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Seismic attribute selection for machine-learning-based facies analysis

Jie Qi', Bo Zhang?, Bin Lyu', and Kurt Marfurt’

ABSTRACT

Interpreters face two main challenges in seismic facies analy-
sis. The first challenge is to define, or “label,” the facies of in-
terest. The second challenge is to select a suite of attributes that
can differentiate a target facies from the background reflectivity.
Our key objective is to determine which seismic attributes can
best differentiate one class of chaotic seismic facies from an-
other using modern machine-learning technology. Although
simple 1D histograms provide a list of candidate attributes, they
do not provide insight into the optimum number or combination
of attributes. To address this limitation, we have conducted an
exhaustive search whereby we represent the target and back-
ground training facies by high-dimensional Gaussian mixture
models (GMMs) for each potential attribute combination. The
first step is to choose candidate attributes that may be able

to differentiate chaotic mass-transport deposits and salt diapirs
from the more conformal, coherent background reflectors. The
second step is to draw polygons around the target and back-
ground facies to provide the labeled data to be represented
by GMMs. Maximizing the distance between all GMM facies
pairs provides the optimum number and combination of attrib-
utes. We use generative topographic mapping to represent the
high-dimensional attribute data by a lower dimensional 2D
manifold. Each labeled facies provides a probability density
function on the manifold that can be compared to the probability
density function of each voxel, providing the likelihood that a
given voxel is a member of each of the facies. Our first example
maps chaotic seismic facies associated with the development of
salt diapirs and minibasins. Our second example successfully
delineates karst collapse underlying a shale resource play from
north Texas.

INTRODUCTION

Machine learning for seismic facies classification is often de-
scribed as being a “pattern recognition” problem, in which the ob-
jective is to differentiate the pattern exhibited by a target facies from
the background seismic reflectivity pattern. Less well recognized
is that such facies classification consists of two different pattern
recognition problems. For concreteness, let us consider the example
of a relatively thick package of marine shale. The first types of pat-
terns are those readily seen by the human interpreter, in which the
shale package may be described as being low amplitude, conformal,
broadband, and coherent. These patterns are measured by seismic
attributes such as the rms amplitude, reflector parallelism, spectral
components, and coherence, respectively. The second types of
patterns are those measured by machine-learning algorithms whose
input consists of multiple seismic attribute volumes. Two attribute
volumes can be crossplotted, whereas a third attribute can be

assigned to a color in the crossplot. Analysis of more than three
attribute volumes requires dimensionality reduction to allow human
interaction. The more popular dimensionality reduction techniques
include principal component analysis (PCA), independent compo-
nent analysis (ICA), self-organizing mapping (SOM), and genera-
tive topographic mapping (GTM) (Qi and Castagna, 2013; Roy
et al., 2014; Roden et al., 2015; Zhao et al., 2018; Lubo-Robles
and Marfurt, 2019), in which the projections used in the latter
two mapping algorithms are “learned” from the data and form what
are called unsupervised machine-learning algorithms.

As noted by Nicolaus Steno (e.g., Cutler, 2003), most sedimentary
rocks are deposited layer by layer, such that the bulk of the seismic
sedimentary section consists of piecewise conformal, coherent reflec-
tions. In contrast, chaotic facies are less common; therefore, they
provide a good candidate for seismic facies classification. In theory,
the interior of a perfectly homogeneous salt dome should be reflec-
tion free. For all but the most carefully acquired and processed 3D
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seismic surveys, the interior of a salt dome consists of random noise
whose basis is a mixture of inaccurately imaged multiples, converted
waves, and head waves. Karst collapse features are also often de-
scribed as chaotic, with roof collapse over a subterranean void result-
ing in rotated, broken reflectors separated by random fill. Subsequent
diagenetic alteration may further reduce any remaining coherent re-
flecting horizons. Diagenesis may also remove the internal reflection
boundaries of carbonate reefs resulting in a low-amplitude, chaotic
seismic response, which Bubb and Hatledid (1977) identify as one
of several carbonate buildup indicators. The core of volcanic cones
that may consist of multiple pipes and dikes are also chaotic, resulting
in an image that is easy to confuse with those of carbonate buildups
(Infante-Paez and Marfurt, 2018). Mud volcanoes and shale diapirs
often appear as chaotic, with shale diapirs often containing internal
blocks of coherent reflectors (Haskell et al., 1999). Mass transport
deposits (MTDs) are somewhat more heterogeneous. For well-im-
aged surveys, the toe of an MTD may look quite chaotic, whereas
near the updip end, the MTD may appear as a suite of well-imaged,
rotated blocks (Moscardelli and Wood, 2007). On less-well-imaged
seismic data, the entire MTD may appear to be chaotic. Meldahl et al.
(1999) provide one of the earliest successes in seismic chaotic facies
analysis using attributes and machine learning to delineate gas chim-
neys, where the chaotic pattern is interpreted to be due to either ab-
sorption of energy or to decreases in velocity and thus inaccurate
imaging, both of which are attributed to the presence of gas in the
system.

Interpreters face two main challenges in seismic facies analysis.
The first challenge is for a human interpreter to define, or label, the
facies of interest. Accurately defining the 3D extent of a given seis-
mic facies takes an understanding of geologic processes and the lim-
its of seismic acquisition, processing, and imaging. Machine learning
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Figure 1. Table of dip, amplitude, frequency, and texture attribute responses to three
chaotic facies as well as to a conformal reflector background. An experienced interpreter
would use one or more of these attributes to visually distinguish one facies from another.
For this reason, these attributes serve as good candidates for machine-learning-based

multiattribute facies classification.
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is based on accurate training data, which in this application is pro-
vided by a skilled interpreter defining polygons about facies of in-
terest. The second challenge is to select a suite of attributes that
can differentiate a target facies from the background reflectivity. Un-
fortunately, there are relatively few interpreters who possess a deep
understanding of the geology of a given exploration play and a deep
understanding of the sensitivity of an ever-expanding collection of
seismic attributes to geology.

One partial solution in determining “which attributes work best”
is to create a table of images that can be searched, showing the re-
sponse of each attribute to a given geologic feature. Although use-
ful, the seismic attribute response is a function not only of the
geology but also of the seismic data quality, where the interior of
a salt dome in the Gulf of Mexico will exhibit one pattern on older,
narrow-azimuth time-migrated data and a different pattern on more
modern, wide-azimuth depth-migrated data. We therefore propose
using a more statistical attribute selection workflow that if success-
ful, could be used most seismic interpreters.

Hampson et al. (2001) use attributes to predict well-log properties
such as porosity using a workflow called stepwise multilinear regres-
sion. The first step is to compute linear correlations between the
desired property and attributes extracted about the well, introducing
a certain amount of nonlinearity by creating additional attribute vol-
umes that are squares, square roots, reciprocals, or logarithms of the
original candidate attributes. The quality of each attribute is evaluated
not only by its correlation but also by its error in predicting values not
used in the original correlation. Once ranked by their correlation co-
efficient, the second step is to perform a multilinear regression of the
two best attributes. If the prediction of the log property used for val-
idation improves, we add the third most correlated attribute, contin-
uing the process until the validation shows an increase in error. In
Hampson et al.’s (2001) workflow, these n best
attributes are then provided to a neural network
that generates a nonlinear correlation between the
n attributes and the desired log property.

A potential shortcoming in this workflow is
that when selecting the two best of n attributes,
attributes 2 and 3, may provide a better fit than
more highly ranked attributes 1 and 2. This ob-
servation suggests a more exhaustive search of
all n//(n — 2)!2! two-attribute combinations, val-
idating each combination against data not used in
the regressions. The two-attribute test would then
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contrast be followed by n//(n — 3)/3/ three-attribute tests.
If one of the three-attribute combinations is better
than the two-attribute combinations, we examine
four-attribute combinations, and so on, until the

Broadband validation error increases.
response The objective of this paper is to determine

which seismic attributes are most useful for the
delineation of chaotic seismic facies using modern
machine-learning technology. We replace the
simple 1D histogram attribute selection criteria
used by Qi et al. (2016) to discriminate among
salt domes, mass transport complexes, and a
background of conformal reflectors with multidi-
mensional histograms represented by Gaussian
mixture models (GMMs). We begin with a sum-
mary of those attributes that we think are candi-

homogeneity
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dates able to differentiate chaotic features from the more conformal,
coherent background reflectors. Then, we propose a GMM-based
attribute selection workflow to evaluate attributes by their histogram
models associated with different labeled facies. Next, we construct
and then compare GMM clusters of a subset of interpreted (labeled)
seismic lines and time slices to determine which of the candidate
attributes best differentiate the target chaotic facies from the more
conformal, coherent background. Given this suite of attributes, we per-
form an unsupervised GTM classification, projecting the labeled facies
onto it to map our interpretation to the GTM manifold, which in
turn can be used to label the entire seismic data volume. Our first ex-
ample is that of mapping chaotic seismic facies representative of salt.
We repeat this workflow for our second example of karst collapse.

SEISMIC ATTRIBUTES

For a chaotic facies, the candidate attributes for computer-as-
sisted seismic facies analysis should be able to measure features
such as reflector dip, amplitude or energy, spectral response, and
internal textures. Chaotic facies in a given seismic volume usually
exhibit similar but not identical attribute responses, allowing a
skilled interpreter to differentiate mass transport depositions from
turbidities from salt diapirs. We summarize the attribute response
of three chaotic facies that are often seen in the Gulf of Mexico
and the Fort Worth Basin, Texas (Figure 1).

For machine-learning-based facies analysis, gray-level cooccur-
rence matrix (GLCM) texture attributes are often quite useful in dif-
ferentiating channels, salt domes, mass transport complexes, and

karst collapse features (Matos et al., 2011; Qi et al., 2016; Di and
Gao, 2017; de Lima and Marfurt, 2018; Zhao et al., 2018). GLCM
texture attributes statistically measure the lateral change in reflec-
tivity. Compared to geometric attributes such as curvature and aber-
rancy, the GLCM texture attributes play a more significant role in
facies classification, in part because they are more sensitive to
heterogeneities in the sedimentary package rather than to a larger
scale subsequent tectonic overprint. There are several kinds of
GLCM attributes: Some of them are “redundant” or even inferior
to coherence, energy, chaos, and other more commonly used attrib-
utes (Barnes, 2007, 2016; Marfurt, 2018). For example, GLCM
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Chaotic components of an MTD

a;

Figure 3. A cartoon showing the necessity of the 2C GMM of an
MTD. One Gaussian represents the chaotic components, and the other
represents the coherent, rotated block component of an MTD.
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Figure 2. Workflow illustrating the steps used in our GMM-based attribute selection. Begin by defining training data by picking facies to be
differentiated. Each voxel within the picked polygons provides an N-dimensional attribute vector. Next, select one of 2V — 1 possible attribute
combinations and compute the GMM for each facies, and compute the Bhattacharyya distances between the GMM representations of each
facies. Then, sum up the distances between all facies to compute a cumulative distance for this attribute combination. Repeat the process for all
other attribute combinations. The winning attribute combination is that with the highest average cumulative distance.
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entropy has a strong inverse correlation to GLCM homogeneity
(Infante-Paez and Marfurt, 2019).

The most useful statistical measures of the seismic spectrum in-
clude the peak amplitude, peak frequency, spectral mean, spectral
skewness, spectral slope, and spectral bandwidth. Among these
attributes, the peak amplitude and peak frequency are broadly used
to estimate thin-bed tuning in seismic interpretation. The other spec-
tral measurements are less directly tied to a specific geologic model
but provide useful input to machine-learning algorithms. Just as the
peak frequency is a better estimate of thin-bed tuning than the instan-
taneous frequency, the spectral bandwidth computed from spectral
components is a more accurate measure than the instantaneous band-
width. Using synthetic models, Zhang et al. (2008) show that the
spectral slope (the trend of the spectrally balanced data at a voxel)
can be correlated to upward fining and coarsening, whereas spectral
roughness is a measure of the subseismic resolution heterogeneity.

Not all attributes are useful in discriminating our target facies.
Others are useful to human interpreters but are not amenable to ma-
chine-learning analysis. Human interpreters commonly use the phase
and cosine of phase to map discontinuities and unconformities. How-
ever, upon further consideration, what they really do is use these
attributes to identify vertical and lateral changes in the phase. Such
changes are more directly measured by frequency, parallelism, and
discontinuity attributes. The values of phase (ranging between —180°
and +180°) themselves do not provide a good discriminator. Simi-
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Figure 4. (a) Time slice at t = 1.22 s and (b) vertical slice along line AA’ through the
seismic amplitude volume. The red polygons define salt diapir voxels that will be used
to construct the GMM of the salt facies in multiattribute space. The green polygons define
MTD facies, and the blue polygons define background conformal reflectors. Salt facies
exhibit the weak envelope, low frequency, and nonparallel reflector dip. When defining
training data, interpreters only pick those voxels in which they have greater confidence.

larly, the absolute values of dip magnitude and dip azimuth cannot
discriminate between rotated fault blocks in the MTD and the steeply
dipping flanks of a minibasin. Lubo-Robles et al. (2019) using an
exhaustive search of attributes based on probabilistic neural networks
find that the events internal to a salt dome gave rise to anomalous
curvature values. We feel that a more direct measure of the chaotic
orientation within a salt dome is nonparallelism.

ATTRIBUTE SCALING

GMMs and GTM assume that the N-dimensional attribute vectors
can be represented by a suite of N-dimensional Gaussian distributions.
Clearly, a bimodal distribution can be represented by a 2C GMM.
Nevertheless, many of our more useful attributes (e.g., energy,
deviation of energy gradient, spectral roughness, and GLCM variance)
exhibit a log-normal distribution that is rendered more Gaussian by
using the logarithm of the attribute in the computation. Coherence ¢
and GLCM entropy E are skewed toward a fixed upper limit. Scaling
these two attributes to be log(1-c) and log(5-E) results in distributions
that better approximate the Gaussian assumption.

ATTRIBUTE SELECTION

K-means (Forgy, 1965) is one of the earliest clustering algo-
rithms. The interpreter hypothesizes the number of clusters K, after
which K multidimensional Gaussians distribu-

tions are constructed to represent the data.
GMMs also use Gaussian distributions to re-
present seismic facies, but now each facies may be
represented by more than one Gaussian, allowing
one to represent multimodal distributions. By con-
struction, GMMs provide a posterior probability
that any particular observations (or voxel in 3D
data) belong to a given mixture model. In statistics,
a multivariate distribution of data vector x; on the

parameters a; modeled by GMMs is

K
p(xily) = Zakg(ximk’Ek)y )]
k=1

where p, is the mean, X is the covariance matrix
for Gaussian distribution ¢, and «; is the kth
weight, where

K
> =1 )
k=1

The kth multidimensional Gaussian probability
function is

1
X; |, Zp) = ———
9(X;lpe ) |Ek|%(2ﬂ)7

1
X exp (‘5 (x—p)Z ' (x - uk)T), 3)

where the symbol 7' indicates the transpose of
a matrix and n is the number of dimensions (or
attributes) analyzed, where i = 1...n. Hardisty
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(2017) and Wallet and Hardisty (2019) show how to compute the op-
timum number of GMMs to represent multiattribute data in a seismic
survey, where the objective is to determine if different seismic facies
naturally clump into different areas of n-dimensional space, allowing
them to be color coded and displayed.

Building on Hardisty’s (2017) and Wallet and Hardisty’s (2019)

work, we will use K-means clustering to generate initial clustering
models. We apply a maximum of 300 iterations of a refinement
technique to cluster attribute vectors into an attribute space defined
by the n-by-n covariance matrix. The K-means provides the initial
multivariate means p;, covariance matrices X}, and weights a}, used
in equation 1. If the number of components K is known, expectation
maximization (EM) is able to determine the best model parameters.
When the data vectors are assumed to be well-represented by a single
GMM that matches the underlying assumption of GMM, classifica-
tion EM (CEM) better classifies data vectors than traditional EM (Cel-
eux and Govaert, 1995; Hardisty, 2017). In general, the EM algorithm
for mixture Gaussian distributions involves K-means and GMMs.
In this paper, we use CEM and stochastic EM (SEM) (Celeux and
Govaert, 1995) to learn the mixture parameters pi, covariance Zi,
and a. Like the conventional EM algorithm,
CEM and SEM require partitioning the input data, a)
in which the prediction of the data not used in de-
fining the Gaussians is used to compute the pos-
terior probability according to the covariance
matrix. Each element w;; (the posterior probabil-
ity) of the n X n responsibility matrix (Hathaway,
1986) W is given by

Time

B g (X g, Zi)
g = RS 4)
p(xilw)

CEM accumulates the responsibility matrices W
to create K partitions by assigning each data com-
ponent to the cluster that provides the highest pos-
terior probability. For each cluster, the mixture
parameters of the most likely cluster are
using a maximum log-likelihood estimate

b)

K N
L(V/):Zzziklog{akg(xikazk)}a S

k=1 i=1

Time

where z;;, is an indicator that is equal to one only if
the data vector x; belongs to cluster k£ (Hardisty,
2017). The SEM algorithm randomly assigns par-
titions to a cluster associated with the posterior
probabilities in the responsibility matrix, which )
helps to avoid suboptimal solutions provided by
the CEM algorithm. Thus, we use SEM to initial-
ize the CEM algorithm, which in turn provides a
final partition and GMM. The parameterizations of
each covariance matrix X associated with each
GMM can be controlled resulting in a reduction
in the number of parameters. We consider nine
modules of covariance matrices introduced by
Celeux and Govaert (1995) and Hardisty (2017),
and then we use Schwarz’s (1978) Bayesian infor-
mation criterion (BIC) to compare models of dif-
fering complexity:

Time

1
BIC = log(L(y)) - 5T log($). ©)

where T is the number of estimated parameters and S is the number of
training voxels. Higher values of BIC indicate more confidence in a
given covariance parameterization.

Some insight into the attribute expression of a given facies or
“what works” reduces the number of combinations to be evaluated.
For each collection of attributes (n = 2,n = 3,n =4, ...) we gen-
erate n-dimensional GMMs of each of the M user-defined seismic
facies. We then compare models by multiplying the GMM for each
facies against the others, and we sum the results. The attribute se-
lection that provides the largest summed distance (or least overlap)
is the best combination for that value of n. Then, we validate this
combination by predicting facies not used in constructing the origi-
nal GMMs.

Figure 2 shows our attribute selection workflow. In addition to
defining N candidate attributes, the interpreter defines the M facies
of interest by drawing a suite of polygons on the time and vertical
slices of the seismic amplitude or attribute images, in which each

- s / Incoherent
M\ component in salt

Coherent component,
migration artifacts in salt

Coherent, rotated
blocks in an MTD

Chaotic components
of an MTD

Figure 5. Magnified vertical slices from Figure 5b of picked (a) salt, (b) MTD, and
(c) conformal background facies. Because salt and MTDs may contain coherent and
incoherent voxels, a mixture of Gaussians (or GMM), rather than a single Gaussian
is required to represent these facies.
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facies can be represented by multiple polygons. The result is N*M
individual volumes that represent the N candidate attributes and the
M facies. Note that the size of the interpreter-defined data is a small
fraction of the size of the original data volume, allowing us to con-
duct an exhaustive search for the best attribute combination. The
workflow iteratively selects a different number of n attributes from
the N candidate attributes. When only considering one selected
attribute, there are only N possible attribute combinations. For
two selected attributes, there are N//(N-2)!/2/ attribute combina-
tions. The total number of different selected attribute combinations
from the N candidate attributes will be 2V — 1. We compute GMMs
[k, g, ] that represent the picked voxels for each attribute com-
bination and each facies. Skilled interpreters can accurately draw
one or multiple polygons about a target facies. Facies such as MTDs
and salt containing coherent noise events will require representation
by more than one Gaussian (Figure 3). Numerical experimentation
shows that we can limit the maximum cluster number to each GMM
in our two applications.

After computing GMMs for each facies and each attribute com-
bination, we use the Bhattacharyya distance (Mak and Barnard,
1996) to measure the similarity between each cluster pair. For two
GMMs j and k residing in n-dimensional attribute space, the dis-
tance D between them is

1 T +Z ]! |2t
Dn = — —_ .T J — L _l’__]n;7
=g (= 1) [ > ] (hc—Hy)+3 ]

)

where py, pj and Xy, X; are the mean and covariances of the GMM
clusters k and j from two different facies. Equation 7 measures the
differences of size, shape, orientation, and position of the clusters in

Input attributes

Picked facies of

interest
1) Coherence
2) Spectral bandwidth °
3) Covariance of dip and energy gradient
4) GLCM entropy @
5) GLCM variance

6) Energy gradient deviation

Conformal

7) Spectral roughness reflectors

8) Reflector convergence

9) Dip deviation

Figure 6. List of the candidate attributes and the picked facies of
interest. Coherence measures the similarity between traces, which is
also sensitive to strong random noise. Spectral bandwidth and spec-
tral roughness are statistic measures of the spectra. GLCM entropy
and GLCM variance are texture attributes and measure lateral var-
iations of seismic amplitude along reflector dip. Dip deviation, en-
ergy deviation, and covariance of dip and energy gradient measure
vertical and lateral changes of reflector dip, reflector energy gra-
dient and the two together. Reflector convergence measures vertical
changes of the reflector dip.

the GMM space, where the larger the value, the less overlap and the
greater dissimilarity between two clusters. The similarity of all clus-
ter pairs is measured by the Bhattacharyya distance. The Bhatta-
charyya distance measures similarities between clusters that
reside in the same n-dimensional attribute space, and it will not
be compared to GMM clusters inn -2, n—1,n+ 1, n+2, ...
dimensional attribute space. When comparing two facies GMMs
with two clusters each, the Bhattacharyya distance between each
cluster of one GMM and each cluster of the second GMM needs
to be computed, resulting in an average Bhattacharyya distance that
measures the similarity between these two GMMs. Therefore, to
evaluate which dimensionality #n is best, we define the average cu-
mulative distance of each attribute combination,

A,

1 M M K K
0, =rg3x{m22222

a=1 m=1 I=1 j=1 k=1
X (D ]ln = 1.2, N} ®)

where M is the number of the picked facies; A, is the number of
possible n-attribute combinations; K is the maximum number of
clusters per facies; and the index n ranges from 1 to N, where
N is the number of input candidate attributes. We determine the
optimum attribute combinations in each n-selected attribute combi-
nation by comparing the value of the average cumulative distance
0', 0%, ..., OV. Finally, the number of clusters and attribute com-
bination r for the picked M facies by

r = arg{max (0} )}, ©)
N

DATA CONDITIONING PRIOR TO MACHINE-
LEARNING-ASSISTED SEISMIC FACIES ANALYSIS

In general, any data conditioning process that facilitates interac-
tive interpretation also facilitates machine-learning algorithms.

Subsetnof N | Number of Number of | Number of the
selected combinations clusters comparisons
attributes A, T

1 9 54 1434

2 36 216 23220

3 84 504 126756

4 126 756 285390

5 126 756 285390

6 84 504 126756

7 36 216 23220

8 9 54 1434

9 1 6 15

Figure 7. Listof each subsetn (n = 1,2, ..., N) selected attributes

and the corresponding number of combinations, number of clusters,
and number of comparisons in each subgroup.
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Best attribute

S, 3 1,4 1,4,6 1,2,4,6 12456 | 134589 | 1245679 | 12346789 | 1234567839
R 9.65 9.71 14.66 15.01 15.62 16.14 15.70 10.62
distance, O,

Figure 8. Table showing the best n-attribute combination providing the highest average cumulative distance using equation 8. Note that the
7-attribute combination {1, 2, 4, 5, 6, 7, 9} providing the highest distance of 16.14 attribute indices are labeled in Figure 8.

Selected attributes

1) Coherence

2) Spectral bandwidth

4) GLCM entropy

5) GLCM variance

6) Energy deviation

7) Spectral roughness

9) Dip deviation

Figure 9. List of the seven attributes providing the highest cumu-
lative distance measurement.

Coherence Deviation of energy gradient

100%

100%
80% 80%
60% 60%
40% 40%

20% 20%

-3 log(1-c) 0 log(6) 2.8
Spectral bandwidth Spectral roughness

100%

80%

60%

40%

20%

0.5 b 2 0.8 log(r) 3.2

Common postmigration data conditioning algorithms include spec-
tral balancing and structure-oriented filtering prior to attribute
computation. Filters can also be applied to the seismic attributes
themselves, where fault enhancement algorithms form more easily
interpreted fault surfaces from discontinuous coherence anomalies.
For 3D seismic facies analysis, conventional image processing
filters include suppressing random noise, sharpening texture edges,
removing unwanted features, and segmenting specific images. Low-
pass and band-pass filters are some of the more common image
processing techniques used to suppress noise. However, these filters
also blur the image edges that otherwise are needed to separate two
geologic formations. In contrast, Kuwahara et al. (1976) filtering
not only removes random noise but it also preserves image edges.
Luo et al. (2002) use Kuwahara filtering to sharpen edges and
improve the continuity of seismic amplitude volumes. Qi et al.
(2015, 2016) apply Kuwahara filtering to precondition seismic
attribute volumes for subsequent machine-learning facies analysis.
The smoothness, edge preservation, and noise suppression are con-
trolled by the size of the analysis window. Recently, two general-
izations including anisotropic Kuwahara filtering (Kyprianidis
et al., 2009) and adaptive Kuwabhara filtering (Bartyzel, 2015), have
been used in image processing, both of which use the data statistics
to adjust the size of the analysis window. We provide details of this
new algorithm in Appendix A.

Covariance of vector dip and
energy gradient

GLCM entropy
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80% 80%
60% 60%
40% 40%
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2.5 log(C) 5 -2 log(1-E)
GLCM variance
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80%
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40% MTDs
20% Conformal
sediments
-1

log(v) -0.04

Figure 10. Histograms of the seven selected attributes for the entire data volume. The red masks indicate most of the salt voxels located on the
histograms of different attributes. Although most of the salt can be defined by a simple threshold, some of the MTDs as well as other chaotic
facies such as turbidites may fall within these zones and potentially be misclassified as salt.
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Figure 11. Time slices at r = 1.22 s through (a) the covariance of vector dip and energy gradient, (b) the covariance of the dip and energy
gradient after 3D adaptive Kuwahara filtering, (c) the spectral roughness, (d) the Kuwahara-filtered spectral roughness, (e) the GLCM entropy,
and (f) the Kuwahara-filtered GLCM entropy. Note that Kuwahara filtering increases the discrimination between salt facies and the generally
conformal background facies.
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GTM

Like SOM, GTM is considered to be an unsupervised classifica-
tion algorithm. More accurately, like PCA and ICA, SOM and GTM
are projection algorithms. The first two eigenvectors constructed
from the N attributes represent a 2D plane that best fits the data
distribution in N-dimensional space. Projecting each data vector
onto this plane and summing the results gives the first two principal
components. SOM and GTM deform the original plane into a 2D
manifold that better fits the data in the N-dimensional space. In
general, not all of the data vectors are used to construct the mani-
fold. In our examples, we decimate the data by a factor of five in
each of the three dimensions, reducing the amount of data needed to
construct the manifold by a factor of 125. We find that such a deci-
mation still represents all but the smallest geologic anomalies.
MTDs, salt domes, and conformal sediments are the three most
common facies found in our data volume, and they are well-repre-
sented by the decimated data. If we wished to use GTM to identify
less common patterns (e.g., progradation, turbidites, and bright
spots), we would wish to augment the decimated data with these
data vectors to assure that they are well-represented by the
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projection. The GTM classification technique represents the
PDFs of attribute data vectors (2D histogram) by a 2D color bar.
Seismic facies can be recognized by the different color in the
unsupervised learning. We will show that selecting attributes using
our GMM-based workflow exhibits better facies maps.

Unlike supervised learning algorithms such as multilinear
feed forward neural networks (Meldahl et al., 1999), probabilistic
neural networks (Lubo-Robles et al., 2019), and random forest
decision trees (Kim et al., 2019), GTM provides no indication of
what the projections mean geologically. Nevertheless, some level
of supervision can be provided in two ways. First, the attribute
selection process can result in facies that overlap or are separated
on the manifold. Second, after projection, we can provide a poste-
riori supervision by projecting vectors corresponding to each
of the labeled facies onto the manifold. Because GTM is probabi-
listic, we can compute the likelihood that any given data vector at
a voxel is like one of the target facies. Obviously, there will be
some data vectors that do belong to one of the target facies. These
voxels can be mapped in an “other” facies. Greater details on the
working of GTM can be found in Roy et al. (2014) and Zhao
et al. (2015).
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Figure 12. Vertical slices along AA’ through (a) the covariance of the vector dip and energy gradient, (b) the covariance of the dip and energy
gradient after 3D adaptive Kuwahara filtering, (c) the spectral roughness, (d) the Kuwahara-filtered spectral roughness, (e) the GLCM entropy,

and (f) the Kuwahara-filtered GLCM entropy.
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APPLICATION 1: DIFFERENTIATING SALT AND
MTDS FROM CONFORMAL SEDIMENTS

Our first application is to determine which attributes best differ-
entiate salt from MTDs from conformal sediments for a marine
survey over the Louisiana shelf. The survey covers approximately
8000 km? with 37.5 x 25 m bins. With heterogeneous sediment
loading associated with the Mississippi River and its predecessors,
minibasins grow and push down on the salt, which then rises to
form salt diapirs. The change in slope gives rise to MTDs. Addi-
tional seismic facies observed in the data set include undeformed
shale, interbedded sand and siltstone, and shallow and deepwater
channels.

Seismic amplitude is almost always the initial “attribute” used in
seismic interpretation in which a skilled interpreter can readily iden-
tify most of the larger geologic features by the spatial variation of
seismic amplitude and phase. Useful seismic attributes provide
quantitative geometric, dynamic, or statistical measures of the same
features seen by the interpreter. Figure 4a shows a time slice at
t =1.22 s, and Figure 4b shows a vertical slice along line AA’
through the seismic amplitude volume. The polygons indicate
the three picked facies of interest (M = 3), which are salt diapirs,
conformal reflectors, and MTDs. The seismic expression of salt in
the GOM data is of low amplitude, low frequency, and vertically
and laterally chaotic. Because the data are prestack time rather than
depth migrated, the steeply dipping salt boundaries may not align
with the termination of relatively horizontal reflectors. The seismic
expression of parts of the MTDs is also chaotic and of low fre-
quency. However, the better imaged parts of the MTDs are more

organized, showing rotated fault blocks containing reflectors exhib-
iting mixed energy and frequency that are a function of the internal
layering. The picked salt facies in Figure 5a contains random,
incoherent seismic noise that appear chaotic; however, mismigrated
coherent noise events appear internal to the salt dome. The MTD
facies in Figure 5b shows coherent, rotated reflector blocks as well
as less coherent gravity flows sliding into the minibasin. The mag-
nified image of the background seismic pattern shown in Figure 5S¢
consists of coherent, conformal layered sediments. We define (or
label) the three facies of interest on 5 time slices, 5 crossline slices,
and 5 inline slices for a total of 15 slices or less than 1% of the data
to be classified. In general, more labeled data provide a more ac-
curate classification, but with increased computation cost. The total
number of labeled voxels is small (totally 0.014% compared of the
data available), allowing us to evaluate the 2V~1 attribute combina-
tions at a cost that is significantly smaller than the GTM projection
algorithm.

Familiarity with the seismic expression of salt domes, MTDs, and
conformal reflectors suggests that attributes sensitive to conformity,
coherence, frequency, and texture may be good candidates for
machine-learning-assisted seismic facies classification. Therefore,
we propose candidate attributes that measure conformity (parallel-
ism and/or reflector convergence), continuity (coherence), seismic
textures (GLCM textures), rms amplitude or energy, and properties
of the seismic spectra (peak frequency, bandwidth, and slope), for a
total of the nine candidate attributes (N = 9) shown in Figure 6.
Interactive interpretation using 3D visualization indicated that the
deviation of vector dip, the deviation of energy gradient, and the
covariance of vector dip and energy gradient highlighted chaotic
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computation

l
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3D structure-
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A seismic facies analysis
workflow

Figure 13. Workflow illustrating the steps used in a GMM attribute selection computer-assisted seismic facies classification. After selection,
the chosen attributes are subjected to adaptive Kuwahara filtering. In this workflow, we use GTM but one can also use the PDFs from prob-
abilistic neural networks or construct probabilities from SOM algorithms. For GTM, the comparison of the probability volumes is computed

using the Bhattacharyya coefficient.
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salt areas, high-energy salt boundaries, and nonparallel random
seismic events, respectively. The spectral bandwidth and spectral
roughness attributes are statistical measures of the spectrum that
can further help to differentiate the seismic response of the salt from
other facies.

Extracting the training voxels of the three picked facies from the
nine candidate attributes is the first step of the attribute selection
workflow. The total number of possible combinations using nine
attributes is 2¥ — 1 = 511. Different attribute combinations may
require different numbers of component clusters. Although a
“homogeneous” seismic facies like salt may often be well-repre-
sented by a single Gaussian, more heterogeneous seismic facies like
an MTD may require two or more Gaussian distributions. To de-
crease computation cost and the influence of seismic random noise,
we limited the maximum number clusters for each attribute combi-
nation for each facies to two. One GMM is computed for each facies
for each of A, attribute combination when using a subset n of the N
attributes. The number of clusters in a subset is J,,. Values of A,, and
J, as well as the number of comparisons are shown in Figure 7. We
compute the Bhattacharyya distance given in equation 7 between
each GMM cluster in each n-selected attribute combination to
compare the similarity of each two-cluster GMM pair. The total
number of such combinations is J//(J - 2)!/2!. Then, we compute
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the commutative distance to evaluate each candidate attribute
combination, and then we average the distance by the number of
subgroup possible combinations, the number of picked facies,
and the number of computed GMM clusters. Figure 8 shows the
average cumulative distance of each possible number of selected
attributes from the nine total attributes. The maximum distance
is within the seven selected attributes of coherence, spectral band-
width, GLCM entropy, GLCM variance, energy deviation, spectral
roughness, and dip deviation (Figure 9). We examine histograms
of the seven selected attributes (Figure 10). The red masks indicate
most of the salt voxels located on the histograms of the selected
attributes, the blue masks indicate most of the MTD voxels,
and the green masks indicate most of the conformal background
voxels.

To smooth the attribute response and suppress the overprint of
seismic noise, we next apply the 3D adaptive Kuwahara filter to the
selected attributes. Figure 11 shows the time slices through covari-
ance of the structure dip and energy, spectral roughness, and GLCM
entropy attributes and associated 3D adaptive Kuwahara filtered
attributes. Figure 12 shows the vertical slices through the same
attributes as shown in Figure 11. By comparing the attributes before
and after filtering, we note that the 3D adaptive Kuwahara filter
sharpens facies edges and smooths the interior texture of facies,
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Figure 14. Vertical slices along AA’ through a seismic amplitude corendered with the GTM classification (a) using the interpreter-selected
attributes as input, (b) using the seven best attributes using the GMM-based workflow, (c) using the same input attributes as in (a) after 3D
adaptive Kuwahara filtering, and (d) using the same input attributes as in (b) after a 3D adaptive Kuwahara filtering. The interpreter-selected
attributes are energy deviation, GLCM variance, spectral bandwidth, spectral roughness, and reflector convergence. The 2D histogram in-
dicates the distribution of training voxels corresponded with the 2D color bar. Note that the GTM with the workflow selected attributes after 3D
adaptive Kuwahara filtering exhibits the best facies map. The yellow arrows indicate the salt dome, and the blue arrows indicate MTD.
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which results in more coherent, blocked seismic facies, more ame-
nable to machine-learning classification.

We then apply a seismic facies analysis workflow to generate the
probability volume of salt facies from a machine-learning-based
multiattribute classification method. The workflow (Figure 13) is
an extension of Qi et al.’s (2016) workflow in which we now use
GMMs to select the attributes and an adaptive rather than a fixed-
size 3D Kuwabhara filter. We next compare the GTM mappings from
the seven optimum attributes, and we compare it to the GTM map-
ping constructed from five attributes based on our experience
and geologic insight: energy deviation, GLCM variance, spectral
bandwidth, spectral roughness, and reflector convergence. We then
project the labeled data voxels onto the two different GTM latent
spaces, and the first GTM axis and the second GTM axis are rep-
resented by the posterior probability mean projections on the 2D
latent space. Figure 14a shows the vertical slices of the crossplot
of the first GTM axis and the second GTM axis computed from

a) GTM within the interpreter selected
attributes

b) GTM within the workflow selected
attributes

Figure 15. The magnified areas shown by the dashed white rectan-
gles in Figure 14c and 14d, indicated by the dashed white rectan-
gular in Figure 16c and 16d, exhibits the improvements of MTD
mapping. The blue arrows indicate MTD.

the interpreter-selected attributes, whereas Figure 14b shows the
GTM result computed from the workflow-selected attributes. Fig-
ure 14c and 14d shows the results computed from the same suite of
attributes as shown in Figure 14a and 14b but after 3D adaptive
Kuwabhara filtering. We note that the GTM result using the work-
flow selected attributes can better discriminate salt facies (the yel-
low arrows) from the chaotic parts of MTD facies (the blue arrows).
MTD facies are more easily recognized on the GTM result com-
puted from the workflow-selected attributes rather than the GTM
result within the interpreter-selected attributes as the inputs. Appli-
cation of the Kuwahara filtered attributes to the multiattribute clas-
sification results in smoother seismic facies and sharper facies
edges. The cropped slices (the dashed white rectangule defined in
Figure 14c and 14d) in Figure 15 highlight the improvements
of mapping MTD facies of the GTM computed by the workflow
selected attributes after the Kuwahara filtering, which exhibit
less seismic noise. Figure 16a shows the time slice through the
GTM within the interpreter-selected attributes as the inputs, and
Figure 16b shows the time slice through the GTM within the work-
flow-selected attributes as the inputs before 3D adaptive Kuwahara
filtering. Figure 16¢ and 16d shows the same time slices after 3D
adaptive Kuwahara filtering. Note that the GTM within the work-
flow-selected attributes after Kuwahara filtering exhibits the best
seismic facies. The last step of the seismic facies analysis workflow
is to compute the probability volume associated with the facies. The
Bhattacharyya coefficient provides a probability measure of how
similar any given data vector at a voxel is to each of the labeled
facies projected onto the 2D latent space. By examining the prob-
ability of each of the labeled facies (including the other facies), we
obtain the probability that the data vector belongs to each of the
facies. Simple thresholding above a sufficiently high Bhattacharyya
coefficient provides a segmented image of each facies in 3D. Fig-
ure 17a shows the salt probability volume corendered with the seis-
mic amplitude computed from the Bhattacharyya coefficient result
within the interpreter-selected and Kuwahara-filtered attributes
as the inputs, and Figure 17b shows the salt probability volume
computed from the GTM result within the workflow-selected and
Kuwahara-filtered attributes as the inputs. We note that the salt
probability volume with the workflow-selected attributes exhibits
improved salt delineation and fewer misclassified voxels than work-
flows using the five attributes the authors thought to be best and the
fixed-size Kuwahara filter. Figure 17c¢ shows the responsibility of
total training voxels, picked salt voxels, MTD voxels, conformal
sediment voxels, and other facies on the latent space.

APPLICATION TO KARST COLLAPSE FEATURES

Our second test application is to a wide-azimuth survey acquired
in the Fort Worth Basin. The data were prestack time migrated with
a 55 x 55 ft bin size to image the Barnett Shale and the underlying
Ellenburger carbonate formation. The Ellenburger is characterized
by karst and solution collapse features (Qi et al., 2014) that continue
into the overlying Barnett Shale target. In general, horizontal wells
that intersect these deformed areas produce high amounts of water
and are uneconomic. Figure 18 shows the time slice through the
seismic amplitude volume, in which the Ellenburger carbonate is
the dominant formation. Using seismic attributes and seismic
amplitude, we draw the yellow polygons to label the larger karst
features. The input nine candidate attributes, and two picked facies
— karst collapse features and unaltered carbonate, are shown in
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Figure 19. Figure 20 shows the average cumulative distance of
each possible selected attribute numbers through the GMM-based
attribute selection workflow. We note that when selecting coher-
ence, spectral bandwidth, GLCM entropy, GLCM variance, spectral
roughness, and dip deviation attributes, the average cumulative dis-
tance is highest, which means that this combination is the optimum
combination of the candidate attributes (Figure 21).

Figure 22a shows the GTM classification within the optimum
attributes selected from the attribute selection workflow. The con-
tract between karst facies and conformal background is also in-
creased. Figure 22b shows the GTM classification within the 3D
adaptive Kuwahara filtered optimum attributes as the inputs. Note
that Figure 22b better exhibits karst facies than Figure 22a, in which
karst collapse facies is piecewise smoothed. Then, we apply the
same technique that has been used in the first example, and the final
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Bhattacharyya coefficient associated with karst collapse features is
shown in Figure 23.

DISCUSSION

PCA is commonly used to reduce the dimensionality of the attribute
volumes being analyzed, where in our example, the first three linear
combinations of the nine attributes represent 80% of the data. The
limitation of this approach is that features of geologic interest may
represent less than 20% of the data and be poorly represented by
the statistically most important linear combinations. This limitation
was recognized by Roden and Chen (2017) who use PCA followed
by a 5 X 5-neuron (prototype vector) SOM algorithm to model a Gulf
of Mexico survey. They investigate which data vectors (voxels) were
not well-represented by these neurons and find that many corre-
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Figure 16. Time slices at = 1.22 s through the GTM classification as in Figure 16. Note that the GTM with the workflow-selected attributes

after 3D adaptive Kuwahara filtering exhibits the best facies map.
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Figure 17. The 3D salt probability volume corendered with the seismic amplitude computed through the workflow (Figure 15) (a) using the
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interpreter-selected attributes as the inputs, (b) using the GMM-based attribute selection workflow-selected attributes as the inputs, and (c) the

responsibility of total training, picked salt, MTD, conformal facies, and other facies voxels on the latent space. The suite of attributes is filtered by

the Kuwahara filter. Note that the results in (b) exhibit less noise. The 2D histogram at the upper right shows the distribution of the picked salt
voxels, whereas the histogram at the middle right shows the distribution of voxels representing all of the facies. The blue arrows indicate that the
wrong classified voxels may be due to seismic noise or the facies within the similar histogram as salt.
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Figure 18. Time slices at t = 0.72 s through the seismic amplitude
volume mapping karst collapse features on the Fort Worth Basin.

Note that the yellow polygons indicate karst collapse features that
are also painted facies of interest for this data set.
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sponded to (anomalous) hydrocarbon bright spots of interest. In con-
trast, the SOM (16-sample waveform classification) software de-
scribed by Coléou et al. (2003) begins with an initial classification
using (by default) 12 prototype vectors defined on a 1D shoelace
manifold in 16D space. The user is then able to introduce additional
fixed waveforms (neurons) by averaging the seismic data about
anomalous producing wells, or by generating synthetics of interest. In
our workflow, the interpreter biases the GTM mapping by adding data
vectors corresponding to the target facies that augment the otherwise
uniformly sampled “training” data used to construct the manifold.

Our workflow consists of several steps: (1) labeling the target
facies, (2) using an understanding of the seismic expression of the
target features to select a (perhaps large) suite of candidate attrib-
utes, (3) using an adaptive Kuwahara filter to smooth and block the
attribute response, (4) selecting an attribute subset that best differ-
entiates the target facies using the metric described in this paper,
(5) constructing a GTM from the decimated input data, augmented
if necessary with the labeled data, (6) projecting all of the data onto
the color-coded GTM manifold and latent space, and finally (7) pro-
jecting the labeled data onto the same manifold, thereby defining
the likelihood that any given data vector (voxel) belongs to a spe-
cific labeled facies.

At present, we can confidently state that this workflow is a good
candidate for multiattribute facies classification. However, we cannot
claim that it is the best workflow. Working on the same data volume,
Kim et al. (2019) find good results using supervised learning using
nonlinear statistics and a random forest decision tree algorithm. Lubo-
Robles et al. (2019) show promising results using Gaussian statistics
and a supervised probabilistic neural network algorithm. Convolu-
tional neural networks (CNNs) (e.g., Waldeland et al., 2018; Zhao,
2018) also show considerable promise though significantly less in-
sight in discriminating seismic facies. The similarities between
CNN and our workflow are striking in that CNN has multiple con-
volutional steps (i.e., it generates its own “attributes”) and several

Selected attributes

1) Coherence

2) Spectral bandwidth

4) GLCM entropy

5) GLCM variance

7) Spectral roughness

9) Dip deviation

Figure 21. List of the selected attributes through the attribute selec-
tion workflow.

pooling steps (similar to our successful application of the Kuwahara
filter). A potential advantage of our GTM workflow over these three
competing supervised learning workflows is that GTM will generate a
projection that best represents all of the data used in its training, some-
what minimizing the chance of statistically important unlabeled facies
being misclassified. Significant work will need to be conducted to
determine which of these four candidates work best for a given prob-
lem. For the Gulf of Mexico data analysis shown here, the cost of the
GMM attribute selection using the 60 labeled slices (81,204 labeled
data vectors), nine candidate attributes, and 511 potential attribute
combinations was 1 h. The training of the GTM using 22,207 deci-
mated data vectors was 0.5 h. The projection of all of the data onto
the manifold takes 0.75 h. In principle, it would make more sense to
define the attribute combination that best separates the target
facies when projected onto the 2D GTM manifold rather than in
the N-dimensional attribute space. At present, such an analysis would
take 511*%(0.5 + 0.75) or 638 h to compute, thereby dominating the
computation.
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Figure 22. Time slices at + = 0.72 s through (a) the GTM classifi-
cation with the workflow attributes as input before Kuwahara filtering
and (b) the GTM classification with the adaptive Kuwahara-filtered
attributes as input. Note the GTM classification with the adaptive
Kuwahara-filtered attributes as input exhibits clearer and smoother
karst collapse facies.
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Figure 23. The 3D view of seismic amplitude corendered with the probability volume of
karst collapse features computed through the workflow in Figure 15.

CONCLUSION

Although human interpreters routinely use seismic attributes as an
aid to seismic facies classification in an interactive environment, it is
unclear which attributes are best to differentiate seismic facies in a
machine-learning environment. We have introduced a GMM-based
attribute selection workflow for computer-assisted seismic facies
classifications and applied it to two different data volumes contain-
ing a mix of chaotic, semichaotic, and conformal seismic facies.
Unlike stepwise multilinear regression, we use an exhaustive search
over candidate attributes to determine the optimum number and
combination of attributes that should be used. In general, hetero-
geneous seismic facies such as salt and MTDs need to be represented
by more than one Gaussian distribution. We find that the GMM-
based attribute selection using a combined Classification and
SEM algorithm, coupled with an averaged and summed Bhattachar-
yya distance measure allows us to evaluate all possible variations of
attribute combinations to determine which combinate best separates
the labeled seismic facies of interest in N-dimensional space.

When trying to differentiate chaotic features such as salt and
MTDs, we found that attributes that are more statistical, including
spectral bandwidth, dip deviation (non-parallelism), coherence, and
GLCM textures worked well, whereas geometric attributes, such as
the dip magnitude and curvature, worked poorly. We also found that
a 3D adaptive Kuwahara filter helped smooth the internal response
and sharpened the edges of seismic facies and sharpened the boun-
daries between adjacent facies.

Human interpreters are excellent at identifying seismic features
and differentiating one feature from another and from noise. How-
ever, most human interpreters may find it challenging to describe
the mechanics of how they do this identification and differentiation
to a novice interpreter. An advantage of attribute-driven facies clas-
sification (using GMM with GTM, multilayer feed-forward neural
network (MLFN), probabilistic neural network (PNN), or random
forest decision trees) over deep learning CNNss is that the resulting
successfully classified images provide greater insight into which
features (attributes) allow us to differentiate one seismic facies from
another, or, in the case of misclassification, what additional features
(attributes) may need to be generated.
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APPENDIX A

DATA ADAPTIVE KUWAHARA
IMAGE PROCESSING

When used for seismic facies analysis, the fixed-window Kuwa-
hara window size needed for one facies may be inappropriate for a
second facies. Likewise, as the seismic resolution decreases with
depth, a fixed window size may oversmooth shallow features and
undersmooth deeper features. To address this shortcoming, we
modify the analysis window of the 3D structure-oriented Kuwahara
filter to be adaptive along the lateral and vertical axes. Lin et al.
(2014) use an adaptive window for coherence computation that
define the lateral and vertical size of the analysis window based
on the smoothed peak frequency. The traditional 5 X 5 X 5-voxel
3D Kuwahara filter searches 27 overlapping subwindows and ap-
plies the median m in the overlapping window that has the smallest
mean-normalized standard deviation 6/u.

We follow Lin et al. (2014) and define the size of the adaptive
Kuwahara searching window by the smoothed average power
spectrum at each voxel. The average power spectrum is

1 J 1
Poe(t, f) :mz w(t+iAtf), (A1)
i=1 i=—I

j=1i=-

where ¢ is the time sample, / is the half-length of the vertical analy-
sis window, and u; is the spectral magnitude of the jth trace. The
average power spectrum is averaged over all traces and 2/ + 1 ver-
tical samples. The peak frequency at time ¢ is the frequency at which
it is associated with the maximum power spectrum. The resolution
of spectrally balanced data is determined not only by the peak fre-
quency but also by the highest usable frequency. Suppose that the
average power spectrum of the analysis points with its H neighbor-
ing voxels is f first, we need to define the reference frequency f ¢
of the adaptive analysis window at a given time f:

fref(t) :fp(l)
(Z;pl Pavg(t’f) - PZ?:] Pavg(t9f))

— Af’
Pavg(t? Fp)

(A-2)
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where p is a percentile of the average power spectrum (in our work
P =170%), Af is the frequency increment between analysis win-
dow sizes in the computation of the average time-variant power
spectrum, and f, is the corresponding frequency. For a depth-mi-
grated data set, time 7 in equation A-2 can be replaced by depth d
and equation A-2 will become the depth-variant reference fre-
quency. With the defined time or depth variant f (¢), we can then
define the corresponding time period or wavelength. For time-mi-
grated data, the window height AT of the adaptive analysis window
at a given time 7 can be defined as

_bP
2f ref (t)
Parameter b = 0.01 is a fixed prewhitening factor. Using a reference

velocity v(z), the two-way traveltime window height AT corre-
sponds to a spatial vertical height AZ,

AT(1)

. (A-3)

AT (1)
5

AZ(t) = v(t) (A-4)

Equations A-3 and A-4 define an analysis window varying vertically
for time-migrated data. Then, we use the local structure dip to define
lateral variations of an analysis window. Therefore, when the window
height AT increasing, the window width and length would also be
increasing. If we assume the shape of an analysis window to be cyl-
inder rather than rectangular, the width and the length of an analysis
window at the crossline and inline directions are

AX(r) = Ai Ul (A-5)
and
AY(t) = AZ(1) , (A-6)
Wy

where w, and w, are the bin size along the cross-
line and inline directions. For depth-migrated
data, wavelengths are used to define the vertical
and lateral window size. Because the correspond-
ing frequency is continuous, we need a taper to
scale the analysis window. Lin (2016) shows an
example that uses tapered analysis windows in
the x-, y-, and z-directions, resulting in scaled
traces.

Figure A-1 shows a cartoon of Kuwahara
overlapping windows containing the red analysis
point. In each window, we compute the median
m, the mean p, and the standard deviation . The
result of the Kuwahara searching window w; at
an analysis point 7 is

. Oy
d=A — 1], (A7
T8 <de{w,lrenll,r21,3 ...L} <ﬂd) > ( )

window having the minimum value of normalized standard
deviation 6,/u,.

The 3D structure-oriented adaptive Kuwahara filter searches all
windows containing a given voxel. The filtered attribute will have a
smoothed facies that is shown as a blurred internal texture and
sharpened edges between each facies. The smoothness is defined
by a local average spectrum. The result of 3D adaptive Kuwahara
filtering may somewhere look like the result of the fixed-window
Kuwahara filtering computed with a large analysis window.
However, one of the advantages is that the computation cost of the
adaptive window is less than a large fixed window because not any
subwindows should be equally large. Figure A-2a shows an exam-
ple of application of the 3D adaptive Kuwahara filter to the
deviation of vector dip in salt delineation. We first apply the original
3D Kuwahara filtering results computed with a fixed 3 X3 X3
analysis window, which is shown in Figure A-2b. Note that the
red polygon indicates salt, and the white color texture indicates an-
other feature. Kuwahara filtering smooths the internal details of
each feature and also sharpens the boundary. Figure A-2c shows
the original 3D Kuwahara filtering result computed with a fixed
5% 5 x5 analysis window, and Figure A-2d shows the result of
our 3D adaptive Kuwahara filter. Note that the original Kuwahara
filtering with a large window results in a better internal material, but
a blurred edge. However, because we are using adaptive windows
defined by a local average spectrum, the new adaptive Kuwahara
filtering not only smooths low-frequency internal textures of salt
but it also sharpens the high-frequency and energy salt boundaries.

S

Figure A-1. Cartoon of 3D adaptive Kuwahara filtering. The 5 X 5 X 5 or 125-sample

analysis window is centered about the red voxel. The cartoon shows only nine of the

where d is the index of the sub-Kuwahara search-
ing analysis window. Thus, the filtered attribute
will be the value of m, associated with the

3% 3 X 3 or 27 subwindows that contain the red cube. The size of subwindow is adap-
tive, and increases in size with decreasing seismic resolution, defined by the local
frequency of the seismic amplitude. The output is the median of the subwindow that
has the smallest mean-normalized standard deviation.
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Dip
deviation
igh

d)

Figure A-2. Cropped vertical slices through the deviation of the
vector dip attribute (a) before Kuwahara filtering, (b) after 3D Ku-
wabhara filtering with a fixed 3 X 3 X 3 analysis window, (c) after 3D
Kuwahara filtering with a fixed 5 x5 X5 analysis window, and
(d) after adaptive Kuwahara filtering in which the window size
varies between 3 X 3 X 3 and 5 X 5 X 5. In this example, the black
anomalies indicate chaotic salt diapirs, whereas the white anomalies
indicate relatively conformal facies. Kuwahara filtering smooths the
interior response of salt while sharpening the edges. A small fixed
analysis window results in less smoothing but greater sharpening,
whereas a large fixed analysis window results in greater smoothing
but less sharpening. The adaptive Kuwahara filtering better smooths
the interior response of the salt and sharpens the edges.
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