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Abstract

Nowadays, there are many unsupervised and supervised machine learning techniques available for perform-
ing seismic facies classification. However, those classification methods either demand high computational costs
or do not provide an accurate measure of confidence. Probabilistic neural networks (PNNs) overcome these
limitations and have demonstrated their superiority among other algorithms. PNNs have been extensively
applied for some prediction tasks, but they have not been well studied regarding the prediction of seismic facies
volumes using seismic attributes. We have explored the capability of the PNN algorithm when classifying
large- and small-scale seismic facies. In addition, we evaluate the impact of user-chosen parameters on the
final classification volumes. After performing seven tests, each with a parameter variation, we assess the impact
of the parameter change on the resultant classification volumes. We find that the processing task can have a
significant impact on the classification volumes, but we also find how the most geologically complex areas are
the most challenging for the algorithm. Moreover, we determine that even if the PNN technique is performing
and producing considerably accurate results, it is possible to overcome those limitations and significantly
improve the final classification volumes by including the geologic insight provided by the geoscientist. We con-
clude by proposing a new workflow that can guide future geoscientists interested in applying PNNs, to obtain
better seismic facies classification volumes by considering some initial steps and advice.

Introduction
In a previous study, Lubo-Robles et al. (2019) demon-

strate the accuracy of the probabilistic neural network
(PNN) when classifying seismic facies related to salt
and conformable sediments. However, in that study, only
two seismic facies were tested and, as geoscientists, we
realize that geology can be more complex. For that rea-
son, in this approach, we wanted to test the capability of
this novel technique when trying to classify not only
large-scale features such as salt, conformable sediments,
and mass-transport deposits (MTDs), but also more chal-
lenging and subtle, small-scale features such as turbiditic
channels, and the noise near the seafloor. In addition, we
wanted to explore how including geoscientific insight
when defining initial parameters, such as the amount of
training data, the seismic attributes preselected, and the
preprocessing and conditioning of the data, can influ-
ence the final classification models.

For this analysis, we chose the East Breaks and Ala-
minos Canyon 3D seismic survey located in the
Western Gulf of Mexico. This area in the Gulf of
Mexico contains a complex geologic setting that con-
sists of architectural elements related to salt domes,

hemipelagic sediments, and deepwater deposits such
as turbidites and MTDs (Posamentier and Kolla,
2003; Weimer and Slatt, 2006; Galloway, 2008; Posa-
mentier and Martinsen, 2011). All of these elements
are present in the seismic volume chosen, which makes
it suitable to test the capability of this technique for su-
pervised classification of the seismic facies associated
with those architectural elements.

Seismic data
The seismic survey is located in the deepwater Diana

intraslope basin between the East Breaks and Alaminos
Canyon blocks within the Western Gulf of Mexico (Fig-
ure 1). This region includes the important deepwater
Diana and Hoover oil and gas fields; therefore, there
are also available well data that can be used to validate
the geologic facies interpretations. The seismic survey
was time -processed and has positive SEG-standard po-
larity. A full processing report, though, was not publicly
available. Due to the necessity of decreasing the high
computational cost, the seismic volume was cropped to
325 inlines and 2481 crosslines, with an approximated
area of 380 km2, a record length of 4.1 s, and a bin size of
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41 ft2 × 131 ft2 × 0.004 s. This cropped region contains a
wide variety of geologic features, ideal for the charac-
terization goals of this study.

Geologic setting
By theMiddle Jurassic, the invasion of shallow epicon-

tinental seas favored the establishment of restricted
environments in which thick sequences of evaporitic
sediments were deposited in the graben basins of the
Gulf of Mexico (Galloway, 2008; Nixon et al., 2014). The
high rates of sediment influx from the Early Cretaceous
to Cenozoic, and the consequent sediment load, triggered

different events of salt expulsion that formed from salt
stock canopy complexes under the continental slope
in the Oligocene, to passive diapirism and minibasins
in the shelf and slope in the Miocene-Pliocene (Galloway,
2008). In addition, the formation of salt sheets served as
decollement zones for basinward gravity spreading and
resultant updip extension, which required compensatory
compression and created fold belts at the base of the
slope such as the Perdido fold belt in the Western Gulf
of Mexico (Galloway, 2008). Finally, in the Pleistocene,
the rapid Quaternary climate cycling and glacial erosion
triggered high rates of sediments that filled the shelf mini-

basins, whereas the slope minibasins re-
main unfilled (Galloway, 2008; Nixon
et al., 2014).

In the Western Gulf of Mexico, the
genesis of the Diana intraslope minibasin
may be related to those events of salt
expulsion forming diapirism and miniba-
sins in the shelf and slope. The structural
configuration observed in the study area
is similar to the structural model shown
in Figure 3c of Galloway (2008) and is
called salt withdrawal minibasins. The
Diana minibasin is bounded by two
relatively shallow salt bodies and is com-
posed of intercalated sequences of mud-
prone MTDs and highstand packages of
hemipelagic clays and muds (Donovan
et al., 2003; Miller et al., 2012). In the case
of these intraslope basins, the MTDs
often develop from failure of the delta
front and canyon walls during lowstand
system track events when the rapid
sea-level fall exposes the shelf and slope
(Sarkar et al., 2008). According to Sulli-
van et al. (2000), the turbiditic sand-
stones, siltstones, and mudstones that
comprise the reservoirs in the Diana field
were deposited in a lowstand fan within
an intraslope subbasin setting.

Seismic facies identified
Roksandić (1978) defines seismic fa-

cies as a sedimentary unit that is different
from the adjacent units in its seismic
characteristics: reflection amplitude,
dominant reflection frequency, reflection
polarity, reflection continuity, reflection
configuration, the abundance of reflec-
tions, the geometry of the seismic facies
unit, and the relationship with other
units. Following this concept, we defined
five seismic facies shown in Figure 2:
(1) salt facies, which are discontinuous,
chaotic, and low-amplitude reflectors,
(2) conformable sediments facies,
composed of continuous, subparallel,
and high-amplitude reflectors, (3) MTD

Figure 1. Location of the seismic survey used for this study in the Western Gulf
of Mexico. Image modified from the USGS web page.

Figure 2. Seismic facies identified and samples of some of the facies polygons
picked in the seismic volume for training.
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facies, characterized by discontinuous, strongly chaotic,
and high-amplitude reflectors, (4) noise facies, consisting
of continuous, parallel, and low-amplitude reflectors that
correspond to the noise near the seafloor, and (5) frac-
tured zone facies, of chaotic, and sometimes semicontin-
uous, low-amplitude reflectors.

In the amplitude seismic volume, the fractured zone
facies were inferred to correspond to conformable sedi-
ments and MTDs near the top of the salt dome (the
magenta polygons in Figure 2a and 2b). Due to the
emplacement of the salt dome, it is possible that most
of the nearby strata had been strongly fractured, there-
fore giving different seismic responses than those strictly
related to the conformable sediments and MTD facies.
This fifth facies was only included in one of the final tests.

Finally, we also identified a channel (Figure 2c) in
the shallow sedimentary strata. To test the capability
of the technique when classifying subtle and more chal-
lenging features, it was included as a channel facies.

Seismic attributes
In this study, we included six seismic attributes as the

initial candidates to perform the PNN classification: the
(1) k1-most-positive principal curvature, (2) k2-most-neg-
ative principal curvature, (3) grey level co-occurrence
matrix (GLCM) contrast, (4) GLCM dissimilarity,
(5) envelope, and (6) coherence.

We included the coherence attribute because it is
known to be useful for channel and salt boundary detec-
tion (Chopra and Marfurt, 2007a). Regarding the curva-
ture attributes, we included the most-positive curvature
k1 because it helps to highlight anticlinal and domal fea-
tures, such as those related to salt domes and channel
edges. Alternately, the most-negative curvature k2 helps
to highlight synclinal and bowl-like features, such as
those related to channels axes and withdrawal synclines
(Chopra and Marfurt, 2007b). Together, the coherence
and the curvature attribute are excellent at delineating
seismic stratigraphic features not only related to chan-
nels but also related to MTDs (Chopra and Marfurt,
2011). Finally, we included the envelope attribute be-
cause it is related to the energy of the trace and helps to
detect major and subtle changes in lithology (Taner et al.,
1979). In this region, we have a high contrast between
the salt lithology and the surrounding sediments (Fig-
ure 2a). The same observation can be made between
the highstand hemipelagic sediments and the lowstand
MTDs with thin intervals of sand-rich turbiditic systems.

Because some geologic features can exhibit curva-
tures at different wavelengths (Chopra and Marfurt,
2010), we also tested two different ways of calculating
the curvature attributes, long-wavelength versus short-
wavelength. Short-wavelength estimates of curvature
can incorporate dip information of 9–25 traces, whereas
the long-wavelength estimates of curvature can use dip
information of 400 or more traces (Chopra and Marfurt,
2007b). According to Al-Dossary and Marfurt (2006),
long-wavelength estimates of curvature enhance features
that are difficult to see using either short-wavelength

estimates of curvature or coherence. For this reason,
we decided to begin our evaluation by using long-wave-
length curvature and after we created a case to evaluate
the short-wavelength curvature.

In addition, we included the GLCM attributes in our
analysis for many reasons. The first reason is because
they help to emphasize internal textures and to better dis-
tinguish facies variations (Gao, 2003). Second, GLCM
attributes have already been proven in previous PNN
studies. West et al. (2002) successfully combine PNN
with these types of textural attributes to automate seis-
mic facies classifications. According to Deriche (2016),
GLCM-based attributes can differentiate between tex-
tures related to salt-dome boundaries and nonrelated tex-
tures. In addition, GLCM dissimilarity and GLCM contrast
usually show high values for salt facies (Deriche, 2016).

Moreover, we used two additional attributes: the
cosine of the instantaneous phase and the dip deviation.
The cosine of the instantaneous phase was helpful
when picking the facies polygon because it helps to
highlight stratigraphic features (Subrahmanyam and
Rao, 2008), whereas the dip deviation attribute was only
included at the end of this study as part of a final test.
The dip deviation is one of the three nonparallelism
attributes recently introduced by Qi and Marfurt (2019),
which helps to highlight lateral variations of parallelism
of reflectors. This attribute was included as an attempt
to correct some misclassifications within the conform-
able facies in areas that were highly faulted due to the
emplacement of the salt domes.

Finally, as part of a conditioning step, and as sug-
gested by Qi et al. (2015), we applied the 3D Kuwahara
filter on each of the seismic attributes used to perform
the PNN algorithm. According to Qi et al. (2015), this
type of filter helps to improve seismic facies classifica-
tions by smoothing the interior structures while sharp-
ening the edges and, consequently, accomplishing more
accurate results. Furthermore, in this study, we tested
the impact of using different filter window sizes for
classifying large- and small-scale features within our
seismic survey.

Methods
Currently, there are several machine learning tech-

niques for classifying seismic facies, from unsupervised
methods, such as k-means, self-organizing maps (SOMs),
and generative topographic mapping (GTM), to super-
vised methods, such as support vector machines (SVMs),
convolutional neural networks (CNNs), and PNNs. In dif-
ferent studies (Zhao et al., 2015b; Chopra and Marfurt,
2018), these techniques have been compared and con-
trasted, whereas others (Coléou et al., 2003; Roy et al.,
2013; Zhao et al., 2015a) have compared the seismic
facies classifications resulting from supervised and unsu-
pervised methods.

According to Zhao et al. (2015b), one of the disadvan-
tages of the k-means algorithm is that it lacks organiza-
tion, making sample data points that can be related
to similar clusters/facies to appear in different ones.
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Moreover, this technique requires the definition of a
distance, which could be either Euclidean, Mahalano-
bis, Manhattan, Canberra, or Chebyshev (Barnes and
Laughlin, 2002; Chopra and Marfurt, 2018). The defini-
tion of the type of distance may have an impact on the
classification accuracy and speed (Barnes and Laugh-
lin, 2002). For example, the Euclidean distance works
properly when the clusters have a spherical shape,
whereas the Mahalanobis distance is more suitable for
elliptical shapes (Chopra and Marfurt, 2018). This adds
a significant degree of complexity to this unsupervised
method. The definition of the distance is not something
obvious or intuitive for an unexperienced interpreter
and can be an overwhelming decision because it will
have a direct impact on the classification performance
and results.

In contrast to k-means, where the clustering is made
over an N-dimensional space (Coléou et al., 2003),
SOMs and GTM are considered projection techniques
or techniques for dimensionality reduction, where the
clustering is made over a manifold or deformed 2D sur-
face (Zhao et al., 2015b). According to Chopra and Mar-
furt (2018), SOMs have several limitations, with the
most prominent being that they do not provide a mea-
sure of confidence in the final clustering results. This is
overcome by the GTM technique, which indicates the
cluster that is most likely to be associated with a sample
data point, but it also indicates the probability of that
specific sample data point belonging to one cluster
or another (Zhao et al., 2015b).

Although the unsupervised methods do not use la-
beled data, they do require a postinterpretation of the
classifications made by the algorithm, and sometimes
it can be difficult to assign geologic meaning to the
automated interpretation (Wrona et al., 2018; Liu et al.,
2019). Nevertheless, the supervised methods allow for
geologically significant classifications because they are
constrained to the number and types of seismic facies
previously defined by the geoscientist (West et al., 2002;
Wrona et al., 2018). Another advantage of the neural
networks used for supervised classification is that they
allow for processing considerable amounts of data
without excessive memory requirements (Coléou et al.,
2003).

Yet, it is important to note that this is not always true
for all of the supervised methods. CNNs, although they
seem promising as a deep-learning technique that only
requires the seismic amplitude volume as input and
avoids the necessity of calculating seismic attributes
volumes, in fact require large amounts of training data
to avoid overfitting and to properly classified the zones
not used for training (Waldeland et al., 2018; Di et al.,
2019; Liu et al., 2019). In the case of SVMs, because they
involve an increase in the dimensionality of the data,
they also imply a significant increase in computational
cost (Zhao et al., 2015b).

Compared to the other supervised methods, PNNs do
not require extensive amounts of training data and their
mathematical foundation also trains data sets faster

than other multilayer feedforward neural networks
(Masters, 1995; West et al., 2002). Moreover, PNNs are
not only based on the computation of distance from the
input vector to the training vectors, but they are also
guided by the quantity of class representatives nearby
(Masters, 1995; West et al., 2002). Therefore, PNNs are
able to provide a measure of confidence by calculating
a probability from one to zero for each sample data
point to belong to a class A, B, or C, and finally classi-
fying the sample data point into the category with the
highest probability (West et al., 2002). All of these as-
pects make PNNs a promising technique that can assure
geologic meaning, faster training, and accurate classifi-
cations with a measure of confidence.

Due to the characteristic of artificial neural net-
works, such as PNNs, to find nonlinear relationships
between well-log data and seismic data, there are sev-
eral papers that have proven the accuracy of PNNs for
predicting reservoir properties (Hampson et al., 2001;
Leiphart and Hart, 2001; Pramanik et al., 2004; Putri
et al., 2018; Liu et al., 2019). However, there are few pa-
pers that have applied PNNs for seismic facies classifi-
cation (West et al., 2002; Lubo-Robles et al., 2019, 2021).
West et al. (2002) present successful results by applying
only textural attributes, whereas Lubo-Robles et al.
(2019, 2021), despite using different types of seismic
attributes, perform the classification of only seismic fa-
cies related to salt and conformable reflectors. With the
success of those classifications, it is necessary to keep
exploring the capabilities of the PNN algorithm by test-
ing it on more complex scenarios using more seismic
facies and different types of seismic attributes.

In all of the previous applications of PNNs, the seismic
attributes selection for the classification or prediction
task has been done by stepwise regression (Hampson
et al., 2001; Leiphart and Hart, 2001; Putri et al., 2018),
multilinear regression (Mercado-Herrera et al., 2006),
or by geoscientist expertise (West et al., 2002; Verma
et al., 2012). However, as has been stated by several au-
thors (Barnes and Laughlin, 2002; Zhao et al., 2018; Kim
et al., 2019; La Marca-Molina, 2020), the proper selection
of the seismic attributes is crucial because it has an im-
portant impact on the final results and could be more
important than the algorithm itself. Therefore, the last
advantage of the PNN algorithm applied in this study
is that it is coupled with an exhaustive searching algo-
rithm. The objective of this exhaustive algorithm is to
find the best combination of seismic attributes and scal-
ing parameters that allows for the most accurate results.
This novel technique was introduced by Lubo-Robles
et al. (2019, 2021) under the name exhaustive PNN.

PNN method
To further understand the mathematics behind the

PNN method, it is first necessary to clarify a few con-
cepts. Following Lubo-Robles et al. (2021), the seismic
volume is separated into (1) training data, (2) validation
data, and (3) unseen data. The first two are labeled
data used to train/learn the algorithm and finally to
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test/validate its performance respectively. However, the
unseen data are left blind to be fully classified by a
trained PNN. Moreover, PNN is a voxel-type classifica-
tion technique, which means that the training and val-
idation data are selected by the interpreter by picking
polygons surrounding samples within the seismic facies
of interest. Those samples will consist of values in the
N-seismic attributes volumes chosen for the classifica-
tion task. In this sense, the samples will be vectors of
N-components in an N-dimensional space.

The statistical foundation behind the PNN method
was proposed by Specht (1988, 1990) and Masters
(1995) and was further explained by Lubo-Robles et al.
(2019, 2021). PNN is a method for pattern classification
based on the Bayes’ strategy for decision making and
the Parzen method. In the Bayes’ strategy, the decision
dðxÞ of classifying a pattern x as part of a category k or
q depends on a probability density function f ðxÞ so that
the Bayes’s rule will classify a sample x into a specific
category if this category has a higher density of its mem-
bers around x; otherwise, it will favor the other cat-
egory (Specht, 1988; Lubo-Robles et al., 2021). Note
that the x pattern corresponds to the vector formed
by the N-seismic attribute values:

dðxÞ ¼ q if f qðxÞ > f kðxÞ; (1)

dðxÞ ¼ k if f qðxÞ < f kðxÞ: (2)

The Parzen method is used to estimate the probabil-
ity density function for each category. In simpler terms,
this method calculates a weight function for each train-
ing sample point and estimates the density function as
a scaled sum of all of the individual weight functions
(Figure 3). According to Masters (1995), the best and
most common weight function, also called a kernel or
potential function, is the Gaussian distribution. In addi-
tion to that, in the Parzen approximation, there is also
an important scaling parameter σthat defines the width
of the bell-shaped curve that surrounds each sample
point and that has a profound effect on the performance
of PNN (Figure 3; Masters, 1995).

Mathematically, Lubo-Robles et al. (2021) describe
the probability density function of a sample x to be clas-
sified within the category k as follows:

f kðxÞ ¼
1
Tk

XTk

t¼1

exp

�
−
P

I
i¼1

ðxi−atiÞ2
σ2

�
; (3)

where Tk is the number of training samples associated
with the kth category defined by the training data, I is
the number of input attributes, ati is the training seismic
attribute vector, σ is the smoothing parameter, and x is a
validation seismic attribute vector during the training
process and an unlabeled sample during the classification.

In addition to the classification volume, the PNN also
provides a measure of the classification confidence

PkðxÞ, which represents the probability of a sample
x to be part of a category k. Therefore, if there are three
categories/seismic facies, then there will be three prob-
ability volumes, one for each category. According to
Lubo-Robles et al. (2021), PkðxÞ is calculated through
the normalization of each probability density function
of category k, f kðxÞ, by dividing it for the sum of all
the density functions of all K classes (equation 4):

PkðxÞ ¼
f kðxÞP
K
q¼1 f qðxÞ

: (4)

In the technique used in this study and within the
work presented by Lubo-Robles et al. (2019, 2021),
PNN is also coupled with an exhaustive searching algo-
rithm that tests all of the σ values in a user-defined
interval, but also all of the different possible combina-
tions of the seismic attributes preselected as the training
input for classification purposes. With each iteration, it
calculates a global validation error value E that helps the
interpreter determine which combination of seismic
attributes and which σ value is the most theoretically ac-
curate and/or optimal according to the algorithm. Basi-
cally, the algorithm compares the classification assigned
to the validation data by the machine with the classifica-
tion assigned by the human interpreter since the begin-
ning, so that it can test its performance. The validation
error value E is defined as

E ¼ 1

V

XV
v¼1

ekðxvÞ; (5)

where V is the number of validation samples and ekðxÞ is
the error function defined by Masters (1995) as

ekðxÞ ¼ ½1 − PkðxÞ�2 þ
X
q≠k

½PqðxÞ�2: (6)

Figure 3. Calculation of the probability density function as a
scaled sum of the individual weight functions. The σ value de-
fines the width of the bell-shaped curve that surrounds each
sample point. The image is modified from Masters (1995).
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If ekðxÞ is zero, it means that the validation sample
classified by the machine correctly corresponds to the
category assigned by the human interpreter. If ekðxÞ is
one, it means that the validation sample was misclassi-
fied in another category (Lubo-Robles et al., 2019).
Graphical details regarding the architecture of the PNN
and its layers can be found at Lubo-Robles et al. (2021).

Workflow and models
Figure 4 shows the generalized workflow followed in

this study. The first part of the workflow involved pre-
paring the input data and preprocessing. These first two
steps required picking the polygon facies, selecting and
calculating the seismic attributes, and applying the Ku-
wahara 3D filter. With those two inputs, the training and
validation data are generated and labeled. Next, we ap-
plied the exhaustive algorithm that provided insight into
the combination of attributes and the σ value that has
the lowest error E. Theoretically, this value represents
the most accurate classification. Finally, the PNN algo-
rithm was applied to generate the facies prediction vol-
ume and a probability volume for each seismic facies.

However, because we wanted to study the influence
of the parameterization in the final classifications and
how they can be improved, we incorporated an addi-
tional step, the geoscientist evaluation. It is noteworthy
to clarify that the PNN structure remains the same; all
of the parameters strictly associated with the algorithm,
such as the transformation parameter used to normalize
or scale the seismic attributes, the analysis window
used to calculate the seismic attributes, and the interval
of σ values tested, remained all the same to avoid any
biased result and to only test the parameters controlled
or chosen by the geoscientist.

In the geoscientist evaluation step, then, we carefully
looked at the facies prediction and probability volumes
andwe identified themisclassified areas and the possible

reasons that may have caused them. Afterward, we
evaluated the possibility of changing one initial param-
eter to improve the classification model. Following that
analysis, we again applied the algorithms, and we com-
pared these results to understand the impact of each
parameter and the limitations of the PNN algorithm.

As mentioned previously, the seismic volume chosen
for this study has architectural elements related to the
small- and large-scale features. To fulfill the objective
of testing the capability of PNN for classifying these ar-
chitectural elements, we defined three initial models.
Model 1 included seismic facies related to the channel,
noise, salt, MTD, and conformable sediments; model 2
included the channel, salt, MTD, and conformable sedi-
ments facies; and model 3 included only the salt, MTD,
and conformable sediment facies.

We applied the generalized workflow several times,
changing a specific parameter in each iteration and
evaluating the different results obtained for each model.
In the end, we had a total of seven tests that will be ex-
plained later in this section. First, we need to discuss the
specific parameters that the geoscientist can control.

Parameters
The geoscientist can control the following parameters.

Seismic attributes selected
The amount and type of seismic attributes prese-

lected as candidates to perform the PNN classifications
will depend on the literature review and geoscientist ex-
perience. There are different types of seismic attributes
in one category, such as the envelope and instantane-
ous frequency as instantaneous attributes or chaos
and the GLCM as textural attributes. This must be re-
viewed in the beginning, so that the interpreter will
choose the attributes that will best differentiate the seis-

mic facies to be classified.
Moreover, there are different ways to

calculate some other attributes, such as
the geometric attributes. The coherence
attribute can be calculated either as an
outer product similarity or a Sobel filter
similarity, and the curvature attributes
can be calculated as a structural curva-
ture with a long or short wavelength.
The interpreter must keep these options
in mind.

Training and validation data
This subsection corresponds to the

way in which the geoscientist will pick
the facies polygons to train the algo-
rithm later. The geoscientist can either
decide between picking the facies poly-
gons in one, two, or more lines and sli-
ces but can also decide on picking in the
most straightforward zones or in the
most difficult ones. These decisions will
have an impact on the time spent in the

Figure 4. Generalized workflow followed in this study. Here, we included an
additional step, the geoscientist criteria, to evaluate the results after applying
the PNN algorithm. Modified from Lubo-Robles et al. (2019).
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classifications. Picking more polygons implies more
time not only for the interpreter but especially for the
machine. Furthermore, picking in challenging zones im-
plies a higher level of difficulty and therefore more time
spent by the interpreter.

Finally, this parameter also involves the way in which
the geoscientist chooses which polygons will be used for
training, which ones will be used for validation, and what
part of the volume will be left as unlabeled/tested. Some
interpreters may not pay attention to this, but it is an im-
portant detail. Training data are exactly for the purpose
of training, whereas the validation data are only used for
verification and estimation of the error. This means that
the algorithmwill not learn from the validation polygons,
but only from the training polygons.

Seismic facies included
In this parameter, the geoscientist first needs to look

at the seismic volume and identify the seismic facies.
The seismic facies can be either related to large-scale
features or small-scale and subtle features. If both are
present, then they must decide between including all of
them or just consider classifying some of them.

Seismic volume size
Seismic volumes can be considerably large; therefore,

they have a high computational cost. For that reason, the
interpreter can decide on using a seismic volume that
covers all of the seismic facies of interest or can crop
the volume into multiple zones, such as a shallow and
a deep zone. For example, this technique is used when
generating velocity models. It can also be used to further
delineate zones where certain types of geologic features
or noise are more likely present.

Analysis window
This parameter generally applies for

all of the seismic attributes. However,
it is especially important for application
of the 3D Kuwahara filter. According to
Qi et al. (2016), if the analysis window
of the 3D Kuwahara filter is large, the im-
age will be smoother but somewhat
blocky, and if the analysis window is
small, the image will be less smooth
and blockiness will be reduced.

Tests
Now that the parameters have been

defined and explained, we can address
the individual relations between the
parameters and the tests. For each test,
we altered a specific parameter that
could be either the training data, the
analysis window, the volume size, the
seismic attributes, or the facies included.

1) Test 1: corresponded to the very first
classifications run as starting point

2) Test 2: explored the impact of adding more
training data

3) Test 3: changed the size of the analysis window of
the 3D Kuwahara filter

4) Test 4: separated the volume into smaller portions
5) Test 5: calculated the curvature attributes using

short instead of long wavelength
6) Test 6: included more facies and changed the way of

picking the facies polygons
7) Test 7: performed the classification using another

seismic attribute, the dip deviation attribute, and ex-
plored the generation of training data in the more
complex area of the second salt dome.

Figure 5 systematically displays the way in which the
tests were run and the logical connections from one test
to another. Those connections between tests indicate
the way in which a positive impact from a previous test
influenced the next one, so that the classifications were
progressively improved from one test to another. Notice
that some of the tests were addressed in different ways
and, for that reason, they may have two or three cases.
The specific parameters applied in every test are shown
in detail in Table 1.

Test 1: Initial results
We began the first test by picking the facies polygons

in one line and one slice for the training data and an-
other line and another slice for the validation data, and
the rest of the volume is left unlabeled. In this test, we
applied the 3D Kuwahara filter with an analysis window
equal to the default bin size of 41 ft2 × 131 ft2 × 0.004 s.
We also used the entire, initially cropped volume with a
record length of 4.1 s. This first test served as a starting

Figure 5. Tests and cases run in this study and the connections between them.
The green boxes also indicated the specific parameter modified in each case.
Notice that the process was not fully continuous: There were cases that influ-
enced later ones, whereas there were others that did not.
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point to detect the initially misclassified zones and to
begin making modifications to the initial parameters.

Test 2: Training data
In test 2, we wanted to explore the impact of adding

more training data. This parameter can help improve
the seismic facies classification, but it can also lead to
higher computational costs. We then created two cases.
Case 1 had double the amount of training data, and it
means two lines and two slices. Case 2 used triple
the amount of training data, which means three lines
and three slices. The rest of the parameters remained
the same. With this test, we would be able to see how
worthy it would be to increase the training data, and, if
so, how big should that increase be. The first case was
tested with the three models, whereas the second case
used model 3 only. The new included facies polygons
were all picked in the first salt-dome area.

Test 3: 3D Kuwahara filter window
For test 3, we explored the impact of using a larger

analysis window when applying the 3D Kuwahara filter
on the seismic attributes. We applied an analysis win-
dow of 123 ft2 × 393 ft2 × 0.012 s. According to Qi et al.
(2015), this may help to better define the seismic facies.
However, in those studies, it was considered only for
large-scale features, whereas in our models, there are
small- and large-scale facies. Therefore, it was necessary
to evaluate the impact of changing this filter parameter
on each model.

Test 4: Volume size
Following the assumption that using a smaller

volume can make it easier for the algorithm to classify
the seismic facies of interest, we decided to explore that
possibility by cropping the seismic volume into a shal-
low and a deep part in test 4. The shallow part covered
the region between 1.5 and 2.7 s, whereas the deep part
covered the interval from 2.6 to 4.1 s. The classification
for the deep portion was only run for the model 3 be-
cause the only facies encountered within this interval
are the salt, MTD, and conformable sediments. How-
ever, the shallow part was run for all three models be-
cause in this region there are the channel, noise, salt,
MTD, and conformable sediment facies.

Test 5: Curvature attributes
When running the previous classifications, we no-

ticed some vertical artifacts within all of the seismic fa-
cies classification models. We related those vertical
artifacts to the curvature attributes calculated with a
long wavelength. In case 1 of test 5, we decided to test
the possibility of using a short wavelength instead,
whereas in case 2, we did not use any of the curvature
attributes. We ran these cases only using model 3. In
this sense, with test 5, we could analyze the impact of
changing the way of calculating seismic attributes, such
as the curvature attributes.

Test 6: Challenging zones
To address challenging areas, such as the highly

faulted areas and the fractured zones, we explored
three cases in test 6. Case 1 included fault facies, case
2 used facies polygons that enclose the faulted zones,
and case 3 included fractured zone facies. All of those
facies were picked near the first salt-dome area.

Test 7: Final misclassifications approach
Finally, in test 7, we wanted to improve some mis-

classified areas between the conformable sediments
and the MTD facies that were especially seen near the
second salt dome. To do so, in case 1, we decided to
perform the seismic facies classification using the dip
deviation attribute instead of the coherence attribute.
In case 2, we changed the way of picking the facies pol-
ygons and, therefore, the way of training the data. In
this case 2, we decided to pick the facies polygons near
the second salt-dome area, where the conformable sedi-
ments were highly faulted and where the intercalations
between the MTDs and the conformable sediments
were more difficult to distinguish. In addition, with this
case 2, we wanted to determine whether the seismic
facies classifications would improve significantly when
training in the more difficult areas.

Results
In this section, we analyze the results obtained from

each individual test after changing a specific parameter.
For this analysis, we compared the outcomes of a
specific test with the outcomes of the previous one. We
evaluated the results of each test by performing a de-
tailed analysis of the resultant facies classification
volumes provided by the PNN algorithm, as well as
by examining the error calculated by the exhaustive
algorithm. As mentioned previously, this error is calcu-
lated through the internal comparison of the classifica-
tion assigned to the validation data by the machine and
the classification assigned by the interpreter during the
training process. In this section, we will also present
how the results of the early tests and cases influenced
the parameter definition of later ones. Table 2 shows a
compilation of the best combinations of attributes and
sigma values obtained from every test and case. Notice
that the k1-most-positive principal curvature, envelope,
and the coherence attribute comprised almost all of the
best combinations calculated by the exhaustive algo-
rithm to perform the seismic facies classification. The
second case of the last test 7 was the only exception.
Also, note that most of the sigma values are between
0.1 and 0.3.

Regarding the computational effort to perform all of
these classifications, the algorithm took less than 10 s
for generation of the training data, whereas the time for
the exhaustive search algorithm to find the best combi-
nation among the 63 possible at every test varied be-
tween 3 and 10 min, depending on the number of
facies polygons. When applying the PNNs, the time var-
ied between 30 min and a maximum of 2 h, which was

Interpretation / February 2022 9



during classifying all of the five seismic facies, the double
of the polygons, and using the combination of four attrib-
utes. The server used consisted of 120 threads and
256 GB of memory; however, because it was a shared
environment, only 40 threads were used in every process.

Test 1: Initial results
Model 1 used the following combination of seismic

attributes: k1, GLCM dissimilarity, envelope, and
coherence, with a σ value of 0.1. This combination
showed the lowest error value of 0.274. In these results
(Figure 6a), we can notice the misclassifications of
salt, MTD, and noise facies, into the conformable sedi-
ments of the deeper parts of the volume. There were
also some misinterpretations in the conformable sedi-
ment layers that were classified as channel facies.
However, observe that the algorithm distinguished
the noise layer at the top of the section quite well de-
spite the misclassifications at the bottom. When look-
ing at time slice 2060 ms, where we should clearly see

the channel (Figure 6a), we notice that it was in fact
correctly classified into the corresponding facies and
was isolated from the surrounding conformable sedi-
ments facies. Other areas in the same time slice,
though, were incorrectly classified as channel facies.

Model 2 had the lowest error value of 0.233 with a σ
value of 0.1 and the following combination of seismic
attributes: k1, envelope, and coherence. Similar to
the results of previous model 1, the algorithm struggled
to differentiate the salt from the MTD facies in the deep
part of the seismic volume and the top of the salt dome
(Figure 6b). In addition, some areas related to conform-
able sediments facies were misclassified as channel
facies. In time slice 2060 ms, the channel was better de-
fined and isolated compared to model 1 (Figure 6b).
However, notice that other areas were misinterpreted
as channel facies and also had stronger responses. This
indicates that the correct and incorrect classifications
of the channel facies in model 1 were better highlighted
in model 2.

Table 2. Compilation of the best combinations of seismic attributes and σ values obtained from every test and
case.

Test Case Model Seismic facies Best combination Error Sigma

Test 1 N/A 1 Salt, MTD, conf. sediments,
channel, and noise

k1, GLCM dissimilarity,
envelope, and coherence

0.274 0.1

2 Salt, MTD, conf. sediments,
and channel

k1, envelope, and coherence 0.233 0.1

3 Salt, MTD, and conf. sediments k1, envelope, and coherence 0.147 0.2

Test 2 Case 1 1 Salt, MTD, conf. sediments,
channel, and noise

k1, GLCM contrast, envelope,
and coherence

0.233 0.1

2 Salt, MTD, conf. sediments,
and channel

k1, envelope, and coherence 0.199 0.1

3 Salt, MTD, and conf. sediments k1, envelope, and coherence 0.148 0.1

Case 2 3 Salt, MTD, and conf. sediments k1, envelope, and coherence 0.143 0.1

Test 3 N/A 1 Salt, MTD, conf. sediments,
channel, and noise

k1, k2, GLCM contrast,
envelope, and coherence

0.181 0.2

2 Salt, MTD, conf. sediments,
and channel

k1, GLCM contrast, envelope,
and coherence

0.136 0.2

3 Salt, MTD, and conf. sediments k1, GLCM contrast, envelope,
and coherence

0.092 0.2

Test 4 Shallow 1 Salt, MTD, conf. sediments,
channel, and noise

k1, envelope, and coherence 0.302 0.1

2 Salt, MTD, conf. sediments,
and channel

k1, envelope, and coherence 0.277 0.1

3 Salt, MTD, and conf. sediments k1, envelope, and coherence 0.145 0.1

Deep 3 Salt, MTD, and conf. sediments GLCM dissimilarity, envelope,
and coherence

0.081 0.1

Test 5 Case 1 3 Salt, MTD, and conf. sediments k1 (short wavelength), GLCM
contrast, envelope, and
coherence

0.113 0.2

Case 2 3 Salt, MTD, and conf. sediments GLCM contrast, envelope, and
coherence

0.11 0.2

Test 6 Case 1 — Salt, MTD, conf. sediments,
and faults

k1,k2, GLCM dissimilarity,
envelope, and coherence

0.108 0.3

Case 2 3 Salt, MTD, and conf. sediments k1, GLCM contrast, envelope,
and coherence

0.102 0.2

Case 3 — Salt, MTD, conf. sediments,
and fractured zone

k1, envelope, and coherence 0.239 0.1

Test 7 Case 1 3 Salt, MTD, and conf. sediments k1, GLCM contrast, envelope,
and dip deviation

0.111 0.2

Case 2 3 Salt, MTD, and conf. sediments k2, envelope, and coherence 0.103 0.2
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Model 3, classifying only large-scale features related
to salt, MTDs, and conformable sediments, had the low-
est error value of 0.147 using a σ value of 0.2 and had
the following combination of seismic attributes: k1,
envelope, and coherence. In the deep zones of the seis-
mic volume, we can notice that the algorithm had diffi-
culties distinguishing between salt and MTD facies and
between salt and conformable sediments (Figure 6c).

Notice that in all the three models, the area that we
interpreted as a highly fractured zone was classified as
salt. Also, note that most of the misclassifications have
a vertical artifact pattern. We then decided to increase
the amount of training data in the second test, seeking
for an improvement of the classifications in those trou-
bling zones.

Test 2: Training data
In the first case, when using double the amount of

training data, model 1 had its lowest error value of
0.233 with a σ value of 0.1 and the attribute combination
of k1, GLCM contrast, envelope, and co-
herence. Note that the misclassifications
within the deep zones decreased consid-
erably (Figure 7a), whereas the ones in
the shallow portion remained almost
the same. The channel in time slice
2060 ms was subtly more highlighted,
and the misclassified noise facies were
less obvious when compared with test 1.

Model 2 had the lowest error value
0.199 when applying a σ value of 0.1
and using an attribute combination of k1,
envelope, and coherence. The misclassi-
fications between the channel and the
conformable sediments (Figure 7b) re-
mained nearly the same when compared
with the results from test 1. However, the
channel was better highlighted and iso-
lated in time slice 2060 ms of test 2.

For the first case, model 3 had the
most optimal and lowest error value
of 0.148 when combining k1, envelope,
and coherence and applying a σ value
of 0.1. In Figure 7c, we can evidence a
considerable classification improve-
ment in the deep zones of the seismic
volume after doubling the amount of
training data. However, the second case
of model 3 did not show any noticeable
difference after using triple the amount
of training data (Figure 7d).

Some similar observations in all the
three models were the general decrease
in the lowest error value, fewer misclas-
sifications between the salt and the MTD
facies in the deep parts of the seismic
volume, and the fractured zone near
the top of the salt domes being mostly
classified as MTD facies. Also, notice

that, in all of the models, the fault zones remained being
misclassified and we can still observe the vertical ar-
tifacts.

Overall, after using double the amount of training
data, the results improved considerably. Yet, when us-
ing triple the amount of training data, the classification
did not show any significant improvement, while ac-
tually having a higher computational cost.

Test 3: 3D Kuwahara filter window
For this test, we decided to use a larger analysis win-

dow of 123 ft2 × 393 ft2 × 0.012 s. Following the results
obtained from the previous test 2, we also decided to
continue using double the amount of training data be-
cause it performed better and generated more accurate
results. The rest of the parameters remained the same.

Model 1 had the most optimal error value of 0.181
when applying σ equal to 0.2 and combining k1, k2,
GLCM contrast, envelope, and coherence. Model 2
had the most optimal error value of 0.136 with σ equal

Figure 6. Facies prediction volumes obtained from test 1 after training the algo-
rithm with one line and one time slice and applying a 3D Kuwahara filter equal to
the default bin size. (a) Model 1, (b) model 2, and (c) model 3. Notice that, in the
three models, the deep part is being misclassified either as salt, channel, or noise
facies. In model 1, notice that the noise layer was well classified and in time slice
at 2060 ms the channel was correctly interpreted into its corresponding facies. In
model 2, the channel is better highlighted. In model 3, the time slice at 3288 ms
showed an MTD being misclassified as salt. All of the images correspond to the
corender of the amplitude volume and the facies prediction volumes.
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to 0.2 and using k1, GLCM contrast, envelope, and
coherence. This attribute combination and σ value were
also the most optimal for model 3, which had an error
value of 0.092.

After changing this parameter, the results for the
three models improved considerably for the seismic fa-
cies related to large-scale features. In Figure 8, we can
notice a misclassification decrease between the MTD
and the salt facies and inside the conformable sedi-
ments present within the deep zones for all three mod-
els. In this test, model 3 (Figure 8c) noticeably stood out
when compared with the previous classifications.

In time slice 2060 ms of models 1 and 2, the channel
is hardly seen now (Figure 8a and 8b). Yet, the noise
layer near the seafloor in model 1, despite being well
interpreted, extended to the shallow parts of the con-
formable sediment facies, rendering the overall result
inaccurate (Figure 8a). The misclassified faulted zones
were not corrected in either of the models.

After these results, which appeared only to be suit-
able for model 3, we decided to run the next tests by
increasing the 3D Kuwahara filter window size for
model 3 only, while keeping a small filter analysis win-
dow for the other models.

Test 4: Volume size
In this test, we cropped the seismic

volume into a shallow and a deep por-
tion. The shallow portion was run for
the three models, whereas the deep por-
tion was only run for model 3. This is be-
cause there are only large-scale features
present in the deep region; therefore, it
is only necessary that the model focuses
on those.

The shallow zone of model 1 had the
lowest error value of 0.302 with σ equal
to 0.1 and using the attribute combina-
tion of k1, envelope, and coherence. This
error value is larger than the error value
obtained for model 1 in test 2, which used
the entire volume. When comparing the
classifications in the shallow part of test
2 (Figure 7a) and test 4 (Figure 9a), there
are more misclassifications after crop-
ping the volume. These misclassifica-
tions are especially present within the
MTD facies where the vertical artifacts
are more noticeable. In time slice
2060 ms (Figure 9a), the channel and
other misclassifications were also more
highlighted.

The results obtained for model 2
were similar to those obtained for model
1. The lowest error value of 0.277 was
also larger than the value obtained for
model 2 in test 2, and it was achieved
with σ equal to 0.1 and using the k1,
envelope, and coherence attributes. Fig-
ure 9b shows the increase of misclassi-
fications inside the MTD facies, which
showed vertical artifacts. In addition,
in the time slice of Figure 9b, we notice
that there is no significant improvement
between the classification of the chan-
nel in test 4 when compared to test 2.

The shallow region of model 3 (Fig-
ure 9c) had the most optimal error value
of 0.145 with σ equal to 0.1 and using the
k1, envelope, and coherence attributes.
The deep portion had the lowest error

Figure 7. Facies prediction volumes obtained from test 2 after increasing the
amount of training data. (a-c) Model 1, model 2, and model 3, respectively, when
using double the amount of training data. (d) Model 3 when using triple the
amount of training data. Notice the considerable decrease of misclassifications
in the deep portion of the facies prediction volumes when using double the
amount of training data, whereas when using triple the amount of training data,
there was not a significant improvement.
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value of 0.081 using the GLCM dissimilarity, envelope,
and coherence attributes, and σ of 0.1. The shallow part
exhibited the same artifacts seen in models 1 and 2 (Fig-
ure 9a and 9b). In the deep part, the main difference
compared to the previous tests was that the zones near
the salt body were interpreted as MTDs instead of salt
(Figure 9d). In time slice 3288 ms of model 3, the MTD
and salt facies were well distinguished and showed
results similar to those obtained from test 3.

Test 5: Curvature attributes
The objective of this test was to suppress or diminish

the vertical artifacts observed in the previous tests. We
created two cases: Case 1 changed the curvature attrib-
utes calculated with a long wavelength with curvature
attributes calculated with a short wavelength and case 2
did not include curvature attributes. We ran these cases
for the classification of facies of model 3 only.

Until this point, the most accurate classification ob-
tained for model 3 was the one obtained from test 3. In
that classification of facies, model 3 had the most opti-
mal error value of 0.092 with the combi-
nation of the k1 (long wavelength),
GLCM contrast, envelope, and coher-
ence attributes (Figure 8c). To have
an unbiased comparison, we performed
the classification using the same combi-
nation of attributes but with the k1
calculated with a short wavelength. This
combination had an error value of 0.113
using σ equal to 0.2. Despite some re-
maining misclassified areas inside the
MTD and conformable sediments facies,
the vertical pattern was successfully
suppressed from the artifacts and the
misclassifications in the faulted zones
were not as strong (Figure 10a). Using
the k1 (short wavelength), though, had
an impact on the top of the salt body that
is not as well defined as when using k1
(long wavelength).

Figure 10b shows the second case that
we tested, which did not use either of the
curvature attributes. To also have an un-
biased comparison, in this case, we per-
formed the classification by excluding
the k1 attribute and only using the GLCM
contrast, envelope, and coherence attrib-
utes. According to the exhaustive algo-
rithm, this combination had the lowest
error value of 0.110 with σ equal to 0.2.
In this case, the misclassification in the
fault zones and the vertical patterns were
completely suppressed (Figure 10b).
Nevertheless, just as in the previous case
when using k1 (short wavelength), the
top of the salt body was not well-defined.

Not wanting to sacrifice the top of the
salt dome by suppressing the vertical

artifacts, we reviewed the different possibilities to
address this situation. We decided to revisit some of
the initial parameters that the geoscientist can control,
such as the facies polygons and the training data. We
then decided to make another test considering those
parameters and those challenging classification zones.

Test 6: Challenging zones
In this test, we ran three different cases. Case 1 in-

cluded a fault facies (Figure 11a), case 2 created polygons
of facies that enclose the faulted zones (Figure 11b), and
case 3 included a fractured zone facies (Figure 11c).

For the first case, we created another model to clas-
sify the salt, MTD, conformable sediments, and fault
facies. We ran the classification using a filter analysis
window size of 123 ft2 × 393 ft2 × 0.012 s and picked
two lines and two slices for the training data. We per-
formed the classification with a σ value equal to 0.3 and
using the k1 and k2 (long wavelength), GLCM dissimi-
larity, envelope, and coherence attributes. This attrib-
ute combination had an error value of 0.108. Despite

Figure 8. Facies prediction volumes obtained from test 3 after using double the
amount of training data and a larger analysis window for the calculation of the 3D
Kuwahara filter. (a) Model 1, (b) model 2, and (c) model 3. Notice that, in all three
models, the classification of large-scale features was better performedwhereas the
classification of small-scale features was degraded. Notice also how the faults at
the top of the salt dome were misclassified as salt facies, as well as some conform-
able sediments were misclassified as channel facies.
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having a higher computational cost,
Figure 11a shows that including the fault
facies outputted relatively accurate re-
sults in the faulted zones with additional
misclassification within the conform-
able sediments and MTD facies.

For the second case, we used two
lines and two slices to repick the facies
polygons used for training. Contrary to
the previous tests, this time, the facies
polygons that we picked as conformable
sediments enclosed the fault zones
present at the top of the first salt dome
and in the middle of the seismic section
(the right side of Figure 11b). This case
had the lowest error value of 0.102
combining the k1 (long wavelength),
GLCM contrast, envelope, and coher-
ence attributes with a σ value equal to
0.2. The results of this classification are
shown in Figure 11b. This case success-
fully suppressed the misclassifications
within the normal faults located at the
top of the salt domes and in the middle
of the seismic section.

For the third case of this test, we clas-
sified the salt, MTD, conformable sedi-
ments, and a fractured zone related
facies (Figure 11c). The classification of
this case was performed with the attrib-
ute combination of k1, envelope, and
coherence and σ equal to 0.1. This com-
bination corresponded to an error value
of 0.239. Despite the MTD intervals of the
deeper zones being misclassified as frac-
tured zone facies, the PNN algorithm cor-
rectly classified the fractured zones near
the salt dome (Figure 11c).

From these three cases, cases 1 and 3
had higher computational costs because
they included additional facies. Alterna-
tively, case 2 had the same computation
time as the previous classifications of
model 3, but it showed the best results
(Figure 11b).

Test 7: Final misclassification
approach

Prior to this test, the best classifica-
tion of model 3 was the one obtained
from the second case of the previous test
6 with the combination of the k1 (long
wavelength), GLCM contrast, envelope,
and coherence attributes. Although in
that case we corrected the misclassifica-
tions in the faulted zones, there were
some remaining misclassifications be-
tween the conformable sediments and
the MTD facies that were especially seen

Figure 9. Facies prediction volumes obtained from test 4 after cropping the
seismic volume into a shallow and a deep portion. (a) Shallow zone of model
1, (b) shallow zone of model 2, (c) shallow zone of model 3, and (d) deep zone
of the model 3. In all of the models, there was a stronger response of the vertical
artifacts within the MTDs in the shallow zone. The classifications in the deep
portion did not show a considerable difference from the previous tests.

Figure 10. Facies prediction volumes of model 3 in test 5 after: (a) case 1, using k1
calculated with short wavelength and (b) case 2, not using curvature attributes.
Notice how in case 1 the misclassifications in the fault zones were diminished,
whereas in case 2, they were completely suppressed. In both cases, though, the
definition of the salt dome tops was compromised. Note also that there are still
some misclassifications of salt facies within the MTDs.
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at the top of the second salt dome (the right side of
Figure 12a). To address these errors, we explored a non-
parallelism attribute, known as the dip deviation, and in-
cluded it within the first case of test 7.

Due to the similarities between the dip deviation and
the coherence attributes, we decided to perform the
classification using a combination of the k1 (long wave-
length), GLCM contrast, envelope, and dip deviation
attributes. This was done to obtain an unbiased com-
parison. According to the exhaustive al-
gorithm, this classification had the
lowest error value of 0.111 with σ equal
to 0.2. The right side of Figure 12a shows
a section of the second salt-dome area in
the classification volume of the second
case from test 6. Here, the highly faulted
conformable sediments at the top of the
salt dome were misclassified as MTDs.
Figure 12b shows the results after using
the dip deviation attribute instead of
the coherence. Notice that, after using
the dip deviation attribute, all of the
misclassifications were successfully
removed. Nevertheless, inside the salt
dome, we noted some misclassifications
with a conformable pattern that could
be related to multiples and artifacts re-
sulting from the calculation of the dip
deviation attribute (Figure 12b).

For the second case of this test, we de-
cided to change the way that we trained
the algorithm. This time, we picked the
facies polygons in themore complex area
of the second salt dome. We performed
this classification using the attribute
combination of k2, envelope, and coher-
ence, with a σ value equal to 0.2 and an
associated error value of 0.103. The clas-
sifications in the area near the first dome
(the left side of Figure 12c) were almost
identical to the ones obtained from the
second case of test 6, whereas the classi-
fications in the areas near the second salt
dome were considerably improved (the
right side of Figure 12c). The misclassifi-
cations between the conformable sedi-
ments and the MTD facies at the top of
the salt dome were successfully sup-
pressed, and it was possible to see the
continuity of the conformable strata in
that region. Also, most of the artifacts in-
side the salt dome were diminished in
comparison to the previous tests.

Discussion
Table 2 reveals that most of the best

combinations of attributes included the
k1-most-positive principal curvature,
envelope, and coherence. These results

complement the findings from Lubo-Robles et al.
(2019), who find that when classifying salt and conform-
able reflectors, the best combination of attributes is k1
and coherence. In our study, because we included more
seismic facies in addition to the salt and conformable
sediments of Lubo-Robles et al. (2019), it is expected
that the algorithm also requires the inclusion of addi-
tional seismic attributes for optimal classification re-
sults. In our study, it turned out to be the envelope

Figure 11. To the right side, are the facies prediction volumes obtained from
test 6, and to the left side, there are some samples of facies polygons picked as
training for the specific case of the left side. (a) Case 1, after including the fault
facies. (b) Case 2, after picking polygons that enclose the fault zones; notice that
the new conformable sediment polygons cover a local normal fault and the small
faults at top of the first salt dome. (c) Case 3, after including the fractured zone
facies that are around the top of the salt domes. In case 1, notice that despite that
the faults were correctly classified into their specific facies, this case added addi-
tional random misclassifications of the fault facies inside the MTD and conform-
able sediments facies. In case 2, the misclassifications in the faults were
successfully eliminated, and in case 3, the fractured zone was correctly classified
but the MTD of the deep interval was misclassified as that facies, too.
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attribute, which, contrary to the rest of the seismic
attributes used in this study, is not related to any geo-
metric or textural property of the signal, but to the en-
ergy of the signal. Table 2 also indicates that the best σ
values range from 0.1 to 0.3, which is lower than the
best sigma value of 1.9 obtained by Lubo-Robles et al.
(2019). This also confirms the mathematics explained
by Masters (1995), who indicates that when using
higher amounts of training data, the sigma value is ex-
pected to decrease. Our results, then, correlated accu-
rately with both studies.

When looking at the first classifications performed in
test 1, we realized that the algorithm had limitations for
classifying the conformable sediments facies in the
deeper zones, which are being incorrectly classified
as noise and salt facies (Figure 6). This may be related
to the amplitude attenuation effect, which results in the
seismic responses of the deeper zones to have lower
amplitude values than the seismic responses of the
same facies in the shallower zones. Therefore, if the

amplitude is naturally compromised, then the envelope
attribute is compromised as well, and, as mentioned
previously, the envelope is being applied along with
the k1 and coherence attributes to perform most of
the classifications. In this scenario, if the conformable
sediments of the deeper zones are composed by con-
tinuous and subparallel reflectors but with low ampli-
tude, it is likely that the algorithm will confuse them
with the noise facies. Furthermore, if the MTD layers
in the deeper zones show low amplitude, then they
may also be misclassified as salt facies.

Nevertheless, the results from test 2 indicated how the
PNN algorithm could overcome the attenuation of sig-
nals with depth and performed better classifications
after the training data were doubled. In this test, we
noted how the classifications significantly improved, es-
pecially in the conformable sediments of the deeper
zones for all three models (Figure 7). However, when
we used triple the amount of training data for classifying
the salt, MTD, and conformable facies, the results were

nearly identical compared to when using
double the amount of training data. This
could be attributed to an overtraining of
the algorithm. Hampson et al. (2001) ob-
tain similar results when including more
seismic attributes. In their study, the val-
idation error stopped decreasing at some
point and the classifications started to
overfit the data. These results also sup-
port the statements of previous authors
(Masters, 1995; West et al., 2002) where
PNNs do not require large amounts of
training data to have accurate results
with low computational costs. For this
reason, we continued training our data
set using two lines and two slices, to im-
prove the correct classifications, to not
overfit the algorithm, and to avoid high
computational costs.

After using a larger analysis window
when calculating the 3D Kuwahara filter
in the seismic attributes, we evidenced
a noticeable improvement in the classifi-
cation of large-scale seismic facies. In the
case of small-scale features, though, in-
creasing the 3D Kuwahara filter degraded
the classifications, especially the channel
facies. Although we were expecting a
stronger response of the channel in the
seismic attributes and, therefore, in the
prediction volumes, the results showed
the channel facies being mashed with
the other facies. Yet, the noise facies
showed the stronger response that we
were expecting but extended beyond to
the shallow conformable reflectors (Fig-
ure 8a). Later in this study, we found that
Luo et al. (2002) state that these types
of edge-preserving smoothing filters can

Figure 12. Sections showing the facies predictions in the first salt-dome area to
the left and the second salt-dome area to the right. (a) The results of case 2 in test
6 for comparison. In line 1373, notice the misclassifications of the MTD facies
within the fractured conformable sediments above the second salt dome top.
(b) The results of case 1 in test 7 after replacing the coherence attribute with
the dip deviation attribute. Note that the misclassifications at the top of the sec-
ond salt dome were successfully suppressed; however, this case added misclas-
sifications inside both salt domes. (c) The results of case 2 in test 7 after training
in the second salt-dome area. Note that the misclassifications above the second
salt dome top were suppressed and there were no artifacts inside either of the
salt bodies.
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actually suppress geologic features such as channels if
their width is smaller than the window size of the filter.
Also, Fehmers and Höcker (2003) note that this type of
filter not only suppresses random noise, but it can even-

tually suppress small-scale stratigraphic and structural
features as well. Therefore, we suggest classifying
small-scale features separately from the classifications
of large-scale features, so that when applying the 3D

Table 3. Qualitative impact of each parameter modified on the facies prediction volumes obtained from each case.
In the case of the dip deviation attribute, the negative impact cannot be generalized because the conformable
artifacts observed in that case are related to the processing task.

Test
Parameter
modified Case Specific modification Impact Commentary

Test 2 Training data Case 1 Two lines and two time
slices for training data

Very positive Considerably decreased the
misclassifications in the
deeper part of the seismic
volume

Case 2 Three lines and three time
slices for training data

Negative No additional improvement
and higher computational cost

Test 3 Analysis window — Larger analysis window for
the calculation of the 3D
Kuwahara filter

Negative-positive Negative for the small-scale
features and positive for the
large-scale features

Test 4 Cropping the volume Shallow
part

Volume cropped into a
shallow portion

Negative Channel better highlighted but
considerably increased
vertical artifacts in the other
seismic facies

Deep
part

Volume cropped into a deep
portion

Neutral Not outstanding difference
from previous classifications

Test 5 Seismic attributes
selected

Case 1 Curvature attributes
calculated with a short
wavelength

Relatively positive Diminished the vertical pattern
in the observed artifacts and in
the faults, but compromised
the definition of the tops of the
salt domes

Case 2 Not using curvature
attributes

Relatively positive Suppressed the vertical
pattern in the observed
artifacts and in the faults, but
compromised the definition of
the tops of the salt domes

Test 6 Seismic facies
included

Case 1 Including fault facies Negative Classified beyond the fault
planes, added random
misclassifications, and
increased the computational
cost

Training data Case 2 Picking polygons enclosing
the faulted areas

Very positive Suppressed the
misclassifications in the faults
and did not increase the
computational cost

Seismic facies included Case 3 Including fractured zone
facies

Relatively positive Correctly classified the highly
fractured areas near the salt
dome top but increased the
misclassifications in the MTD
of the deep part

Test 7 Seismic attributes
selected

Case 1 Including the dip deviation
attribute

Relatively negative* Suppressed the
misclassifications between the
conformable sediments at the
top of the second salt dome
and the MTD facies.
Substantially increased
artifacts inside the salt domes

Training data Case 2 Picking polygons in the
challenging zones near the
salt #2

Positive Considerably decreased
misclassifications between the
faulted conformable sediments
and the MTD facies. Showed
less artifacts inside the salt
domes

Note: *As the dip deviation attribute is directly related to reflector parallelism, it may fail when classifying areas with conformable artifacts or multiples. We should
not discard this attribute for future classifications, as it did show improvements, for example, in faulted zones.
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Kuwahara filter, the interpreter can use the analysis
window accordingly. We highly recommend following the
advice of Qi et al. (2015), who apply larger 3D Kuwahara
windows when performing classifications of seismic fa-
cies related to large-scale features but not when classify-
ing small-scale features.

When cropping the seismic volume in test 4, the
classifications in the shallow zone for the three models
exhibited stronger responses in the vertical artifacts,
whereas the only change in the deep zone was that what
we interpreted as fractured zones were classified as MTD
instead of salt facies in comparison with the previous
tests. A noteworthy aspect of this test was the channel
and the noise layer in model 1, which were strongly clas-
sified into their respective facies. In other words, the al-
gorithm showed stronger responses for the correct
interpretations and for the artifacts and misclassifica-
tions. One explanation for the results of this test may

be an increase in the confidence of the algorithm, which
is calculating higher probabilities for the predominant
facies by having the same amount of training data with
a smaller volume to classify.

In general, we saw that despite the channel and the
noise layer having been well classified into their respec-
tive facies, there were some other areas that were consis-
tently misclassified as those facies. We tried to correct
those misclassifications through many different tests.
However, the prediction volumes of these small-scale re-
lated facies continued to show the same misinterpreta-
tions with no signs of improvement, contrary to the
model with only large-scale features, which progressively
generated better results. These results may be related to
geologic and/or geophysical reasons. One reason would
be the possible presence of turbiditic stacked channels.
Further analysis with complementary well-log data would
be needed to confirm or discard whether the misclassified

channel facies are in fact correctly classi-
fied stacked channels systems. Another
reason could be due to the similar seismic
attribute responses of those seismic fa-
cies, making it difficult for the algorithm
to differentiate between them. This would
imply a limitation of this technique when
this kind of situation arises, and supple-
mentary research would be necessary to
explore other seismic attributes that allow
for a better discrimination of those facies.

In addition, in the previous tests, we
recognized some vertical artifacts that
were classified as salt facies. We tried
to address these errors in tests 5 and
6. Regarding the specific origin of these
vertical artifacts, we considered that they
may be related to the following reasons:
(1) It is well known that, for normal
faults, there are high positive curvature
responses at the edge of the footwalls
and high negative curvature responses
at the edge of the hanging walls (Klein
et al., 2008). The similar responses be-
tween the footwalls and the salt domes
in the k1 attribute volume explained
why these artifacts are in the faulted
zones and why they were misclassified
as salt facies. (2) In the case of the ver-
tical artifacts observed inside of the
MTDs and less obvious in the other fa-
cies, we considered that they may be re-
lated to the processing task. When
reviewing the seismic amplitude volume,
these last artifacts coincide with patterns
similar to those observed at the very top
of the salt domes. Therefore, this implies
very high positive values in the k1 attrib-
ute volume that lead to misclassifying
those areas as salt facies.

Figure 13. Evolution of the seismic facies classification for model 3, from the very
first one to the last one. Note the progressive improvement after including the geo-
scientist criteria to change the initial parameters. To the left, there are the sections
showing the first salt-dome area, and to the right, there are the sections showing the
second salt-dome area. (a) The results of model 3 in test 1: Note the misclassifi-
cations in the fault zones and in the deep portion of the volume. (b) The results of
model 3 in test 6 after picking new polygons enclosing the fault areas. In this clas-
sification, we also used double the amount of training data. Note that the misclas-
sifications in the fault zones and in the deep portion of the volume were corrected.
(c) The results of case 2 in test 7, after picking all of the facies polygons in the more
complex area of the second salt dome. Notice the correction in the classification of
the conformable sediments’ facies in the top of the second salt dome.
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In the case of test 5, we could see that by changing the
wavelength used to calculate the curvature attribute, it
was possible to diminish the vertical pattern from the ar-
tifacts previously discussed. Using a short-wavelength
curvature instead of a long-wavelength curvature helped
to decrease the strong response of those vertical arti-
facts, while not using curvature attributes completely
suppressed them from the faulted zones. However, in
both cases, the definition of the salt dome tops was af-
fected. In test 6, we found another method for sup-
pressing the vertical artifacts from the faulted zones
without compromising the definition of the salt dome
tops. These results showed that by only changing the
way we picked the facies polygons and enclosing the
faults inside those facies polygons, it helped to success-
fully eliminate the misclassifications in the faulted zones
(Figure 11b). We obtained similar results in test 7, in
which we changed from picking in the easiest portions
of the first salt dome to picking in the most challenging
portions of the second salt dome. With that final test, we
were able to correct the misclassifications in the highly
faulted conformable sediments at the top of the second
salt dome and to obtain stronger responses inside both
salt domes (Figure 12c). These results allowed us to rec-
ognize the importance of the definition of the facies poly-
gons because they can accomplish considerably better
results.

The other classifications performed in tests 6 and 7
reiterated how the processing of the data set has an im-
pact on the classification volumes. When attempting to
classify salt, MTD, conformable sediments, and frac-
tured zone facies, the deeper intervals of MTD strata
were misclassified as fractured zone facies. These re-
sults were despite the promising results shown by the
PNN algorithm when classifying the fractured zone into
its corresponding facies (Figure 11c). This must be
related to lower amplitudes present within the MTD in-
tervals of the deeper zones. However, using the dip
deviation attribute helped to correct the misclassifica-
tions in the conformable facies of the top of the second
salt dome (Figure 12b). Nevertheless, it also added con-
formable artifacts inside the salt domes, probably due
to multiples with a conformable pattern. In this final
case, we cannot generalize that the dip deviation may
not work and discard it for future facies predictions.
If there are conformable artifacts or multiples, it is most
likely that this attribute may fail in those zones because
it is directly related to reflector parallelism.

Overall, despite PNN being an early reconnaissance
tool, with the computation capabilities available nowa-
days, it demonstrated to be a great tool to integrate con-
siderable amounts of information and perform
multiattribute analysis at a scale that would be over-
whelming for an interpreter applying only conventional

Figure 14. Final workflow including the geoscientist’s advice to obtain better classifications when using PNNs for seismic facies
classifications.
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interpretation. Still, a limitation identified when applying
PNN as a multiattribute analysis technique arises when
two different seismic facies have similar to exactly the
same seismic attributes response, therefore leading
the PNN algorithm to classify them as if they were the
same. We noticed that when the method misclassified
conformable sediments as noise or channel facies, or
MTDs as salt. These kinds of situations should be ad-
dressed with caution by the interpreter to determine
the optimal way to proceed, and we reiterate the neces-
sity of having a geoscientist to ground truth the machine
learning algorithm’s interpretation.

Table 3 summarizes the qualitative impact of each
parameter changed on the seismic facies classifications
performed in each test. Figure 13 shows the progressive
evolution from the very first classification to the last
one of the prediction volumes of the large-scale facies
of model 3. This last figure clearly illustrates the impor-
tance of including the geoscientist’s insight to obtain
better results. Finally in Figure 14, we compiled all of
the lessons learned, and we proposed a new workflow
that will help as a guide for future interpreters inter-
ested in applying PNNs for seismic facies classification.
The geoscientist’s criteria are quite important because
we can infer where it is going to be more challenging for
the algorithm to classify into the specific seismic facies.
In this sense, the most important step included in this
new workflow is to first recognize the most geologically
complex areas and then pick the training facies poly-
gons taking them into account. Incorporating this geo-
logic insight will help the algorithm to generate more
accurate results since the beginning.

Finally, we suggest the application of this technique
and workflow as a great option for regional or basin
scale studies, especially when multiple seismic data
sets are required and the amount of conventional inter-
pretation needed would be considerable. The inter-
preter is not only expected to reduce interpretation
times and computational cost, but also to get a reliable
and accurate understanding of the direction of move-
ments of MTDs, spatial distribution and geometry of salt
structures, and volumetric calculations of channels, or
to use all those outcomes to improve, for example,
velocity models as well.

Conclusion
PNNs demonstrated to be an accurate machine learn-

ing technique for supervised seismic facies classification,
showing remarkable accurate results when classifying
large-scale features and showing promising but limited
results when classifying small-scale features. The ex-
haustive algorithm indicated that, for future classifica-
tions of the seismic facies addressed here, it is
important to include the k1-most-positive principal cur-
vature, envelope, and the coherence attributes. This is
because they consistently ranked among the highest con-
tributing attributes. Also, when using huge amounts of
data, it is not necessary to consider large intervals for

the σ value because we saw that the value for all of
the best combinations varied between 0.1 and 0.3.

In this study, we highlighted the importance of
including geologic insight to progressively obtain better
results. This was first done by understanding the origins
of the misclassifications then by helping the algorithm
to overcome them through the modification of initial
parameters. The effect of amplitude attenuation was
corrected by adding more training data, whereas the
vertical artifacts were diminished by changing the way
we calculate the curvature attributes. Finally, the mis-
classifications in the faulted zones and conformable
sediments were corrected by changing the way of pick-
ing the facies polygons used for training. It is important
to note that all of these tasks were controlled and al-
tered by the geoscientist, not the algorithm.

In addition, we showed how the processing artifacts
can highly impact on the final classification volumes. At-
tenuation of energy can cause conformable sediments to
have responses similar to the noise present near the sea-
floor. The vertical artifacts seen in the faulted zones and
inside of the MTDs have responses similar to the salt
domes; therefore, they were misclassified as salt facies.
We also saw that conformable artifacts may have an im-
pact on attributes that measure reflector parallelism,
such as the dip deviation attribute, and they can be prone
to misclassification. We can help the algorithm’s training
by changing the preselected attributes or by altering the
way that they are calculated. However, if those artifacts
persist, we must understand that those are inherent lim-
itations that the algorithm is unable to overcome. There-
fore, it is not necessary to further try to polish these
results unless there is a better processed seismic survey
available.

In conclusion, we have proposed a new workflow
that incorporates the best practices for applying PNNs.
Although the selection of seismic attributes is crucial to
maximize the differences between seismic facies, we
also demonstrated that the generation of facies poly-
gons is just as essential. For that reason, we consider
that the most important step in this new workflow is
to use the geoscientist’s criteria to recognize the most
geologically complex areas and create the training poly-
gons within those regions. Finally, we consider the ap-
plication of this workflow to be of great interest when
intended for regional or basin-scale analysis to reduce
interpretation times and computational cost, but also,
and most importantly, to get reliable results that allow
for a better understanding of the spatial distribution of
the seismic facies of interest.
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