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Summary 

 

Convolutional Neural Networks (CNN)-based fault 

detection method is an emerging technology that shows great 

promise for the seismic interpreter.  One of the more 

successful deep learning CNN methods uses synthetic data 

to train a CNN model. Although the synthetics are all normal 

faults, a common CNN practice is to augment the training 

data by rotating and flipping each image.  Different types of 

noise are added to the synthetics to allow the algorithm to 

learn to see through the noise as a human interpreter does. A 

more traditional fault analysis workflows is based on seismic 

attributes and image processing. In contrast to CNN, the 

image processing “convolutions” have been predetermined 

based on concepts of signal analysis In this paper, we build 

a CNN architecture to predict faults from 3D seismic data, 

and then compare the results to those obtained using an 

image processing-based fault detection for datasets 

exhibiting different data quality. 

 

Introduction 

 

Traditional fault detection methods such as eigen-structure 

coherence (Gersztenkorn and Marfurt, 1999), gradient 

structure tensor (Bakker, 2002), energy-ratio similarity 

(Chopra and Marfurt, 2007), variance (Van Bemmel and 

Pepper, 200), and other variations of coherence algorithms 

have been widely used to highlight faults on 3D seismic data. 

However, because field seismic data also contain random 

noise and other stratigraphic features that exhibit similar 

discontinuous features, interpreters still need to spend time 

to differentiate faults from other incoherent anomalies. One 

way to address this is problem is to apply a filter to the 

coherence image. Randen et al. (2001) used a swarm 

intelligence algorithm, Cohen et al. (2006) a local fault 

extraction, Barnes (2006) eigenvector analysis of moment 

tensors followed by dilation and expansion,  Wu and Hale 

(2015) an image processing technique, and Qi et al. (2018) 

an extension of Barnes workflow followed by an LoG filter  

and skeletonization.    

 

CNN is a rapidly evolving technology that has applications 

that range from the recognition of faces for airport security 

to guiding decisions made by self-driving cars. CNN 

methods require large amounts of training data. For fault 

detection this implies a large collection of interpreted (or 

“labeled”) faults.  Over the past three years Huang et al. 

(2017), Guo et al. (2018), Zhao and Mukhopadhyay (2018), 

Xiong et al. (2018), Li et al. (2019), Zhao (2019), and Wu et 

al. (2018, 2019) have shown that CNN can be trained to 

detect faults, differentiating them from other non-fault 

discontinuities in the seismic data. 

 

In this paper, we build a deep learning U-net convolutional 

neural network architecture and apply it to predict faults 

from two datasets. The first dataset was acquired from 

offshore New Zealand and contains many vertical normal 

faults. The second data set is from onshore Gulf of Mexico 

and exhibits listric faults. We then analyze the same data set 

using a more traditional seismic attribute/fault 

enhancement/skeletonization workflow described by Qi et 

al. (2017 and 2018). We then compare the two results and 

draw preliminary conclusions. 
 

The CNN-based fault detection workflow 

 

There are several tasks required in CNN image classification 

and segmentation. First, we need to train the network, using 

a suite of small 3D volumes that are “labeled” as to whether 

or not the exhibit faulting. The direct way to construct such 

training data is to have an interpreter manually pick faults on 

a seismic amplitude volume.  The subsequent learning (such 

as a stochastic or mini-batch gradient descent) algorithm 

then evaluates and updates the internal CNN model 

parameters. However, using real seismic data to generate 

training data requires enormous amounts of data to work 

well. Generating a large amount of data from real seismic 

amplitude data for a given survey is very time consuming. 

Organizationally, capturing and labeling manually picked 

faults from conventional workflows requires a significant IT 

investment. 

 

An alternative method is to generate the training data by 

creating faulted synthetic seismic amplitude volumes. An 

advantage of using synthetic data is that we can easily define 

the total number of training samples and the patch size used 

for each label, which is the sample size fed into a CNN 

model. In this paper, we build totally 250 3D synthetic 

seismic data volumes with patch size of 128×128×128. In 

each seismic data volume, parameters of fault dip, azimuth, 

displacement are randomly chosen to generate various faults. 

The reflectors and stratigraphic variations are also randomly 

generated by adding vertical planar shifts and multiple 2D 

Gaussian lateral folds. The seismic spectrum, noise, and 

bandwidth is additionally considered to vary across different 

training samples. We randomly generate reflector space and 

set the peak frequency of Ricker wavelet between 30 Hz to 

50 Hz. Representative training samples are shown in Figure 

1. The first training sample exhibits very high signal-to-
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CNN vs. fault enhancement 
 

noise ratio with limited lateral folding whereas the second 

training sample is noisy and its reflectors are strongly folded. 

Note the steeply dipping faults in the second synthetic 

seismic model are difficult to visually identify. 

 

  
Figure 1. Vertical (a) inline, (b) crossline, and (c) time slices through 

a training seismic model of seismic amplitude and corresponding 

“labeled” fault (d) Inline slice, and (e) crossline slice, and (f) time 
slice through another training seismic model and its associated fault 

label. Note that the first model exhibits a higher signal-to-noise ratio 

with faults are easily interpreted on the amplitude section, whereas 
the faults in the noisier, folded, second model are more difficult to 

see.  

 

 
Figure 2. The U-Net architecture has nine blocks where each block 

contains two filter layers. In the first block, there are 25 or 32 filters. 

The number of filters increase down to the bottom layer consisting 
of 29 or 512 filters. The number of filters then decrease to last block 

containing 25 of 32 filters. In the contracting part of the U-Net 

architecture, there is maximum pooling operator between each 
block. The expansive part of the model uses an upsampling operator 

to reverse the feature map back to the 128×128×128 original patch 

size. 

 

Because the training data is synthetic, we don’t need to 

perform additional data pre-conditioning. The only data 

augmentation we applied is data rotation to increase the 

number of models by rotating each training data by 90 

degrees about the x, y, and z axes to create additional 3 

volumes. 

 

We build a modified U-Net architecture CNN model based 

on that proposed by Ronneberger et al. (2015). Following 

Ronneberger et al. (2015), Li et al. (2019), and Wu et al.   

(2019), we modify the number of filters and layers to 

evaluate the performance of a pre-trained model applications 

to various faults in different real datasets. Figure 2 show our 

U-Net architecture. We add nine blocks to extract features 

where each block contains two filter layers followed by a 

max pooling operator. The input is fed into a concatenation 

of different convolutional filters that are then fed into a 

decoder that localizes the feature.  The final network consists 

of 18 convolutional 3×3×3 filter layers.  

 

 

 

 
Figure 3. Vertical slices through (a) seismic amplitude, (b) seismic 

amplitude co-rendered with fault probability computed from the 
image processing-based fault enhancement and skeletonization 

workflow, and (c) seismic amplitude co-rendered with fault 

probability computed from CNN U-net architecture described in 

Figure 2. Most of the reflectors exhibit a high signal-to-noise ratio 

and represent interfaces between siltstone, sand, and shale. 

 

Unlike the typical autoencoder architecture that compresses 

data linearly, the U-Net architecture performs 

deconvolution, such that the output size of the U-Net 

architecture is equal to the input size. For this reason, we pad 

the output of each convolution to be the same size as the 

input. The maximum pooling sizes are 2×2×2. In the 
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CNN vs. fault enhancement 
 

expansive part, the mathematically transposed convolutional 

operator is applied to perform upsampling of the feature 

maps using the learnable parameters. Our model only 

outputs one channel feature (there is or is not a fault) and 

uses a sigmoid activation function in the last layer. The loss 

function is binary cross entropy. 

 

 
Figure 4. Time slices at t=1.08s through (a) seismic amplitude co-

rendered with fault probability computed from the image 
processing-based fault enhancement and skeletonization workflow, 

and (b) seismic amplitude co-rendered with fault probability 
computed from CNN U-net architecture. 

 

Image processing-based fault detection workflow 

 

The image processing-based fault detection method we 

applied is the fault enhancement and skeletonization method 

described by Qi et al. (2017), Qi et al. (2018), and Lyu et al. 

(2019). This method inputs coherence and outputs fault 

probability that is iteratively filtered by energy-weighted 

directional Laplacian of a Gaussian (LoG) filters. The 

second-order moment tensor is built from the coherence 

attribute. The third eigenvector of the tensor represents the 

perpendicular direction of planar discontinuities. 

Discontinuities on coherence images are enhanced by the 

directional LoG filter through fault planes, and then 

skeletonized through the direction perpendicular to the fault 

planes. 

 

 

 
Figure 5. Vertical slices through (a) seismic amplitude showing 
listric faults, (b) seismic amplitude co-rendered with fault 

probability computed from the image processing-based fault 

enhancement and skeletonization workflow, (c) seismic amplitude 
co-rendered with fault probability computed from the proposed 

CNN U-net architecture, and (d) seismic amplitude co-rendered 

with fault probability computed from the simplified CNN U-net 
architecture used in Wu et al. (2019). Neither algorithm is able to 

map the soling out parts of the listric faults easily identified by a 

human interpreter. 
 

Field data applications 

 

The first dataset is acquired from offshore New Zealand. We 

apply both CNN-based and image processing-based fault 

detection methods to compute fault probability. Figure 3 

shows the comparison through vertical slices. Figure 3b 

shows seismic amplitude co-rendered with the image 

processing-based fault enhancement and skeletonization 

fault probability. Following Qi et al. (2018), we apply 

structure-oriented filtering, footprint suppression, and also 

compute multispectral coherence. The image processing-

based fault probability exhibits good fault resolution. Note 

faults penetrating the middle chaotic mass transport deposits 
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CNN vs. fault enhancement 
 

are also detected. Figure 3c shows the fault probability 

computed from the proposed CNN U-Net architecture. Note 

that the CNN fault probability image exhibits less incoherent 

noise but also other non-fault related discontinuities than the 

image processing-based fault probability image. Fault 

anomalies in both fault probability are sharp and continuous. 

The image processing-based fault probability is after 

skeletonization; thus, the faults in Figure 3b exhibit sharper 

than the faults in Figure 3c. Figure 4 shows a time slice 

comparison. Note faults in both fault probability volumes are 

very sharp and continuous.  

 

 

 

Figure 6. Time slices at t=1.52s through (a) seismic amplitude co-

rendered with fault probability computed from the image 
processing-based fault enhancement and skeletonization workflow, 

and (b) seismic amplitude co-rendered with fault probability 

computed from the proposed CNN U-net architecture. 
 

The major faults in our second test data are high angle 

dipping as well as soling out listric faults. This dataset is 

contaminated by migration artifacts and random noise 

resulting in a lower signal-to-noise ratio, especially in the 

deep area. Figure 5a show the vertical slices through the 

seismic amplitude volume. We first compute the image 

processing-based fault probability (Figure 5b). Because 

coherence maps all discontinuities including faults and 

stratigraphic discontinuities, those non-fault planar 

discontinuities are also enhanced through image processing 

workflow. The enhanced fault probability looks very noisy, 

although we are still able to recognize some major faults. 

Figure 3c show the CNN fault probability computed from 

the proposed U-Net architecture. The CNN fault probability 

exhibits cleaner fault anomalies but is also unable to map the 

soled-out part of the listric faults easily mapped by a human 

interpreter. Although CNN still shows non-fault planar 

discontinuities, more of these artifacts are rejected compared 

with the image processing fault probability. We also 

compare the proposed CNN architecture with a simplified 

CNN architecture. The major differences between the two 

CNN architecture are layer and filter number. Note that, the 

proposed CNN workflow shows slightly more continuous 

faults (indicated by green arrows in Figure 5) and less 

artifacts (indicated by red arrows). Figure 6 compares time 

slices through fault probability volumes computed using 

image processing and CNN. 

 

Conclusions 

 

In this paper, we have introduced a U-Net architecture to 

fault detection and compared it to a more traditional 

attribute/image processing fault mapping workflow. We 

trained the CNN model using synthetic seismic amplitude 

and fault labels computed for normal faults. The U-Net 

architecture CNN performs well on fault detection without 

any human-computer interactive work. The computational 

cost of training a CNN model is high, but extremely low on 

data prediction. In contrast the cost of the image processing-

based method increases linearly with the size of the data 

volume. The CNN method was trained only to be sensitive 

to faults, resulting in two classes (fault and not-a-fault) 

which helped reject more stratigraphic discontinuities. The 

image processing fault probability exhibits a better 

performance in detecting vertical normal faults in a higher 

signal-to-noise dataset. The CNN method performs better 

than image processing method in detecting high angle 

dipping faults. Both methods failed to completely map listric 

faults. We anticipate that augmenting the training data with 

a suite of listric fault training models will improve the CNN 

performance. 

 

10.1190/segam2020-3428171.1
Page    1114

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d 

11
/0

4/
20

 to
 6

8.
97

.1
18

.2
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

81
71

.1



REFERENCES

Bakker, P., 2002, Image structure analysis for seismic interpretation: PhD thesis, Delft University of Technology.
Barnes, A. E., 2006, A filter to improve seismic discontinuity data for fault interpretation: Geophysics, 71, P1–P4, doi: https://doi.org/10.1190/1

.2195988.
Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization: SEG.
Cohen, I., and R. R. Coifman, 2002, Local discontinuity measures for 3-D seismic data: Geophysics, 67, 1933–1945, doi: https://doi.org/10.1190/1

.1527094.
Gersztenkorn, A., and K. J. Marfurt, 1999, Eigenstructure based coherence computations as an aid to 3D structural and stratigraphic mapping: Geo-

physics, 64, 1468–1479, doi: https://doi.org/10.1190/1.1444651.
Guitton, A., 2018, 3D convolutional neural networks for fault interpretation: 80th Annual International Conference and Exhibition, EAGE, Extended

Abstracts.
Guo, B., L. Li, and Y. Luo, 2018, A new method for automatic seismic fault detection using convolutional neural network: 88th Annual International

Meeting, SEG, Expanded Abstracts, 1951–1955, doi: https://doi.org/10.1190/segam2018-2995894.1.
Huang, L., X. Dong, and T. E. Clee, 2017, A scalable deep learning platform for identifying geologic features from seismic attributes: The Leading

Edge, 36, 249–256, doi: https://doi.org/10.1190/tle36030249.1.
Li, S., C. Yang, H. Sun, and H. Zhang, 2019, Seismic fault detection using an encoder–decoder convolutional neural network with a small training

gset, Journal of Geophysics and Engineering, 16, 175–189, doi: https://doi.org/10.1093/jge/gxy015.
Lyu, B., J. Qi, G. Machado, F. Li, and K. J. Marfurt, 2019, Seismic fault enhancement using spectral decomposition assisted attributes: 89th Annual

International Meeting, SEG, Expanded Abstracts, 1938–1942, doi: https://doi.org/10.1190/segam2019-3215703.1.
Ronneberger, O., P. Fischer, and T. Brox, 2015, U-Net: Convolutional networks for biomedical image segmentation: International Conference on

Medical Image Computing and Computer-Assisted Intervention, 234–241.
Randen, T., S. Pedersen, and L. Sønneland, 2001, Automatic extraction of fault surfaces from three-dimensional seismic data: 71st Annual

International Meeting, SEG, Expanded Abstracts, 551–554, doi: https://doi.org/10.1190/1.1816675.
Qi, J., B. Lyu, A. AlAli, G. Machado, Y. Hu, and K. J. Marfurt, 2018, Image processing of seismic attributes for automatic fault extraction: Geo-

physics, 84, no. 1, O25–O37, doi: https://doi.org/10.1190/geo2018-0369.1.
Qi, J., G. Machado, and K. J. Marfurt, 2017, A workflow to skeletonize faults and stratigraphic features: Geophysics, 82, O57–O70, doi: https://doi

.org/10.1190/geo2016-0641.1.
Van Bemmel, P. P., and R. E. Pepper, 2000, Seismic signal processing method and apparatus for generating a cube of variance values: U.S. Patent

6,151,555.
Wei, X., X. Ji, Y. Ma, Y. Wang, N. M. Ben Hassan, and Y. Luo, 2018, Seismic fault detection with convolutional neural network: Geophysics, 83,

O97–O103, doi: https://doi.org/10.1190/geo2017-0102.1.
Wu, X., L. Liang, Y. Shi, and S. Fomel, 2019, FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D

seismic fault segmentation: Geophysics, 84, IM35–IM45, doi: https://doi.org/10.1190/geo2018-0646.1.
Wu, X., and D. Hale, 2015, 3D seismic image processing for faults: Geophysics, 81, IM1–IM11, doi: https://doi.org/10.1190/geo2015-0380.1.
Zhao, T., and P. Mukhopadhyay, 2018, A fault-detection workflow using deep learning and image processing: 88th Annual International Meeting,

SEG, Expanded Abstracts, 1966–1970, doi: https://doi.org/10.1190/segam2018-2997005.1.
Zhao, T., 2019, 3D convolutional neural networks for efficient fault detection and orientation estimation: 89th Annual International Meeting, SEG,

Expanded Abstracts, 2418–2422, doi: https://doi.org/10.1190/segam2019-3216307.1.

10.1190/segam2020-3428171.1
Page    1115

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d 

11
/0

4/
20

 to
 6

8.
97

.1
18

.2
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

81
71

.1

http://dx.doi.org/10.1190/1.2195988
http://dx.doi.org/10.1190/1.2195988
http://dx.doi.org/10.1190/1.2195988
http://dx.doi.org/10.1190/1.2195988
http://dx.doi.org/10.1190/1.1527094
http://dx.doi.org/10.1190/1.1527094
http://dx.doi.org/10.1190/1.1527094
http://dx.doi.org/10.1190/1.1527094
http://dx.doi.org/10.1190/1.1444651
http://dx.doi.org/10.1190/1.1444651
http://dx.doi.org/10.1190/1.1444651
http://dx.doi.org/10.1190/1.1444651
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1093/jge/gxy015
http://dx.doi.org/10.1093/jge/gxy015
http://dx.doi.org/10.1093/jge/gxy015
http://dx.doi.org/10.1190/segam2019-3215703.1
http://dx.doi.org/10.1190/segam2019-3215703.1
http://dx.doi.org/10.1190/segam2019-3215703.1
http://dx.doi.org/10.1190/segam2019-3215703.1
http://dx.doi.org/10.1190/1.1816675
http://dx.doi.org/10.1190/1.1816675
http://dx.doi.org/10.1190/1.1816675
http://dx.doi.org/10.1190/1.1816675
http://dx.doi.org/10.1190/geo2018-0369.1
http://dx.doi.org/10.1190/geo2018-0369.1
http://dx.doi.org/10.1190/geo2018-0369.1
http://dx.doi.org/10.1190/geo2018-0369.1
http://dx.doi.org/10.1190/geo2016-0641.1
http://dx.doi.org/10.1190/geo2016-0641.1
http://dx.doi.org/10.1190/geo2016-0641.1
http://dx.doi.org/10.1190/geo2016-0641.1
http://dx.doi.org/10.1190/geo2017-0102.1
http://dx.doi.org/10.1190/geo2017-0102.1
http://dx.doi.org/10.1190/geo2017-0102.1
http://dx.doi.org/10.1190/geo2017-0102.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2019-3216307.1
http://dx.doi.org/10.1190/segam2019-3216307.1
http://dx.doi.org/10.1190/segam2019-3216307.1
http://dx.doi.org/10.1190/segam2019-3216307.1

