-frequency information (win-
dow length 16 ms), which helps delineate

large-scale geologic features. AVT produces only one
data volume, not several different spectral components,
which requires a relatively low computation cost and
small storage of the following energy-ratio coherence cal-
culation over other spectral decomposition methods.

The AVT time slice is shown in Figure 14a, which
contains less noise and weaker reflections compared
to the original seismic amplitude time slice (Figure 3b).
We then use this AVT data set to compute the energy-
ratio coherence attribute, which is shown in Figure 14b.
It is clearer with less noise than coherence computed
using the SOF full-bandwidth seismic data (Figure 5).It
especially provides more continuous boundaries of the
thicker channels (the green arrows in Figure 14b) com-
pared with the coherence images computed from other

Figure 11. Coherence images computed using maximum entropy spectral voice components at (a) 10 Hz, (b) 15 Hz, (c) 24 Hz,
(d) 36 Hz, (e) 55 Hz, and (f) 85 Hz. Note that the coherence images from the lower frequency maximum entropy spectral voices
provide more details and exhibit higher resolution of the channel boundaries than coherence images using the corresponding CWT
components, such as the red circle area in (b) compared with Figure 9b.

Figure 12. Multispectral coherence image computed using maximum entropy
spectral voice components, exhibiting higher resolution of small-scale features
(the green arrows) compared with the multispectral coherence image computed
from the corresponding CWT components (Figure 10).
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spectral decomposition methods. However, imaging of
small-scale features inside thicker channels is de-
creased due to the lack of higher frequency components
in AVT data.

Coherence on spectral probes
The wavelet spectral probe analysis produces spec-

tral voice components from the full-bandwidth seismic
data with high computational efficiency. In Figure 15,
we show an example of the decomposed spectral voice
using the period 36 Hz. It is noted that the spectral

probe is insensitive to the amplitude variation. In a
mathematically loose sense, the result approximates a
spectral voice that has been subjected to a short-win-
dow automatic gain control. The energy is much more
balanced than other spectral decomposition methods.
The spectral probe components are available for seis-
mic geometric attribute calculation, such as coherence.

We decompose the full-bandwidth seismic data into
six spectral probes using period 10, 15, 24, 36, 55, and
85 Hz. We then use these spectral probes to compute
the multispectral coherence (Figure 16). Besides

Figure 13. (a) Enlarged full-bandwidth verti-
cal seismic amplitude slice. (b) 24 Hz spectral
voice and (c) 36 Hz spectral voice after maxi-
mum entropy decomposition. Compared with
full-bandwidth data (the red circles in a), the
boundaries of the thicker channels are much
sharper in the 24 Hz component (the red circles
in b), whereas the thinner channel boundaries
are sharper and clearer in the 36 Hz spectral
voice (the red circles in c). The channels with
different scales are more highlighted in specific
spectral voices, resulting in the improved im-
ages of channel boundaries in multispectral co-
herence.

Figure 14. (a) AVT time slice, showing less
noise and weaker reflections compared with
the original seismic amplitude time slice (Fig-
ure 3b). (b) Coherence attribute computed us-
ing the AVT volume, behaving much clearer
with less noise over coherence computed using
the SOF full-bandwidth seismic data (Figure 5).
Note the more continuous boundaries of the
thicker channels (the green arrows in b) com-
pared with the coherence images computed
from other spectral decomposition methods.
However, the imaging of some small-scale fea-
tures inside the thicker channels is decreased
due to the lack of higher frequency compo-
nents in the AVT data.
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improvement over the full-bandwidth coherence image
(Figure 5), multispectral coherence images computed
using spectral probes (Figure 16) are more balanced
than multispectral coherence images from other spec-
tral decomposition methods. However, because ampli-
tudes are not preserved in spectral probes, we use an
equal weight for the noise in the noisier shorter period
components when we build the covariance matrix. This
increases the noise in the shorter period component
coherence images, and it further decreases the quality
of the multispectral coherence image using spectral
probes (the red circles in Figure 16).

Conclusion
We use a 3D seismic data volume to evaluate four dif-

ferent spectral decomposition methods in multispectral
coherence computation. We recommend computing mul-
tispectral coherence using exponentially spaced spectral
voices because it provides better coherence images
than the results using equally spaced components for
the same computation cost. The resolution of thinner
channels and small-scale features is further improved
in multispectral coherence images computed using the
maximum entropy spectral voices over the CWT results.
The images of the thicker channel boundaries are the
most continuous in the coherence computed using the
AVT data set, but the quality of small-scale features inside
the thicker channels is decreased. Furthermore, multi-

spectral coherence computed using the
nonlinear spectral probes appears more
balanced to help reveal the small-scale
geologic features inside the thicker chan-
nel. However, because amplitudes are
not preserved in the nonlinear spectral
probe decomposition, we use an equal
weight for the noise in noisier shorter
period components to build the covari-
ance matrix, resulting in increased noise
in the multispectral coherence images.
Based on the observations in these ex-
periments, we recommend computing
multispectral coherence on the spectral
voices decomposed using the maximum
entropy method. The window length in
spectral decomposition plays an impor-
tant role in the generated coherence
images. If we use a longer window, the
geology features such as the incised
channels are more averaged with greater
geologic “overprinting.” The influence
of window length in different spectral
decomposition methods on the channel
morphology remains an interesting re-
search topic.
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Appendix A

Coherence computation based on the energy-ratio
method

Each element of the covariance matrix is calculated
using the analytic trace to avoid the artifacts due to the
small windows over the zero crossings:

Cmn ¼
XK
k¼−K

½dðtk; xm; ymÞdðtk; xn; ynÞ

þ dHðtk; xm; ymÞdHðtk; xn; ynÞ�; (A-1)

where d denotes the original seismic data, dH is the
corresponding Hilbert transform, Cmn represents the
element of the covariance matrix, and tk denotes

Figure 16. Multispectral coherence image computed using six spectral probes.
It exhibits more balanced than the multispectral coherence images from other
spectral decomposition methods but is noisier due to the equal weight for the
noise in the shorter period components when we build the covariance matrix
(the red circles).

Figure 15. Vertical slice of the spectral probe component using period 36 Hz,
which is insensitive to the amplitude variation, and the energy is much more
balanced than other spectral decomposition methods, especially the channels
indicated by the red circles.
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the structurally interpolated time sample at a distance
ðxm; ymÞ from the coordinate origin point.

We then generate the energy-ratio coherence by
computing the ratio of the coherent energy Ec and the
total energy Et within an analysis window:

s ¼ Ec

Et þ ε2
; (A-2)

where ε is a small positive value to avoid division
by zero. We define the Karhunen-Loève (KL)-filtered
coherent energy and the total energy as

Ec ¼
XM
m¼1

XK
k¼−K

f½dKLðtk; xm; ymÞ�2 þ ½dHKLðtk; xm; ymÞ�2g;

(A-3)

Et¼
XM
m¼1

XK
k¼−K

f½dðtk;xm;ymÞ�2þ½dHðtk;xm;ymÞ�2g: (A-4)

Appendix B

CWT theory
Grossmann and Morlet (1984) formally introduce

that a function with zero mean is called a “wavelet,”
which has finite energy concentrated in time and satis-
fies certain well-established conditions. We can gener-
ate a family of wavelet functions from a mother wavelet
ψðtÞ, which is centered about t ¼ 0, scaled using a dila-
tion factor s, and shifted by time τ:

ψ s;τðtÞ ¼
1ffiffiffi
s

p ψ

�
t − τ

s

�
: (B-1)

CWT is performed by crosscorrelating the library of
wavelets of equation B-1 with a seismic time series:

Wðτ; sÞ ¼
Z þ∞

−∞
dðtÞ 1ffiffiffi

s
p ψ�

�
t − τ

s

�
dt; (B-2)

where Wðτ; sÞ is the time-scale map, dðtÞ represents the
seismic time series, and ψ�ððt − τÞ∕sÞ is the complex con-
jugate of ψððt − τÞ∕sÞ. The local spectrum is defined by
the crosscorrelation coefficients at each time sample.

Appendix C

Optimized AVT workflow
The optimized AVT workflow is implemented using

the following three steps:

1) Envelope calculation from the analytic transform of
the seismic data,

DðtiÞ ¼ dðtiÞ þ idHðtiÞ; (C-1)

whereD is the analytic signal, which is composed by
the seismic amplitude d and its Hilbert transform dH.

The envelope is then calculated by taking the mag-
nitude of this analytic signal,

EðtiÞ ¼ jDðtiÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dðtiÞ�2 þ ½dHðtiÞ�2

q
: (C-2)

2) Calculation of the rms envelope within a defined
window,

ĒrmsðtiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPtj¼tiþN∕2
tj¼ti−N∕2 E

2ðtjÞ
N

s
: (C-3)

3) Inverse Hilbert transform of the rms envelope,

ĒAVTðtiÞ¼ H−1fĒrmsðtiÞg: (C-4)

Appendix D

Spectral probe theory
In the spectral probe technique, we generate the

normalized crosscorrelation coefficients between a
wavelet wðtÞ and the seismic amplitude dðtÞ:

ρðtÞ ¼
PþJ

j¼−J wðt − jΔtÞdðt − jΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPþJ
j¼−J ½wðt − jΔtÞ�2 PþJ

j¼−J ½dðt − jΔtÞ�2
q : (D-1)

We set the wavelet probe using a cosine wave,

wðjΔtÞ ¼ cosð2πf jΔtÞ; (D-2)

where f is the frequency, Δt is the sample increment,
and j is the sample index. If we choose the correlation
range 2JΔt ¼ 1∕f , which means exactly one period,
equation D-1 could be simplified to

ρðtÞ ¼
PþJ

j¼−J cos½2πðt − jΔtÞ�dðt − jΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPþJ
j¼−J ½dðt − jΔtÞ�2

q : (D-3)

We produce different data volumes of crosscorrela-
tion coefficients with different periods (or correspond-
ing frequencies) using equation D-3.
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