
PALAIOS, 2020, v. 35, 391–402

Research Article

DOI: http://dx.doi.org/10.2110/palo.2019.102

CONVOLUTIONAL NEURAL NETWORKS AS AN AID TO BIOSTRATIGRAPHY AND

MICROPALEONTOLOGY: A TEST ON LATE PALEOZOIC MICROFOSSILS

RAFAEL PIRES DE LIMA,1,2 KATIE F. WELCH,1 JAMES E. BARRICK,3 KURT J. MARFURT,1 ROGER BURKHALTER,4 MURPHY CASSEL,1

AND GERILYN S. SOREGHAN1

1School of Geosciences, The University of Oklahoma, 100 East Boyd Street, RM 710, Norman, Oklahoma 73019, USA
2The Geological Survey of Brazil–CPRM, 55 Rua Costa, São Paulo, São Paulo, Brazil

3Department of Geosciences, Mail Stop 1053, Texas Tech University, Lubbock, Texas 79409, USA
4Sam Noble Museum, The University of Oklahoma, 2401 Chautauqua Ave., Norman, Oklahoma 73072, USA

email: rlima@ou.edu; rafael.lima@cprm.gov.br

ABSTRACT: Accurate taxonomic classification of microfossils in thin-sections is an important biostratigraphic
procedure. As paleontological expertise is typically restricted to specific taxonomic groups and experts are not present
in all institutions, geoscience researchers often suffer from lack of quick access to critical taxonomic knowledge for
biostratigraphic analyses. Moreover, diminishing emphasis on education and training in systematics poses a major
challenge for the future of biostratigraphy, and on associated endeavors reliant on systematics. Here we present a
machine learning approach to classify and organize fusulinids—microscopic index fossils for the late Paleozoic. The
technique we employ has the potential to use such important taxonomic knowledge in models that can be applied to
recognize and categorize fossil specimens. Our results demonstrate that, given adequate images and training,
convolutional neural network models can correctly identify fusulinids with high levels of accuracy. Continued efforts
in digitization of biological and paleontological collections at numerous museums and adoption of machine learning by
paleontologists can enable the development of highly accurate and easy-to-use classification tools and, thus, facilitate
biostratigraphic analyses by non-experts as well as allow for cross-validation of disparate collections around the
world. Automation of classification work would also enable expert paleontologists and others to focus efforts on
exploration of more complex interpretations and concepts.

INTRODUCTION

Biostratigraphy is a critical approach for dating and correlating

sedimentary successions, particularly given the common absence of

material appropriate for radioisotopic dating of sedimentary strata.

Biostratigraphy hinges on detailed analysis of extracted fossils, or thin-

sections of fossils, to identify specimens to the genus and species levels. In

addition to their utility for dating, fossil assemblages shed light on

paleoenvironmental conditions; foraminiferal assemblages, for example,

can yield information critical for reconstructing histories of paleoclimatic

and paleoceanographic conditions (e.g., Gooday 1994; Culver 2003;

Kucera 2007; Roozpeykar and Moghaddam 2016). Commonly, biostratig-

raphy relies on species-level identification of well-established microfossil

groups such as foraminifera, conodonts, and palynomorphs. The complex

morphology of fossil organisms requires the use of specialists for reliable

and correct systematics, especially for the generation of detailed and

accurate biostratigraphic correlation. Unfortunately, education and training

in the identification of fossil taxa is diminishing, greatly crippling future

capacity in this area (Farley and Armentrout 2000, 2002).

Although the largest investment of resources, both time and financial,

for biostratigraphic studies may be for data acquisition and sample

preparation, not every institution possesses the requisite expertise enabling

accurate species-level identification for biostratigraphic analyses. Both old

and new paleontological collections of significant biostratigraphic value

may be overlooked or ignored because no one is available to perform the

necessary taxonomic identifications. This growing paucity of experts

brings forth the need for a new approach to facilitate access to existing

taxonomic knowledge to a broader audience.

The ongoing revolution in big data and statistical analysis enables the

possibility of accelerating and standardizing fossil characterization and

identification with machine learning techniques. In deep learning, machine

learning models consisting of more than one artificial neural network layer,

have the ability to learn representations of data with different levels of

abstraction (LeCun et al. 2015). Recent advances in the architecture of

deep learning convolutional neural networks (CNN) have greatly improved

the fields of image classification and computer vision. LeCun et al. (2015)

provided details on deep learning and showed some of the breakthoughs

achieved by such technology. Dumoulin and Visin (2016) showed details

on convolutions and arithmetic for deep learning procedures. We provide

in Online Supplemental File 1 the very basics of artificial neural networks

and CNNs. Our material is built on images and examples to provide the

reader with an intuitive understanding of the mechanics of deep learning

and CNNs without delving into the details of the mathematical

computations.

CNN models increase the levels of accuracy in numerous image

classification tasks. For example, current CNN models can differentiate not

only the image of a leopard from that of a mite or a container ship (objects

with significantly different characteristics), but can differentiate images of

leopards from their biological cousins—jaguars, cheetahs, and snow

leopards (objects with very similar characteristics; e.g., Krizhevsky et al.

2012). Szegedy et al.’s (2015) Inception V3 CNN architecture reached a

3.5% top-5 error (frequency in which the model cannot predict the correct

class as one of the top five most probable guesses) and 17.3% top-1 error
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in the classification of the ImageNet Large-Scale Visual Recognition

Challenge (Russakovsky et al. 2015). The training data for the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC), is a subset of

ImageNet containing the 1000 mixed-object categories and 1.2 million

images.

A currently underutilized application of machine learning is fossil

identification—a key component of biostratigraphy. Ranaweera et al.

(2009) used a computer-aided approach in which they applied clustering

techniques followed by expert labeling for identification of foraminifers.

Recent work has focused on the generation of a foraminiferal identification

pipeline that uses CNN and other machine learning methods and compares

such results to classifications performed by human experts (Zhong et al.

2017). Hsiang et al. (2019) presented an extensive image library of modern

planktonic foraminifera and showed results for the classification of such of

planktonic foraminifera using CNN. Marchant et al. (2019) used the data

from Hsiang et al. (2019) to help train CNN models to classify

foraminifera from Holocene down-cores. Kong et al. (2016) showed a

novel technique applicable for fossil pollen identification, by our

understanding, the first application of CNN image classification techniques

applied to fossil specimens. Kong et al. (2016) selected patches of fossil

pollen grains in photomicrographs and used a pretrained CNN model to

extract features for pollen species identification. Pollen researchers have

been working on automated identification for some time and are

experimenting with CNN models (e.g., Sevillano and Aznarte 2018).

CNN has also been used for diatom and radiolarian classification (e.g.,

Keçeli et al. 2017; Pedraza et al. 2017). Given the current proliferation of

efforts to digitize biological specimens, both modern and fossil (e.g.,

Blagoderov et al. 2012; Ellwood et al. 2015, Hsiang et al. 2019; Valan et al.

2019), successful application of CNN methods could greatly facilitate

research that relies upon fossil identification and biostratigraphy.

We provide what we believe is a novel attempt to conduct automated

fossil classification using CNN models, and the first attempt on a fossil

group (late Paleozoic fusulinids) identified specifically through 2D thin-

section analysis. This methodology does not depend on specialized bench

work and can be applied to existing photomicrographs in legacy

collections—indirectly capturing the knowledge of the researchers that

performed the classification or labeling of these collections. Our test case

analyses provide proof-of-concept verification, as we obtained highly

accurate results with significantly smaller domain-specific training data

relative to traditional CNN applications. Although researchers are working

with CNN models to perform image recognition using only a few examples

for training, in some cases a single example per class (e.g., Koch 2015;

Lake et al. 2015; Santoro et al. 2016), most CNN applications use

hundreds to hundreds of thousands of examples per class. With the

additional imaging of the numerous specimens in the large legacy

collections of fusulinids in North America and other paleobiogeographic

realms (e.g., Ross 1967), automated classification can potentially organize

a large volume of taxonomic and biostratigraphic information into a

reliable and coherent system easily accessible to a variety of users,

including both specialists and non-specialists. Our methodology uses data

coming from traditional paleontological field and laboratory work and

depends on specimen quality, but does not aim to diminish the importance

of current paleontological techniques and expertise. Our objective is to

both help accelerate and disseminate fossil classification knowledge, and to

bring fossil classification expertise to research groups with the requisite

data, but little or no access to expert paleontologists.

SHORT GLOSSARY

Because machine learning, and CNN in particular, may be unfamiliar to

many paleontologists, we provide this simple glossary to define some of

the technical terms used in the manuscript. More detailed machine learning

definitions appears in the list of references as well as online under

‘‘Machine Learning Glossary j Google Developers’’ (https://developers.

google.com/machine-learning/glossary; accessed 1/2019).

Accuracy.—The ratio between the number of correct classifications and

the total number of classifications performed. Values range from 0.0 to 1.0

(equivalently, 0% to 100%). A perfect score of 1.0 means all classifications

were correct whereas a score of 0.0 means all classifications were

incorrect.

Class.—The name, or category assigned to each data sample. In this

paper we use ‘‘class’’ in the machine learning sense rather than in the

biological sense.

Classification.—The process of assigning data to a particular class.

Convolution.—A mathematical operation that uses two functions, one

generally interpreted as the ‘‘input’’, and the other as a ‘‘filter’’. The filter

can also be referred to as the ‘‘kernel’’. The kernel is applied on the input,

producing an output image or signal. In machine learning applications, a

convolutional layer uses the convolutional kernel and the input data to train

the convolutional kernel weights.

Cross Entropy Loss.—A measure of the difference between the

model’s predictions are from the provided label; specifically, cross-entropy

measures the difference between two probability distributions.

Convolutional Neural Network (CNN).—A neural network architec-

ture in which at least one layer is a convolutional layer. Some authors also

use ConvNets as a shorter term.

Deep Neural Network.—An artificial neural network that uses more

than one hidden layer. The process of using deep neural networks is

sometimes referred to as deep learning.

Epoch.—Generally used to depict a single pass through the full training

set during the training stage. Not to be confused with a geological time

epoch.

Fine Tuning.—A secondary training executed to further adjust the

weights of an already trained model so the model can better achieve a

secondary task.

Hyperparameter.—The available ‘‘options’’ a user can change for

different attempts to train a model. Hyperparameters contrast with weights/

parameters that are automatically updated by the model, following the

model’s algorithm. For example, the number of epochs used to train a

model is a hyperparameter.

Labels.—Names applied to an instance, sample, or example (for image

classification, an image) associating it with a given class. In this paper the

labels are the names of the target genus analyzed.

Layer.—In (artificial) neural networks, refers to a set of neurons that

processes the same set of input features.

Loss.—A measure of the model’s performance, or how far the

predictions are from the desired output.

Machine Learning.—A collection of approaches in which models

improve their performance through automatic analysis of data.
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Natural Images.—A term commonly used in computer vision literature

and without a strict definition. In a broad sense, the resulting color

photograph taken with an ordinary camera.

(Artificial) Neural Networks.—A model that is composed of neurons

commonly organized into layers; a set of connected neurons, vaguely

inspired in the biological brain neural network.

(Artificial) Neuron.—A system that reads one or more inputs and

produces an output. A neuron applies a linear transformation on the inputs,

often followed by a nonlinear transformation to produce an output.

Pooling.—A filter that reduces the size of the input data, for example,

replacing the value of four adjacent pixels with its maximum or mean

value.

Softmax.—A function that provides the probability a sample belongs to

each possible class.

Test Data, Test Set.—Samples not used in training but held aside to

test the performance of the trained model. Ideally, the test set is used to

evaluate only the final model, unlike the validation set that can be used to

tune the model during training.

Training.—An iterative process that determines the ideal parameters of

a machine learning model.

Training Data, Training Set.—The subset of the data used for

training.

Transfer Learning.—A technique that uses information learned in a

primary machine learning task (e.g., bird classification) to perform a

secondary machine learning task (e.g., fossil classification).

Validation Data, Validation Set.—The subset of the data used to

evaluate the training model during model construction and help select

hyperparameters.

Weights/Parameters.—The coefficients of a machine learning model.

In a simple linear equation, the slope and intercept are the weights of the

model. In CNNs, the weights are the convolutional kernel values. The

training objective is to find the ideal weights of the machine learning

model.

METHODS

In the realm of machine learning techniques, most of the tasks

investigated can generally be divided into unsupervised or supervised

learning. In unsupervised learning, the user provides data to the algorithm

and the algorithm tries to identify patterns present in the data. In supervised

learning, the user provides data and corresponding labels and the algorithm

tries to learn a function or a relationship to map the data to the labels. In

this paper we use supervised learning—we provide data (thin-section

images) and labels for training and expect the CNN to provide a

relationship between the data and the labels (i.e., the expert-defined

fusulinid genus or species).

In general, the reliability of CNN results relates directly to the amount of

labeled data used during training. The more examples provided to the

CNN, the more improvement occurs in weights used by the model,

generating higher-accuracy and more reliable results. The CNN requires

examples to recognize the features of each class it attempts to differentiate.

The work here focuses on assembling fusulinid thin-section data, and using

transfer learning (Pan and Yang 2010) to generate a CNN model to classify

fusulinids. Figure 1 shows a simple representation of the transfer learning

process. We provide more details of transfer learning in the next

subsection.

Fusulinids are an order of large benthic foraminifera abundant during

the Pennsylvanian and Permian, and became extinct at the end of the

Permian. Like other large benthic foraminifera, fusulinids developed a

carbonate test that was internally divided into a series of complex

chambers. As the fusulinids grew, new chambers were added along the

longitudinal axis covering previous chambers in involute coiling.

Fusulinids ranged in size from millimeters to centimeters and can have

spindle-like, subcylindrical, or globose shapes. Genera and species are

distinguished using a combination of morphological features such as test

shape, test wall microstructure, and the arrangement and complexity of

internal features (Thompson 1964).

Accurate identification of a fusulinid relies on attributes observable

from an oriented section exposed along the long axis of the (prolate

spheroid-shaped) fusulinid, bisecting the center. A transverse section is

useful, but the longitudinal section is essential (Fig. 2). Both sections

reduce the complex internal morphology of fusulinids to 2D views that

can be easily imaged. Because fusulinid workers have used these

oriented sections for years, an extremely large number of specimens

oriented in the same manner exist in legacy collections in museums,

although access to such images can be challenging. Thin-section

collections, however, commonly consist not only of individual

specimens of well-oriented longitudinal sections, but also thin-sections

of fossil-bearing rocks in which cuts through specimens are randomly

oriented and thus yield apparently different sizes and shapes. In this

initial work, the training set contained only those thin-sections with

well-oriented longitudinal cuts.

Our fusulinid dataset comprises original fusulinid thin-sections from

Waddell (1966) housed at the Sam Noble Museum at the University of

Oklahoma (OU) imaged through modern digital photography. The

Waddell collection comprises four different Pennsylvanian fusulinid

genera: Beedeina (Fusulina), Wedekindellina, Triticites, and Fusuli-

nella. Samples from the American Museum of Natural History

(AMNH) acquired through the iDigBio portal, an important initiative

in digital access to biological collections, provided three additional

Permian genera: Parafusulina, Pseudofusulina, and Schwagerina.

Figures from Thompson (1954) and Wahlman (2019) provide additional

samples of Beedeina (Fusulina), Fusulinella, Pseudofusulina, Pseu-

doschwagerina, Schwagerina, Wedekindellina, and Triticites. We also

extracted data from Williams (1963), Stevens and Stone (2009),

Kobayashi (2012), Kossovaya et al. (2016), Kobayashi and Furutani

(2019), Barrick and Wahlman (2019), and Wahlman (2019). Data from

the Waddell collection and AMNH were available as independent image

files. Data from the other sources were extracted from the figures in the

published papers. The images were prepared to be used as input for our

models by simply selecting the desired specimen from the digital

publication file and saving the images such that the specimen was the

main object in the image. We also centralized the specimens and tried

to maintain relative sizes, although the microscopic scales reported by

the original publications were most likely lost in our cropping and

centralization process. Although our data acquisition process was not

exhaustive, the data acquired represents some of the more representative

fusulinids in the literature—or at least those most readily accessible in

our search. However, the dataset we assembled is biased towards

fusulinids from the southwestern United States owing to the ready

availability of these data in the museum collections we were able to

access. We discarded collections of fusulinid genera represented by

fewer than 10 different specimens. Differences in thin-section image

properties (e.g., background color), and data quality (e.g., original

image dimensions) increased the difficulties encountered for training.
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Table 1 shows the data available for the fusulinid experiment. Table 2

shows the data split into train, validation, and test sets. More details on

the references of the sources of the data used are provided in the Online

Supplemental files.

Transfer Learning and Data Augmentation

Transfer learning can be used to address the shortage of sufficient

domain-specific training data (Carranza-Rojas et al. 2017). In transfer

learning, the learned characteristics of a base model trained on a primary

dataset and task are reused for a secondary task (Yosinski et al. 2014).

Therefore, layers previously trained with a substantial volume of labeled

data can be used to address different objectives. Thus, a CNN model

trained to identify the images of the ILSVRC can be used to classify

photomicrographs of fusulinid by genera with the help of transfer learning

(Fig. 1). In a study analyzing medical image data, Tajbakhsh et al. (2016)

found that results achieved with transfer learning equaled or exceeded the

quality of results from training a CNN model from scratch (with randomly

initialized weights). Yosinski et al. (2014) concluded that using transfer

learning on subsets of ILSVRC classes perform better than training CNN

models from scratch. Examples of transfer learning include Carranza-Rojas

et al. (2017) for herbarium specimens, Esteva et al. (2017) for skin cancer

classification, Gomez Villa et al. (2017) for camera-trap images, Pires de

Lima et al. (2019a) for lithofacies classification, Valan et al. (2019) for

classification of insects, and Marchant et al. (2019) for down-core

foraminifera. Pires de Lima et al. (2019b) showed examples of transfer

learning using different geological images.

Deep neural networks exhibit a cascading pattern in which the output of

one processing layer provides input to the next layer of the model. When

trained on datasets of natural images, the first layers of CNN models learn

features that resemble either color blobs or some variation of textures. This

behavior is so common in CNN models that the analysis is reevaluated

every time the initial layers learn any other image characteristics (other

FIG. 2.—Thin-sections with different orientations from the analyzed collection: A)

Beedeina mutabilis (OU 9286) with a longitudinal cut. B) Beedeina mutabilis (OU

9287) with a transverse cut.

FIG. 1.—Visual representation of the transfer learning process. A CNN is trained on the primary task, generally containing many (millions) of samples. We generically

represent convolutional and pooling layers with gray and golden rectangles whereas green circles represent densely connected neurons, commonly used in the classification

layers. A) ‘‘Primary task’’ in this case represents an image from the ImageNet dataset going through a generic CNN model (convolutional layers and classification layers)

trained on the same dataset. The CNN model then outputs the probability of the image belonging to one of the thousands of classes of the ImageNet. B) ‘‘Secondary task’’ uses

the weights learned by the convolutional layers on primary task using the blue rectangle to represent weights learned on the primary task. We then train a new classification

model. The Pseudoschwagerina on B is modified from Williams (1963, pl. 8, fig. 3).
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than colors or texture) resulting in a transition from general to specific

features learned by the model (Yosinski et al. 2014). This behavior explains

why CNN with good performance on the ILSVRC (e.g., Krizhevsky et al.

2012; Simonyan and Zisserman 2014; Szegedy et al. 2014, 2015) can be

successfully retrained for new, field-specific classification problems (e.g.,

Carranza-Rojas et al. 2017; Esteva et al. 2017; Gomez Villa et al. 2017;

Norouzzadeh et al. 2018). As the layers become more specific to the

dataset the deeper they are in the model (i.e., closer to the output of the

CNN than the input), some workers find it useful to extract only these more

general image features. Kong et al. (2016) studied examples of when the

features of an ILSVRC pre-trained model can be used without

modifications to extract features from pollen data. Another powerful

approach is to fine tune the ILSVRC model weights by updating them with

training data from the secondary task. Here, we apply three training modes:

feature extraction, fine tune, and randomly initialized weights. Feature

extraction ‘‘locks’’ (or ‘‘freezes’’) the pre-trained layers extracted from the

primary models. Fine tuning begins as feature extraction, with the primary

model frozen, but eventually allows all the layers of the model to learn.

Randomly initialized weights mode starts the entire model with randomly

initialized weights and all the weights are updated during training.

Randomly initialized weights is not a transfer learning process, just

ordinary training. For the sake of standardization, all modes train the model

for 100 epochs. In fine tuning, where part of the model is frozen, we first

train for 50 epochs. Then we allow all layers of the model to learn for

another 50 epochs. We use five different well known CNN models: VGG19

(Simonyan and Zisserman 2014), InceptionV3 (Szegedy et al. 2015),

MobileNetV2 (Sandler et al. 2018), ResNet50 (He et al. 2016), and

DenseNet121 (Huang et al. 2016) originally trained on ILSVRC. We use

complete CNN models, substituting their last fully connected classification

layers with our ‘‘top model’’. The top model comprises an average pooling,

followed by one fully connected layer with 512 neurons, a dropout layer

(Srivastava et al. 2014) used during training, and a final fully connected

layer with a softmax output where the number of neurons depends on the

number of classes for the task (eight genera, eight neurons). The models

are trained using Keras (Chollet et al. 2015), with TensorFlow as its

backend (Abadi et al. 2016). When kernels are initialized, we use the

Glorot uniform (Glorot and Bengio 2010) distribution of weights. The

models are optimized using a stochastic gradient descent with a learning

rate of 1.0e�3 and momentum of 0.9 to minimize the categorical cross

entropy loss. Rather than trying to find the best accuracy possible, our

objective is to show the behavior of different CNN models and training

modes using fusulinid images from thin-section data. Therefore, we choose

to keep the hyperparameters fixed, as described for all experiments. We use

a NVIDIA GeForce RTX 2060 for the experiments. Even though transfer

learning provides a powerful approach to address the problem of an

insufficient amount of training data, and has been successfully imple-

mented in different fields, the relatively small number of digitized thin-

sections available for this work created challenges in assembling the

training set. Recent examples using transfer learning for image

classification employed training datasets of 105 images (Carranza-Rojas

et al. 2017; Esteva et al. 2017; Gomez Villa et al. 2017). In contrast, we

relied upon 102 original images of fusulinid specimens, three orders-of-

magnitude smaller than other studies using transfer learning.

Owing to this limited dataset for training the CNN, we used a common

bootstrap process to generate pseudo-samples using the available images.

The population was augmented by simple data rotation. Each longitudi-

nally aligned original image was rotated through a range of angles

658about the horizontal axis, as well as flipped about the horizontal and

vertical axes to expand the training data set. Such approaches increase the

number of images that could be used for training and help in the

generalization of the model. Therefore, to facilitate training and reduce the

chance of overfitting, we augment the training and validation data using

Bloice et al’s. (2019) Augmentor tool, as well as Keras’ (Chollet et al.

2015) generators pipelines.

RESULTS

We fit five different models using three different training modes,

effectively performing 15 experiments. Figure 3 shows an example of the

loss and accuracy evolution during fine tune training of InceptionV3. Plots

like Figure 3 are useful to investigate whether or not the models are

overfitting the training data. Because of the many parameters CNN usually

have, it is possible for the model to simply remember all the training data

and have a poor generalization performance, i.e., poor performance when

the model classifies new data. Ideally, the training and validation set curves

should be close to each other, although in the great majority of cases the

models exhibit a better performance on the training set than on the

validation set. Figure 3 shows that the model starts to overfit in the first

training stage, when part of the model is frozen, and validation accuracy

begins to increase only on the second stage of fine tune training, when all

the layers in the model are allowed to change their weights. The results

(Fig. 3) show that the model is indeed overfitting the training set. The

accuracy for the training set is 1.0 on the final epochs and the loss is very

close to zero, whereas validation set metrics are not perfect. With the

current implementation, more data would help prevent overfitting.

Because the validation set is used during training, a better evaluation of

the model’s generalization is obtained using the test set. The test set is

never used during training and provides the expected performance of the

model on data of the same quality, but that were never seen by the model.

Figure 4 shows the test set accuracy of all the models and training modes

analyzed. Finer details for the best performances for each one of the

models are presented in Table 3. Although the models are overfitting the

training data, their performance on the validation and test set is

appropriate, producing high levels of accuracy.

TABLE 1.—Genus and source for the images used in this experiment.

Genus Source

Beedeina Alexander (1954), Waddell (1966), Barrick and Wahlman

(2019), Wahlman (2019)

Fusulinella Waddell (1966), Wahlman (2019)

Parafusulina iDigBio, Stevens and Stone (2009), Kobayashi (2012)

Pseudofusulina iDigBio, Kossovaya et al. (2016), Kobayashi and Furutani

(2019), Thompson (1954)

Pseudoschwagerina Thompson (1954), Williams (1963), Wahlman (2019)

Schwagerina iDigBio, Williams (1963), Stevens and Stone (2009),

Wahlman (2019)

Triticites iDigBio, Williams (1963), Waddell (1966), Kobayashi and

Furutani (2019), Wahlman (2019)

Wedekindellina Waddell (1966), Barrick and Wahlman (2019), Wahlman

(2019)

TABLE 2.—Number of samples per class in each set. Note ‘‘class’’ here is

used in the machine learning not the biological sense.

Class Training Validation Test Total

Beedeina 61 9 18 88

Fusulinella 10 2 3 15

Parafusulina 14 3 5 22

Pseudofusulina 28 5 9 42

Pseudoschwagerina 17 3 5 25

Schwagerina 42 6 12 60

Triticites 49 7 14 70

Wedekindellina 14 2 4 20
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Figure 5 shows the confusion matrix computed on the test set using

InceptionV3 trained on the fine tune mode. Confusion matrices are helpful

to summarize the differences between the classifications performed by the

model and the classification performed by the paleontologists. Figures 6

and 7 show examples of fine-tuned InceptionV3 classification of images in

the test set and provide more details of the strengths and weaknesses of the

mode. The loss and accuracy evolution during training, the confusion

matrix, and the classification of the test set of all models and training

modes are available in the Online Supplemental Files.

The results (Figs. 5–7; Online Supplemental Files) indicate that the

misclassifications appear to be attributable to a combination of specimens’

attributes, and photograph characteristics. For example, the Inception V3

fine-tuned model classified one Beedeina eximia as Parafusulina. The

Beedeina eximia specimen is narrower perpendicular to the axis of coiling

than most of the Beedeina specimens used for training. We also observed a

tendency of models to misclassify Triticites into Beedeina, but not the

opposite (Beedeina samples classified as Triticites). Particularly, the

models commonly classify one specimen of Triticites bensonensis, one

Triticites ellipsoidalis, and one Triticites mcgrewensis as Beedeina. The

wall structure of Beedeina differs considerably from that of Triticites;

Beedeina has four-layered simple walls, whereas Triticites has only two, a

dark tectum layer and a thick complex keriothecal layer (Thompson 1964).

This difference is sufficiently large that distinguishing between the Middle

Pennsylvanian Beedeina and the Late Pennsylvanian Triticites is feasible

using only fragments of fusulinid (e.g., from well cuttings). Although we

are unsure why the models consistently misidentify these specimens, these

results indicate that the model does not employ wall structure for the

classification. Note that the wall microstructure occupies only a small area

of the total image—potentially unresolved by the technique, which might

explain the resultant confusion in classification. The models likely rely on

more obvious features such as shape and chamber complexity than wall

structure for the classification. A possible alternative to force the models to

focus on wall structure would be to modify the training data so that the

samples consist only of images of details of wall structure.

DISCUSSION

Despite the difference between the classification of ILSVRC’s natural

images and the thin-section fusulinid classification task, the CNN models

trained on ILSVRC learned to extract features useful for fossil

classification. Figure 4 and Table 3 show how different training modes

can affect the model’s performance and how fine tuning a model previously

trained on a large and complex dataset such as the ILSVRC outperformed

other training modes. Loss and accuracy for training and validation figures

in the Online Supplemental material show that, in general, the feature

extraction training mode seems to overfit the data very quickly. Randomly

initialized weights validation metrics apparently starts plateauing with a

high level of overfitting as well. Thus, updating the initial ILSVRC-based

weights on the CNN models with fine tuning is more effective than training

a model with randomly initialized weights, except for VGG19 in our case.

As the ILSVRC is a complex task in which samples in the same class are

very different from each other, the models need to learn very effective

transformations to properly differentiate the classes. Because thin-sections

have specific characteristics that differ from more common natural images,

such transformations must be updated for a proper thin-section

classification. Curiously, fine tuning VGG19 with our choice of hyper-

parameters led the model to a local minimum and degraded highly accurate

results found using feature extraction for such a model. It is likely that both

a hyperparameter search or more samples could help prevent degrading of

results for the model, but such analysis is beyond the scope of this study.

To our knowledge this is the first study providing details on the use of

thin-sections, commonly used in fusulinid biostratigraphy, as input for a

CNN model useful for identification of microfossils. Our dataset comprises

thin-section images from different sources and with differing qualities,

with many of the samples simply extracted from published literature. In the

approach we use here, the final user can simply provide an adequate image

and the CNN model would output the probability of assignment of that

specimen to a fusulinid genus—given that the model can choose only from

the classes (biological genus in this case) on which it was trained. This

study differs from Kong et al. (2016) because we use 2D thin-section

images (not 3D stacked images), and our process uses the complete image

during training and testing (not selected patches). We also achieved similar

accuracy (89%) in our best performing results, differentiating from among

more classes (eight genera) than Kong et al. (2016) (three species). Even

lacking an extensive database of images, the methodology we applied

achieved high levels of accuracy. Although we limited this study to

classification of genera, the proposed methods and workflow are applicable

to classification of fusulinid species. Groves and Reisdorph (2009) used

multivariate morphometry to show that statistically significant separation

of species of Beedeina is possible. With appropriate data and more samples

per species, our CNN methodology should enable classification to high

levels of accuracy because Beedeina has clearly morphologically distinct

FIG. 3.—Loss and accuracy evolution of train and validation set during training

InceptionV3 in the fine tune mode.
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species. However, in fusulinid paleontological work to date, some

disagreement exists in species classification owing to very slight

morphological differences. If ambiguity in classification exists amongst

the paleontologists, then the CNN will similarly have trouble providing

discrete classification.

Unlike a human interpreter who relies upon not only specimen visual

characteristics but also additional contextual information to perform

taxonomic classifications, the CNN operates from no prior knowledge of

specific attribute analysis, and performs the classification based on image

characteristics alone. This observation also implies that a CNN model, at

least with this current implementation, cannot be used to define a new

taxonomic division (e.g., a new species), although it may aid separation of

specimens that do fit into existing species. The set of transformations

created by the CNN are abstract and do not rely on specific phylogenetic

attributes; rather, the rules are akin to a cascading set of filters. But because

the CNN models have many such filters, it is often difficult to discuss the

interpretability of CNN models. CNN interpretability by itself is a topic in

research (e.g., Olah et al. 2017, 2018). When analyzing a new image, the

CNN model, as implemented in this study, will generate a set of

probabilities that a particular image belongs to the CNN’s learned classes,

never declaring the image is none of the pre-defined classes. In contrast,

some studies make use of CNN-generated features to decide whether or not

a new image is sufficiently similar to the data used for training (e.g.,

Schroff et al. 2015; Staar et al. 2019), which perhaps could have

applications for a quantitative measurement of difference between species.

Nonetheless, the methodology we implement here can be readily

generalized and will improve as new images are digitized and made

available to the scientific community. Considering that different taxonomic

divisions request different attribute analysis—e.g., during the interpretation

of conodonts, specimen surface texture is not as important as caudal point

and rostral point (e.g., Hogancamp and Manship 2016)—we envision that

CNN techniques will develop more significant modifications as they are

applied to other taxonomic groups.

Although our approach is similar to recent studies employing transfer

learning in image classification (e.g., Carranza-Rojas et al. 2017; Esteva et

al. 2017; Gomez Villa et al. 2017), the work we present achieves highly

reliable fossil classification using a limited domain-specific dataset three

orders-of-magnitude smaller than used in these referenced studies. Kong et

al. (2016) used data acquired with a fluorescence microscope with a form

of structured illumination to produce high-resolution, 3D image stacks. In

contrast, the data we use here was acquired through photomicrographs (2D)

taken with an inexpensive and easily available consumer camera and lens,

as well as many samples simply obtained by searching published literature,

meaning the input data set spanned images of varying vintage and quality.

We assume standard preparation of the fusulinid samples in all original

studies using methods that have been in use for decades by paleontologists.

Because we used such standard image data, we predict the methodology

used in this paper has potential for wide applicability and rapid deployment

with minimal start-up costs. As more image data are digitized, the

technique we use can be applied without the need for laboratory-specific

tools and knowledge, which represents a significant improvement over

previous approaches requiring specialty image acquisition for CNN (e.g.,

Zhong et al. 2017). In fact, many of our samples were simply extracted

from online (commonly scanned analog) versions from the published

literature, making our dataset somewhat irregular.

As digitization of legacy data accelerates, the approach presented here

will improve with more detailed image processing. Image segmentation

techniques can be used to clip the thin-sections containing significant

presence of biotic or abiotic components (noise) besides the organism

being analyzed; this will help both in the CNN training and in sequential

sample classification. With more data available, object detection—the

computer vision task to detect occurrences of objects of different classes

(Szegedy et al. 2013; Agarwal et al. 2018; Zhao et al. 2018)—can be

applied, increasing the potential of paleo-tailored CNNs in the identifica-

FIG. 4.—Test set accuracy for the five different models using three different training modes.

TABLE 3.—Accuracy for the highest performing training mode for each

one of the models.

Model Mode Accuracy

VGG19 feature extraction 0.81

InceptionV3 fine tuning 0.89

MobileNetV2 fine tuning 0.87

ResNet50 fine tuning 0.80

DenseNet121 fine tuning 0.87
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tion of varying taxa captured in the same sample. The technique we

demonstrated here is generalized and modified to suit the identification of

different fossil groups, such as conodonts, ostracods, ammonites, and

others, as long as the specimen can be classified with a 2D representation

(thin-section or comparable digital image).

However, we acknowledge that CNNs may be harder to apply to other

fossil groups or to provide more detailed boundaries for Foraminifera

classification. For example, in trilobites it is unusual to find a complete

specimen; in most cases the membrane connecting the thorax, cephalon,

and pygidium will deteriorate, causing the exoskeleton to fall apart. This

leads to the need to make identifications using fragmented and isolated

sclerites. Using trilobite sclerite images as a means of training and

classification would likely be more challenging for CNN projects than a

dataset with complete specimens, such as those available for other fossil

groups. Trilobite sclerites are problematic because they are single pieces of

a trilobite; however, different orientations of thin sections of the

Foraminifers pose a similar problem (e.g., Fig. 2). Different cross sections

of a fusulinid specimen will produce different appearances and no cross

section considers external characters. However, the results we obtained

with CNN models trained with oriented sections demonstrate that the

approach can be useful. Moreover, CNN performance for the classification

of insects provides promising results using datasets composed of body

parts (e.g., Valan et al. 2019)

A major problem with Foraminifers is the gradation of morphotypes

between species. Usually such gradation is addressed by a paleontologist

examining a series of samples spanning one form to the other, and

choosing an appropriate boundary between species. The CNN model might

miss identification of such a boundary using the methodology described

here.

As the CNN models are trained with expert-labeled data, such expertise

is captured in the model’s weights in the deep neural network. Therefore, a

CNN model, trained on different collections and having input from

different paleontologist experts, provides a means of sharing collections

and interpretations across great distances. A fusulinid expert working in

the United States can help train a CNN fusulinid classifier and such a

model (and an abstract form of the expert knowledge) can be used in Asia

with no significant cost; in the meantime, researchers working with

Saccorhytus fossils in China (Han et al. 2017) can train another CNN to

classify their data. Such ease in the exchange of knowledge can help

validate interpretations of data globally.

If we are able to capture and mix different paleontological expertise

(training CNNs to identify a wide range of taxa), such models can be

helpful to identify specimens that might have previously been misclassi-

fied. The combination of CNN as an easy-to-use but highly accurate tool

and the digitization of stored paleontological samples can provide a rapid

method to bring collections residing for decades in museum drawers into

use. With easy access to these valuable data, the community can then apply

modern statistics to better analyze spatial and temporal distributions,

construct more precise assemblages, or simply track evolutionary trends

more effectively. We should not discount the ‘‘discovery’’ component;

museums commonly have a special exhibition of a fossil or bone that was

collected decades ago and was only now identified as a new genus/species;

this activity remains in the realm of the expert paleontologist.

FIG. 5.—Confusion matrix for InceptionV3 trained in the fine tune mode. The confusion matrix shows the expert provided labels versus the model predicted labels. A

perfect agreement between model and expert yields a matrix with values only on the main diagonal. Zero values are omitted.
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CONCLUSIONS

This paper outlines a highly effective and inexpensive approach to show

that CNNs can correctly identify fusulinid specimens to at least genus level

with a very high success rate. The most evident drawback of the

methodology we apply here is its current dependency on a large quantities

of data to generate robust classification models. The dataset we use was

created with relatively few original images, even though it uses images

from different sources. Notwithstanding, our tests show that CNNs can

correctly identify fusulinid specimens to genus level with a significantly

high probability when compared to the other taxonomic classification

options. With access to more labeled data, training can be improved,

enabling the generation of a model sufficiently robust to overcome

complications such as the presence of more than one specimen, geologic

noise (e.g., background rock matrix), and other issues. The move towards

FIG. 6.—Examples of images in the test set classified by InceptionV3 trained on the fine tuning mode. The titles of each of the images are the classification provided by the

paleontologists in their original publication, while the text boxes inside the thin-section images are the classification provided by the CNN model. The text box is green when

the model assigned the same class (biological genus) as the paleontologist, and red otherwise. The value in the text box shows the probability assigned by the CNN model for

that class. A) Beedeina aff. F. whitakeri Stewart (OU 9333). B) Beedeina cf. F. novamexicana Needham (OU 9300). C) Beedeina euryteines Thompson (OU 9306). D)

Beedeina eximia (Wahlman 2019, fig. 12d). E) Beedeina girtyi (Barrick and Wahlman 2019, pl. 2, fig. 12). F) Beedeina girtyi (Barrick and Wahlman 2019, pl. 2, fig. 13). G)

Beedeina girtyi (Wahlman 2019, fig. 12g). H) Beedeina haworthi (Barrick and Wahlman 2019, pl. 2, fig. 9). I) Beedeina insolita Thompson (OU 9279). J) Beedeina insolita

Thompson (OU 9280). K) Beedeina insolita Thompson (OU 9281). L) Beedeina insolita (Wahlman 2019, fig. 12v). M) Beedeina leei (Wahlman 2019, fig. 12s). N) Beedeina

megista (Wahlman 2019, fig. 12b). O) Beedeina mutabilis Waddell (OU 9283). P) Beedeina plattensis Thompson (OU 9297). Q) Beedeina sp. (OU 9363). R) Beedeina sp.

(OU 9366). S) Fusulinella aff. F. devexa (OU 9970). T) Fusulinella dakotensis Thompson (OU 9276).
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digitization of biological and paleontological collections at numerous

museums will provide the big data enhancement to enable assessment of

the CNN methodology for examples of fossils from around the world, and

ultimately identification to species level, revolutionizing the use of fossil

identification in a host of studies.

Efforts in data digitization are important initiatives to protect scientific

knowledge. The approach documented here contributes to such endeavors

and aids the use of biostratigraphic data in the scientific community.

Biological variation, differences in specimen size, different imaging

techniques and other considerations will complicate the automation of the

classification process, but can ultimately lead to deeper understanding, and

significant enhancement for all work that relies upon fossil identification.

Ultimately, such automation does not replace the expert paleontologist, but

enables more rapid and efficient implementation of classification tasks,

freeing up time and expertise for exploration of more complex

interpretations and concepts.
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