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Abstract

Machine learning (ML) algorithms, such as principal component analysis, independent component analysis,
self-organizing maps, and artificial neural networks, have been used by geoscientists to not only accelerate the
interpretation of their data, but also to provide a more quantitative estimate of the likelihood that any voxel
belongs to a given facies. Identifying the best combination of attributes needed to perform either supervised or
unsupervised ML tasks continues to be the most-asked question by interpreters. In the past decades, stepwise
regression and genetic algorithms have been used together with supervised learning algorithms to select the
best number and combination of attributes. For reasons of computational efficiency, these techniques do not
test all of the seismic attribute combinations, potentially leading to a suboptimal classification. In this study, we
have developed an exhaustive probabilistic neural network (PNN) algorithm that exploits the PNN’s capacity in
exploring nonlinear relationships to obtain the optimal attribute subset that best differentiates target seismic
facies of interest. We determine the efficacy of our proposed workflow in differentiating salt from nonsalt seis-
mic facies in a Eugene Island seismic survey, offshore Louisiana. We find that from seven input candidate attrib-
utes, the exhaustive PNN is capable of removing irrelevant attributes by selecting a smaller subset of four
seismic attributes. The enhanced classification using fewer attributes also reduces the computational cost.
We then use the resulting facies probability volumes to construct the 3D distribution of the salt diapir geobodies
embedded in a stratigraphic matrix.

Introduction
The past two decades have seen the increasing use of

unsupervised and supervised machine-learning (ML)
techniques for geophysical applications such as fault
detection (Di et al., 2017, 2019; Wu et al., 2019), seismic
facies analysis (Roy et al., 2014; Zhao et al., 2015; Amin
et al., 2017; Long et al., 2018; Wrona et al., 2018), and
prediction of well-log properties based on seismic
attributes (Hampson et al., 2001; Dorrington and Link,
2004). For seismic facies classification, interpreters se-
lect a suite of seismic attributes as input to define a
multivariate classification task. Common attributes
used for classification include the same geometric, in-
stantaneous, spectral, textural, and geomechanical
attributes that human interpreters have found to be
useful.

In supervised learning, the goal is to differentiate one
or more interpreter-defined target seismic facies from
each other and from an undifferentiated background.
In unsupervised learning, the goal is to provide a rela-

tively unbiased classification of the dominant facies
which may or may not have geologic significance. How-
ever, whether the interpreter is performing an unsuper-
vised or supervised seismic facies classification, the
choice of attributes and the selection of training data
strongly bias the results. Moreover, selecting the best
attribute combination to distinguish different target fa-
cies requires significant understanding of not only geo-
logic processes and the seismic expression of structural
and stratigraphic patterns, but also of the features mea-
sured by seismic attributes.

There are three other challenges in using ML for seis-
mic facies analysis: (1) the Hughes (1968) phenomenon
in which the classification performance of a ML algo-
rithm decreases after reaching a certain number of in-
put features, (2) the overwhelming number of attributes
that limit the interpreter’s ability to interact with all of
the information available (Roden et al., 2015), and
(3) the presence of redundant and irrelevant attributes
that do not provide any additional information and
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create confusion for human interpreters (Barnes, 2007)
and, at best, increased cost for ML algorithms.

A partial solution is dimensionality reduction. Princi-
pal component analysis (PCA) and independent compo-
nent analysis are simple projection techniques that find
the statistically most important features (Guo
et al., 2009; Qi and Castagna, 2013; Chopra and Marfurt,
2014; Honorio et al., 2014; Roden et al., 2015; Lubo-
Robles and Marfurt, 2019). Generative topographic
maps (GTM) and self-organizing maps are unsupervised
learning algorithms in which a multidimensional data
set is projected into a lower dimensional space to ex-
tract the most valuable information from the data
(Roy et al., 2014; Roden et al., 2015; Zhao et al.,
2015; Qi et al., 2016; Zhao et al., 2018). If one allows
a large number of classes (colors), the classification
is approximately continuous, with the final “categori-
cal” classification defining specific seismic facies pro-
vided by the human interpreter. Once the major
facies have been mapped and their attribute sensitivity
are quantified, a smaller suite of attributes or linear com-
binations of attributes can be used for supervised learning.

Considerably more progress has been made in pre-
dicting continuous variables from seismic attribute
data. Working with seismic attributes and well-log data,
Hampson et al. (2001) use stepwise multilinear regres-
sion to choose the best number and collection of seis-
mic attributes to predict a desired well-log property.
Dorrington and Link (2004) generalize this approach
by using a genetic algorithm together with a multilayer
feedforward network to select seismic attributes for
porosity prediction. Support vector machine (SVM) al-
gorithms define weights to be applied to the different
attributes to achieve the desired separation between
seismic facies. In their work, Chang-kai and Wen-kai
(2010) use those attributes with larger SVM weights
to construct a smaller subset of attributes to differenti-
ate reservoir from nonreservoir seismic facies. Amin
et al. (2017) use information theory to rank the seismic
attributes and determine the optimal attribute subset
for salt-dome detection.

Wang et al. (2015) combine a rough sets algorithm
with PCA to reduce the number of attributes used as
input for porosity prediction. Finally, Galvis et al.
(2017) first use a relevancy filter to discard attributes
showing high correlation and then apply a wrapper for-
ward method selection based on k-means to select the
optimal combination of attributes to identify surface
waves in multicomponent common-shot gathers.

One key limitation to these workflows is that they do
not test all the possible combinations of input features;
thus, they can miss important relationships existing be-
tween the attributes. Recently, Qi et al. (2020) evaluate
all possible combinations of seismic attributes to differ-
entiate among salt, mass-transport deposits (MTDs),
and conformal sediments using a semisupervised learn-
ing technique consisting of applying Gaussian mixture
models (GMMs) and the Bhattacharyya distance to
measure the similarity between two GMMs per facies

and select the optimal combination associated with
the maximum average cumulative distance, and then
GTM is applied to perform an unsupervised seismic
facies classification.

In this study, we propose to perform an exhaustive
search in which all possible 2M − 1 combinations are
tested, whereM represents the number of input seismic
attributes. Because testing all possible combinations of
attributes is computationally expensive and the algo-
rithm’s complexity is proportional to the number of in-
put attributes, we use a supervised ML technique called
the probabilistic neural network (PNN), which is based
on well-established Gaussian statistics and allows for a
more robust probability density function (PDF) estima-
tion based on Parzen windows and Bayes’s criteria to
provide simple, fast, and repeatable training in which
only the smoothing parameter r requires optimization.

By coupling an exhaustive search algorithm with the
PNN, we can explore nonlinear relationships between
seismic attributes and seismic facies. The goal of our
“exhaustive PNN” is to test all possible combinations
of seismic attributes, reject irrelevant and redundant
attributes, provide the optimal combination to distin-
guish salt from siliciclastic seismic facies, and perform
a supervised seismic facies classification.

We begin our paper with a summary of the mechan-
ics of PNN applied to seismic facies classification. We
then describe our exhaustive search algorithm to create
different subsets of seismic attributes that are then pro-
vided to a PNN to measure their performance. After se-
lection of the best combination, we apply a first-order
gradient optimization technique called Adam to further
improve the performance of the neural network.

Next, we apply our algorithm to the Eugene Island
3D seismic survey located in the Gulf of Mexico. To dif-
ferentiate the low-amplitude, discontinuous reflectors
associated with salt diapirs from the high-amplitude,
parallel reflectors associated with the surrounding con-
formal sedimentary layers, we use discontinuity, tex-
ture, and nonparallelism attributes. We also manually
define the target facies of the training and validation
data sets to represent salt diapirs and conformal
reflectors. Given the optimal combination of seismic
attributes, we perform a supervised seismic facies clas-
sification and analyze whether the proposed workflow
can determine the best combination of seismic attrib-
utes for the desired classification task. An appendix
provides mathematical details explaining how the algo-
rithm works.

Geologic background
The Eugene Island minibasin is a giant Plio-Pleisto-

cene oil and gas field located offshore Louisiana in the
outer continental shelf of the Gulf of Mexico (Alexander
and Flemings, 1995; Joshi and Appold, 2016). Following
Alexander and Flemings (1995), the Eugene Island mini-
basin evolution can be described in three phases.

The first phase of the evolution is characterized by
the deposition of distal deltaic sands, bathyal and pro-
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delta shales, and turbidites on top of a salt sheet. This
sediment loading caused the salt sheet to migrate out-
ward laterally, creating a new accommodation space in
the area (Alexander and Flemings, 1995; Joshi and Ap-
pold, 2016). The second phase is related to high sedi-
ment accumulation rates due to salt withdrawal and
is characterized by lowstand deltas associated with
deposition of mud and sand sequences (Alexander
and Flemings, 1995; Joshi and Appold, 2016). Finally,
the third phase is associated with fluvial deposits and
a decrease of salt withdrawal in which little accommo-
dation space was further developed (Alexander and
Flemings, 1995; Joshi and Appold, 2016).

Data set
The Eugene Island seismic survey is located in the

Gulf of Mexico, offshore Louisiana, and it has an area
of approximately 306 km2. For this study, the seismic
volume consists of 700 inlines and 700 crosslines with
a bin size of 82.5 × 82.5 ft and a record length of 3 s.

Figure 1a shows a representative vertical slice along
inline 521 through the seismic amplitude volume. We ob-
serve a salt diapir (salt diapir 1; the red arrow) associated
with salt withdrawal during the prodelta and proximal
deltaic phases of deposition (Alexander and Flemings,
1995; Joshi and Appold, 2016) surrounded by high-ampli-
tude, laterally continuous conformal reflectors. In gen-
eral, salt diapir 1 is characterized by low-amplitude,
discontinuous reflectors. However, crossing coherent
migration artifacts (the blue arrow) associated with
the high P-wave velocity and geometry of the salt (Jones
and Davison, 2014) is seen inside salt diapir 1.

Also, we show a time slice at t ¼ 2 s through the seis-
mic amplitudes in the Eugene Island survey (Figure 1b).
Besides salt diapir 1, we observe the presence of an-
other salt diapir (salt diapir 2) that is also characterized
by low-amplitude, discontinuous reflectors.

Methods
PNN

The PNN is a type of feedforward neural network
widely used in classification tasks. To classify a given
voxel, the PNN uses Parzen windows
and Bayes’s criteria to estimate its
PDF and assigns it to the class in which
the PDF is largest (Specht, 1990; Mas-
ters, 1995; Hajmeer and Basheer,
2002). Several kernels can be used dur-
ing the Parzen window estimation; how-
ever, the most common kernel used is
the Gaussian function due to its high
performance and simple computation
(Masters, 1995). We begin by subdivid-
ing our volume into three parts: (1) la-
beled training data used to define
several of the necessary parameters
for the model, (2) labeled validation data
used to test our algorithm’s perfor-
mance during the learning phase, and

(3) the remainder of the volume representing test/un-
seen data to be classified by the trained PNN. In our
application, the training and validation data are gener-
ated by the human interpreter drawing polygons around
facies of interest. In addition, another approach to assess
the effectiveness of the model when classifying previ-
ously unseen data can be defining a test data set by pick-
ing polygons for the seismic facies of interest but using
salt diapir 2 and its surrounding conformal sediments in-
stead of performing the seismic facies classification in the
whole volume. The mth attribute at a training sample n,
anm, defines a component of a seismic attribute vector an.
Given our training data composed of a set of training seis-
mic attributes vectors a, the average estimated PDF gkðxÞ
is given by

gkðxÞ ¼
1
Nk

XNk

n¼1

exp

�
−
P

M
m¼1

ðxm−anmÞ2
r2

�
; (1)

where Nk is the number of training samples associated
with the kth class defined by the training data, M is
the number of input attributes, x is a validation seismic
attribute vector, and r is a smoothing parameter that re-
quires careful selection through training.

The PNN architecture consists of four layers (1) the
input layer, (2) the pattern layer, (3) the summation
layer, and (4) the output layer (Specht, 1990; Masters,
1995) (Figure 2a). In the input layer, an unknown input
sample is selected to be classified into a particular
class. Second, in the pattern layer, the PNN starts by
computing the difference between the validation and
the training attributes (Figure 2b). This difference is
then input into the Gaussian activation function in equa-
tion 1 (Masters, 1995). In the summation layer, the PNN
calculates the average estimated density function gkðxÞ
for each class. Finally, in the output layer (Figure 2b),
the PNN assigns the unknown sample to class q where

gqðxÞ ≥ gkðxÞ k ¼ 1; 2; : : : ; K: (2)

PNN also provides confidence estimates of the classifi-
cation (Masters, 1995) given by

Figure 1. Eugene Island seismic survey. (a) Vertical slice along inline 521. Salt
diapir 1 is characterized by low-amplitude, discontinuous reflectors. Crossing
coherent migration artifacts (the blue arrow) are also visible inside salt diapir
1. (b) Representative time slice at t ¼ 2 s. Another salt diapir (salt diapir 2) also
characterized by low-amplitude, discontinuous reflectors is visible in the seismic
survey.
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PkðxÞ ¼
1
Nk

PNk
n¼1 δnkexp

�
−
P

M
m¼1

ðxm−anmÞ2
r2

�

P
K
k¼1

�
1
Nk

PNk
n¼1 δnkexp

�
−
P

M
m¼1

ðxm−anmÞ2
r2

�� ; (3)

where Pk represents the normalized probabilities given
by the estimated PDF of each class k, gk(x), divided by
the sum of all of the density functions of all K classes.
The Kronecker delta δnk is equal to one if the training
case n belongs to class k, and it is zero otherwise.

PNN training
To optimize the smoothing parameter r, we sweep

over a range of values for r and select the one associ-
ated with the minimum continuous error function ekðxÞ
defined by Masters (1995) as

ekðxÞ ¼ ½1 − PkðxÞ�2 þ
X
j≠k

½PjðxÞ�2: (4)

Because we are interested in the error of all the sam-
ples, we define the global error as

E ¼ 1
H

XH
h¼1

ekðxhÞ; (5)

where H is the number of validation
samples.

A limitation of the sweeping over val-
ues of the smoothing parameter r is that
it uses the same value for each seismic
attribute. To adapt the selection of r for
each attribute, we use an adaptive learn-
ing rate first-order gradient stochastic
optimization algorithm called Adam,
which computes the first and second
moments of the gradient of E with re-
spect to the smoothing parameter r
(Kingma and Ba, 2015). For more infor-
mation on the mathematical details of
the Adam procedure, please refer to Ap-
pendix A.

Exhaustive PNN workflow
We present a novel technique called

exhaustive PNN, which uses a PNN-
based architecture and a voxel-type
classification for the model generation
to automatically determine the best
suite of seismic attributes for perform-
ing a supervised seismic facies classifi-
cation.

The first step in the exhaustive PNN
workflow (Figure 3) consists of select-
ing a suite of candidate seismic attrib-
utes using our geologic insight. Using
M ¼ 7 candidate input attributes, the
total number of combinations is
2M − 1 ¼ 127. Then, we apply a 3D Ku-
wahara filter to block and smooth the
seismic attributes, preconditioning them
for subsequent classification (Qi et al.,
2016). Second, a group of polygons for
each facies is selected to create the
training and validation data sets used
for the model generation. In this applica-
tion, supervised data labeled by the in-
terpreter represent 0.0093% of the
seismic volume after picking the poly-
gons for each seismic facies on seven

Figure 2. PNN framework (a). The PNN is composed of four layers: the (1) input
layer, (2) pattern layer, (3) summation layer, and (4) output layer. (b) First, an
unlabeled sample x is selected for classification. The PNN computes the differ-
ence between the input sample and the training attributes a and applies a Gaus-
sian activation function. Finally, the average estimated density function gk (x) for
each class is computed, and the unlabeled sample x is assigned to the class
where gk (x) is maximum.
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coarsely spaced inlines. Then, these data were split into
two parts, with 80% of the voxels belonging to the train-
ing data, and the remaining 20% of the voxels belonging
to the validation data set.

In addition, to avoid any bias related to different
units between the input candidate attributes, an attrib-
ute scaling scheme is required. In general, seismic
attributes are characterized by super-Gaussian distribu-
tions (Walden, 1985; Honorio et al., 2014; Lubo-Robles
and Marfurt, 2019), whereas other attributes such as So-
bel filter similarity and spectral magnitude components
show a Poisson distribution. Therefore, instead of using
a Z-score normalization in which a Gaussian distribution
is assumed, we scale our data using estimators that are
robust in the presence of outliers (Huber, 1981) and do
not assume knowledge of the distribution. In this study,
we perform a robust scaling, in which the data are cen-
tered using the median and scaled using the interquartile
range (IQR) given by the difference between the 75th
and 25th percentiles. The robust scaling percentiles
are computed from the training data and are used to
scale the training and validation data sets.

We define an initial seismic attribute
combination and smoothing parameter r
to initialize the exhaustive PNN algo-
rithm. To select the best smoothing
parameter r, we sweep through values
ranging from 0.05 ≤ r ≤ 3.5 with an in-
terval Δr ¼ 0.05 and we use equation 5
to compute the validation EVðrÞ and
training ETðrÞ errors. These errors are
stored, and a new seismic attribute com-
bination is defined. A smoothing param-
eter r is computed for each of the 127
possible attribute combinations, which
are ranked based on their validation er-
ror (EV), and then we interpret these re-
sults and select the optimal combination
of seismic attributes and smoothing
parameter r that provides the smallest
validation error, while maintaining a bal-
anced bias-variance trade-off.

In PNN, the training data set is used
to construct the pattern layers (or a
weighted combination of attributes) that
will later be “learned” by the algorithm
in the training step. The validation error
(EV) is computed when considering the
validation data set in the input layer,
whereas the training error (ET) is calcu-
lated when comparing the training data
set with itself.

At this point, our exhaustive search
algorithm only allows training of the
neural network using the same smooth-
ing parameter r for each seismic attrib-
ute. To relax this restriction, we can
implement an optional step that further
minimizes the validation error on the

best combination by using the Adam optimization tech-
nique (Kingma and Ba, 2015) (Appendix A). Once
trained and validated, we apply the PNN classifier to
the optimum set of attributes and compute the proba-
bility of each class.

Bias-variance trade-off
In ML, interpreters face a bias-variance trade-off in

which they need to create a model that provides an ac-
curate prediction of the data at hand, but that is general
enough to classify new data (Briscoe and Feldman,
2011; Goodfellow et al., 2016).

Briscoe and Feldman (2011) find that high-variance
models are associated with overfitting whereby the
classifiers fit the training data very well but lose gener-
alization performance. In contrast, high-bias models
cannot correctly capture the patterns found in the train-
ing data, thus leading to underfitting.

To find a balanced bias-variance trade-off, we ana-
lyze the relationship between the classifier’s error when
evaluating our training and validation data sets. In
general, underfitting is associated with relatively high

Figure 3. Exhaustive PNN workflow. First, we select a suite of candidate seis-
mic attributes based on our geologic insight and experience. Also, a 3D Kuwa-
hara filter is applied to block and smooth the seismic attributes’ response (Qi
et al., 2016). Next, we generate the training and validation data sets by manually
selecting a suite of polygons enclosing each target seismic facies. Moreover, a
robust scaling scheme is applied to avoid any bias associated with different units
between the seismic attributes. Then, we perform an exhaustive search and test
all possible combinations of seismic attributes with the smoothing parameter r
ranging from 0.05 to 3.5 and Δr ¼ 0.05. These combinations are ranked based on
their validation error (EV), and the best combination of seismic attribute and
smoothing parameter r is given by the smallest EV while maintaining a balanced
bias-variance trade-off. As an optional step, a first-order gradient optimization
technique called Adam (Kingma and Ba, 2015) can be applied to the best combi-
nation to relax the fixed smoothing parameter r condition imposed by the ex-
haustive search algorithm and further minimize the validation error. Finally,
using the exhaustive PNN attribute subset, we perform our supervised seismic
facies classification, and we compute the probability of each class, which mea-
sures the confidence in the classification.
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training and validation errors, whereas overfitting is
characterized by a gap between the training and valida-
tion errors in which the former decreases during train-
ing, but the latter increases after finding a minimum
value associated with the best generalization perfor-
mance (Jabbar and Khan, 2015; Goodfellow et al., 2016).

Candidate seismic attributes
Seismic attributes are powerful tools that allow inter-

preters to better visualize geologic features of interest
as well as to quantify reservoir properties such as con-
tinuity and morphology to study the structural and dep-
ositional setting of a particular environment (Chopra
and Marfurt, 2007).

To perform the supervised seismic facies classifica-
tion to differentiate between salt and nonsalt facies in
the Eugene Island seismic volume, we evaluate seven
candidate seismic attributes selected based on our geo-
logic insight and past experience: coherence, gray-level
cooccurrence matrix (GLCM) contrast, GLCM dissimi-
larity, total energy, energy deviation, covariance of dip
and energy gradient, and dip deviation. These seven
candidate attributes serve as the input to our exhaustive
PNN algorithm with the goal of finding the best subset
combination of the seven seismic attributes and the cor-
responding smoothing parameter r.

The coherence attribute provides a measure of sim-
ilarity between neighborhood traces, and it is widely

used by seismic interpreters to map discontinuities in
the seismic data such as faults and channels edges
(Chopra and Marfurt, 2007; Li and Lu, 2014) as well
as low-energy, discontinuous reflectors associated with
salt and shale diapirs (Chopra and Marfurt, 2007). The
total energy attribute measures the sum of the energy of
the neighborhood analytic traces in which geologic fea-
tures associated with low-amplitude, chaotic reflectors
are characterized by low coherent energy.

GLCM or texture attributes analyze lateral and ver-
tical changes in seismic amplitudes, allowing the delin-
eation of geologic features that are characterized by
complicated patterns or textures (Haralick et al.,
1973; Angelo et al., 2009). In this paper, we compute
two GLCM attributes: GLCM contrast, which calculates
the local intensity variation between data samples
(Chopra and Marfurt, 2007; Di and Gao, 2017), and
GLCM dissimilarity, which also measures the intensity
variation between samples but is less sensitive to out-
liers than GLCM contrast.

Nonparallelism attributes (Qi and Marfurt, 2019) pro-
vide the standard deviation of structural dip and ampli-
tude gradients within an analysis window. The energy
gradient measures how the seismic energy varies later-
ally along the structural dip, whereas the dip deviation
attribute computes changes from parallel to chaotic re-
flections. The covariance of the dip and energy seismic
attribute is sensitive to highly chaotic, rotated, and high-

Figure 4. Candidate attributes to be used as input in the exhaustive search algorithm selected based on our geologic insight.
(a) Coherence, (b) GLCM contrast, (c) GLCM dissimilarity, (d) total energy, (e) energy deviation, (f) covariance dip and energy,
and (g) dip deviation. The selected candidate attributes show different responses when comparing the salt diapir (the red ar-
row) against the more coherent, higher amplitude background geology. A 3D Kuwahara filter (Qi et al., 2016) is applied to smooth
the internal response and sharpen the edges of the salt diapir to improve the discrimination between salt and the nonsalt seismic
facies during classification.
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amplitude deformed reflectors. Conformal sediments
are characterized by similar dips in an analysis window,
MTD and karst collapse exhibit greater variability,
whereas the “reflectors” within salt are a mix of coher-
ent and random noise, giving rise to rapidly changing
dips and amplitude gradients.

In Figure 4, we show the 3D Kuwahara-filtered seis-
mic attributes along inline 521. We note that the se-
lected candidate attributes show different responses
when comparing the salt diapir (the red arrow) against
the more coherent, higher amplitude background geol-
ogy. Moreover, we observe that applying a Kuwahara
filter using 3D overlapping oblique cylindrical windows
aligned with the average structural dip smooths the in-
ternal seismic response of salt diapir 1 and sharpens its
edges, thus improving the discrimination between salt
and the nonsalt seismic facies.

Definition of training and validation data sets
To generate a PNN model to isolate the salt diapirs

present in the Eugene Island data set from the back-
ground geology, we need to define our training and val-
idation data sets. As training data, we pick a suite of
polygons for inline 501 to 551 at 10-line intervals (Fig-
ure 5a–5f) to extract the voxels of the salt (the purple
polygon) and nonsalt (the green polygon) seismic facies
from the seven seismic attributes used as input in the
exhaustive PNN workflow. For the validation data

set, we only pick a suite of polygons enclosing the salt
(the purple polygon) and nonsalt (the green polygons)
facies along inline 451 (Figure 5g). These training and
validation data sets consist of approximately 28,500 and
5500 voxels, respectively, thus maintaining an approxi-
mate 80%–20% splitting ratio for training the PNN.

Note that the training and validation sets are gener-
ated only for salt diapir 1 to leave salt diapir 2 as testing
data (Figure 1) to evaluate the performance of the PNN
when classifying new unlabeled (unseen) data. In addi-
tion, no time slices are used when generating these data
sets to avoid any data leakage from the validation to
the training data set. In practice, we suggest using those
inlines that best exhibit the variability in the data
volume.

Results
Attribute selection to discriminate salt from the
background geology in the Eugene Island seismic
volume using exhaustive PNN

After we select the candidate seismic attributes
to be used as input in the exhaustive PNN algorithm
(Figure 4) and generate the training and validation data
sets defining the salt and nonsalt seismic facies (Fig-
ure 5). We apply a robust scaling to change the units
of the seismic attributes to a common scale to avoid
any bias that can affect the prediction accuracy of
the model.

Figure 5. Training and validation data sets definition. (a-f) The training data sets consist of a suite of manually picked polygons
from inline 501 to 551 with a 10 inline interval enclosing the salt (the purple polygons) and nonsalt seismic facies (the green
polygons). (g) Validation data set enclosing the target facies along inline 451.
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In Figure 6, we show the histograms of the training
data set before (Figure 6a) and after (Figure 6b) apply-
ing robust scaling to all of the input features. We ob-
serve that the shape of the distributions is maintained
after scaling and that all input features have a similar
range. Moreover, input features such as the coherence,
GLCM contrast, GLCM dissimilarity, covariance dip
and energy, and dip deviation are characterized by a
bimodal distribution, whereas the total energy and en-
ergy deviation are associated with a skewed distribu-
tion. Applying the robust scaling results in a better
scaling scheme than a Z-score normalization that as-
sumes a normal distribution of the data.

Observe that the shape of the distributions is main-
tained after applying the robust scaling percentiles
computed from the training data set to the validation
samples (Figure 7). Also note that the candidate attrib-
utes for the training and validation data sets show very
similar distribution meaning that we are capturing the

same intrinsic patterns on both data sets, which the
PNN “learns” to distinguish between salt and nonsalt
seismic facies in the Eugene Island seismic survey.

When running the exhaustive PNN algorithm using
seven input candidate attributes, we test 127 different
combinations between the attributes. We then store
the ideal smoothing parameter r associated with the
best validation (EV) and training (ET) errors to make
a low-bias–low-variance model able to generalize when
classifying the remaining unlabeled data. Also, in this
application, we compute a suite of evaluation measures
given by the accuracy, precision, recall, specificity, and
the area under the received operating characteristic
(ROC) curve to further assess the performance of
the combinations (Lachiche and Flach, 2003; Fawcett,
2004; Sokolova et al., 2006; Sokolova and Lapalme,
2009).

Performance evaluation metrics are constructed
from the confusion matrix in which correctly classified

and misclassified samples for each class
are stored and divided into the true-pos-
itive, true-negative, false-positive, and
false-negative categories (Sokolova
et al., 2006; Sokolova and Lapalme,
2009). In this study, the positive and neg-
ative classes are associated with the salt
and nonsalt seismic facies, respectively.

Following Sokolova et al. (2006) and
Sokolova and Lapalme (2009), the accu-
racy estimates the global performance
of the classifier without considering a
specific class, whereas precision and re-
call compute how often the model cor-
rectly classified the positive class.
Precision is defined as the ratio of true
positives to the total number of samples
predicted as positive, and recall is calcu-
lated as the true positives divided by the
total number of samples actually belong-
ing to the positive class. Finally, speci-
ficity determines the efficacy of the
model in identifying the negative class
and is computed as the fraction of true
negatives to the sum of true negatives
and false positives (Sokolova et al.,
2006; Sokolova and Lapalme, 2009).

The ROC curve is another technique
for studying the performance of a clas-
sifier in which the relationship between
the recall (true-positive rate) and the
specificity (true-negative rate) is ana-
lyzed at different probability thresholds
(Lachiche and Flach, 2003; Fawcett,
2004; Sokolova et al., 2006). Computing
the area under the ROC curve (AUC)
provides an estimate of the average per-
formance of the ROC curve into a single
value. In general, AUC values range
from 0.5 (random guessing; bad perfor-

Figure 6. Histograms of the training data set (a) before and (b) after robust
scaling. The shape of the distributions is maintained after scaling. Candidate
attributes show non-Gaussian distributions. Therefore, a robust scaling scheme
represents a better approach than Z-score normalization.
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mance) to 1.0 (excellent performance)
(Fawcett, 2004).

In Table 1, we show the five best com-
binations of seismic attributes obtained
after running and analyzing the results
from the exhaustive PNN algorithm test-
ing a suite of smoothing parameters
ranging from 0.05 ≤ r ≤ 3.5 with
Δr ¼ 0.05. We note that these combina-
tions of attributes show values of accu-
racy, precision, recall, specificity, and
AUC greater than 98% representing ex-
cellent performance when distinguish-
ing between salt and nonsalt seismic
facies.

Also, the minimum validation error
(EV) in combinations 1, 2, and 4 was ob-
tained using a smoothing parameter
r ¼ 0.1, whereas combinations 3 and 5
obtained better performance when us-
ing a smoothing parameter of r ¼ 0.15
because there is an increase in the
gap between the training and validation
errors associated with overfitting of the
model when using smaller values of r.

When analyzing combinations 1, 2,
and 3, we select combination 1, which
is composed of the coherence, GLCM
contrast, total energy, and dip deviation
attributes, and we select smoothing
parameter r ¼ 0.1 as the best combina-
tion for differentiating between salt and
nonsalt seismic facies in the Eugene Is-
land seismic survey because, using only
four seismic attributes, it provides the
minimum validation (EV) error and a
balanced bias-variance trade-off. More-
over, this combination shows excellent

Figure 7. Histograms of the validation data set (a) before and (b) after robust
scaling. The shape of the distributions is maintained after robust scaling. Distri-
butions of the candidate seismic attributes in the training and validation data sets
are very similar; thus, the same intrinsic patterns are captured on both data sets.

Table 1. The five best combinations of seismic attributes obtained after running and interpreting the results from
the exhaustive PNN algorithm testing a suite of smoothing parameters ranging from 0.05 ≤ r ≤ 3.5 with Δr � 0.05.
These combinations show performance evaluation metrics greater than 98% associated with excellent classifiers.
We select combination 1 composed of coherence, GLCM contrast, total energy, and dip deviation attributes, and
we select smoothing parameter r � 0.1 as the best combination because it has the minimum validation error (EV),
a balanced bias-variance trade-off, and excellent performance evaluation metrics.

Combination Attributes r EV ET

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%) AUC

1 Coherence, GLCM contrast, total
energy, and dip deviation.

0.1 0.01689 0.01223 98.91 98.45 99.48 98.3 0.9985

2 Coherence, GLCM contrast,
GLCM dissimilarity, total energy,

and dip deviation.

0.1 0.01693 0.0109 98.93 98.45 99.51 98.3 0.9984

3 Coherence, GLCM contrast, total
energy, energy deviation, and dip

deviation.

0.15 0.01712 0.01167 98.93 98.35 99.62 98.19 0.9985

4 Coherence, GLCM dissimilarity,
total energy, and dip deviation.

0.1 0.01723 0.01261 98.93 98.48 99.48 98.3 0.9985

5 Coherence, GLCM contrast,
GLCM dissimilarity, total energy,

energy deviation, and dip
deviation.

0.15 0.01724 0.01058 98.89 98.31 99.6 98.15 0.9984
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performance during the classification associated with
high values of accuracy, precision, recall, specificity,
and AUC.

In Figure 8a, we show the learning curve associated
with combination 1. We observe that using values of r >
0.1 results in relatively high training (ET) and validation
(EV) errors possibly associated with the model under-
fitting the data. In contrast, when the smoothing param-
eter is equal to r ¼ 0.05, ET and EV change from 0.01223
and 0.01689 to 0.00324 and 0.02032, respectively. This
rapid decrease in ET and increase in EV indicates that
the model is overfitting the data leading to a decrease in
performance when classifying new unseen data. In Fig-
ure 8b, we show the ROC curve for combination 1,
where the diagonal blue line represents a random guess
classifier that does not have information to distinguish
between facies (Fawcett, 2004). We note that combina-
tion 1 shows a high true-positive rate, a low false-pos-
itive rate, and an AUC close to 1.0, indicating that the
model can correctly differentiate between salt from
nonsalt seismic facies.

In Figure 9, we show the results obtained after apply-
ing the exhaustive PNN using the coherence, GLCM
contrast, total energy, and dip deviation attributes
and the smoothing parameter r equal to 0.1 to the Eu-
gene Island survey. The PNN facies prediction coren-
dered with the seismic amplitude along inline 391
(Figure 9a) shows that, in general, the neural network
classifies correctly between the salt (purple facies; red
arrow) and nonsalt seismic facies (the green facies).

However, some salt classification gaps associated
with coherent migration artifacts are visible inside salt
diapir 1 (the blue arrows). These features are not clas-
sified as salt because they have a different seismic pat-
tern that is closer to those of valid reflections from the
conformal sediments. In contrast, some low-amplitude
discontinuities related to normal faults in the area (the
yellow arrow) and missing or noisy data in the edges of
the survey with little interpretational value (the red rec-
tangle) are misclassified as salt (the purple facies). The
data quality plays an important role in voxel-by-voxel
classification algorithms. In contrast, a human inter-
preter would be able to put such features in their proper
geologic and/or seismic data quality context (Posament-
ier and Kolla, 2003).

Figure 9b shows the PNN facies prediction coren-
dered with the seismic amplitude volume along time
slice t ¼ 1.78 s. Note that the salt diapir 1 (the red ar-
row) is correctly classified by the exhaustive PNN algo-
rithm. In addition, salt diapir 2 used as a test data set is
also correctly classified by the proposed algorithm as
salt facies (purple facies; the red arrow).

Finally, in Figure 9c and 9d, we examine the PNN salt
probability volume along inline 391 and time slice
t ¼ 1.78 s. We observe that the extracted purple facies
in salt diapir 1 and salt diapir 2 are classified as salt with
very high probabilities meaning that the proposed algo-
rithm has high performance when distinguishing be-
tween the salt and the surrounding geology.

Correlation analysis
To analyze the relationship between the candidate

attributes, we evaluate their correlation heatmap using
the training and validation data sets (Figures 10 and 11).
To quantitatively assess their correlation, we examine
the Pearson’s and Spearman’s rank correlations. The
Pearson (1894) correlation measures the linear depend-
ence between the features, whereas the Spearman
(1904) rank correlation evaluates linear or nonlinear
positive and negative relationships using a monotonic
function. From Figures 10 and 11, we analyze the cor-
relations between attribute pairs associated with com-
bination 1 (the green rectangles). The absolute
Pearson’s correlation and Spearman’s rank correlations
vary from 0.44 to 0.95 and 0.63 and 0.97, respectively, in
the training data set, whereas, in the validation data set,
the absolute Pearson’s correlation varies from 0.52 to
0.95 and the Spearman’s rank correlation ranges from
0.73 to 0.97. We also note that the coherence attribute

Figure 8. (a) Learning curve of combination 1 composed of
the coherence, GLCM contrast, total energy, and dip deviation
attributes. The ideal smoothing parameter is given by r ¼ 0.1.
For r ≥ 0.1, the training (ET) and validation (EV) errors are
high, possibly implying underfitting. When r ¼ 0.05, there is
a rapid decrease in ET and an increase in EV, suggesting over-
fitting. (b) ROC curve for combination 1. The diagonal blue
line represents a random guess classifier that does not distin-
guish between facies correctly (Fawcett, 2004). Combination
1 shows an AUC close to 1.0 and high true-positive and low
false-positive rates implying that the classifier can correctly
distinguish salt from the background geology.

T430 Interpretation / May 2021

D
ow

nl
oa

de
d 

07
/1

3/
21

 to
 6

8.
97

.1
18

.2
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/IN
T

-2
02

0-
01

02
.1



has a high correlation with the GLCM contrast and dip
deviation.

In Figures 10 and 11, we also note that the GLCM
contrast and GLCM dissimilarity show a very high aver-
age Pearson’s and rank correlations of 0.99 making
them almost perfectly correlated. We note that when
the exhaustive PNN uses them together (Table 1, com-
bination 2) the validation error (Ev) of the neural net-
work increases.

According to Guyon and Elisseeff (2003), redundant
attributes are characterized by a perfect correlation;
thus, adding them to an ML architecture should not pro-
vide any additional information. However, if two attrib-
utes show a very high correlation, they can complement
each other to provide better class separation. Guyon
and Elisseeff (2003) suggest that irrelevant attributes
by themselves can be more valuable if they are com-
bined with others. Therefore, we hypothesize that
highly correlated attributes can complement each other
because the performance of the classifier increases

when they are used together. Kim et al. (2019) find that
using correlated attributes provided superior classifica-
tions in noisier parts of the data.

To test our hypothesis, we analyze the facies predic-
tions using two highly correlated attributes — dip
deviation and coherence, which show absolute Pear-
son’s and rank correlations of 0.9 and 0.65, respectively.
Mathematically, we know these two attributes are inde-
pendent, with coherence mapping lateral changes in the
waveform, and dip deviation measuring lateral and ver-
tical changes in the dip. For the two seismic facies used
in our training data — salt and conformal sediments —

these two attributes are statistically correlated. To test
whether using both attributes is useful, we compute the
seismic facies volume using only the dip deviation and
then we compare this volume with the results obtained
using the dip deviation and coherence together.

From the exhaustive PNN workflow, we determined
that the optimal smoothing parameter r when using
only dip deviation is r ¼ 0.05 because it provides the

Figure 9. PNN facies prediction corendered with the seismic amplitude (a) along inline 391 and (b) at time slice t ¼ 1.78 s. The
PNN correctly distinguishes between salt (purple facies; red arrow) and nonsalt seismic facies (the green facies). Also, some
voxels associated with coherent migration artifacts (the blue arrows), low-amplitude discontinuities related to normal faults
(the yellow arrow), and missing or noisy data in the edges of the survey (the red rectangle) tend to be misclassified as salt
(the purple facies). Note that salt diapir 2, which is used as a test data set, is also correctly classified as salt seismic facies
by the algorithm (purple facies; the red arrow). PNN facies probability volume (c) along inline 391 and (d) at time slice
t ¼ 1.78 s. The extracted purple facies (salt diapirs 1 and 2) show very high probabilities associated with high performance
by the model when differentiating between salt and nonsalt seismic facies.
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lowest Ev = 0.1046, whereas when using the combina-
tion of dip deviation and coherence, the optimal r is
equal to 0.2 with a validation error of EV = 0.029, which
represents a 72% decrease in the validation error com-
pared to the result obtained using only the dip deviation
as the input attribute. Moreover, when using only the
dip deviation as input, the accuracy, precision, recall,
specificity, and AUC of the classification are equal to
0.937, 0.894, 0.997, 0.872, and 0.9475, respectively,
whereas while using the dip deviation and coherence
we obtain accuracy = 0.983, precision = 0.979, re-
call = 0.988, specificity = 0.9781, and AUC = 0.9971.
Therefore, the latter combination shows an increase

in the accuracy, precision, specificity, and AUC of
the results.

In Figure 12a, we analyze the PNN facies prediction
corendered with the seismic amplitude along inline 391
using the dip deviation as the input attribute and a
smoothing parameter of r = 0.05. We note that the neu-
ral network does a good job of classifying the salt and
nonsalt seismic facies. However, there are several gaps
inside salt diapir 1 (the blue arrows) that were misclas-
sified as nonsalt seismic facies by the algorithm. In ad-
dition, areas near normal faults (the yellow arrow) and
noisy data (the red rectangle) are misclassified as salt.

Figure 12b shows the PNN facies prediction for the
same line using the combination of the
dip deviation and coherence attributes
and the smoothing parameter r ¼ 0.2.
Misclassifications within the salt are re-
duced to one large gap (the blue arrow)
corresponding to the coherent noise in-
dicated by the blue arrow in Figure 1,
whereas outside the salt, misclassifica-
tions associated with normal faults
(the yellow arrow) and noisy areas near
the edges of the seismic volume (the red
rectangle) are diminished.

In Figure 13a and 13b, we compare
the PNN facies prediction using only
the dip deviation against the facies pre-
diction volume using the dip deviation
and coherence at time slice t ¼ 1.78 s.
We observe that when using two seismic
attributes, there is a better delineation
of the edges of the salt diapir 1 (the blue
arrows). However, on both examples,
the model tends to overestimate the size
of the salt diapirs by classifying some of
the surrounding conformal sediments as
salt. Finally, salt diapir 2 looks better de-
fined internally (the yellow arrows)
when using the dip deviation and coher-
ence as input attributes.

Although the dip deviation and coher-
ence show a high correlation between
each other, we observe in Figures 12
and 13 that these attributes complement
each other resulting in better class sep-
aration in the multiattribute space when
differentiating between salt and nonsalt
seismic facies in the Eugene Island seis-
mic survey.

Facies prediction using an optimal
subset versus all candidate seismic
attributes

To further assess the effectiveness of
the exhaustive PNN workflow, we com-
pare the facies prediction volume when
taking all the candidate seismic attrib-
utes and the subset of attributes com-

Figure 10. Correlation heat map of the training data set. The absolute Pearson’s
and rank correlations vary from 0.44 to 0.95 and 0.63 and 0.97, respectively, in
combination 1. Note that the coherence attribute has a high correlation with the
GLCM contrast and dip deviation. Following Guyon and Elisseeff (2003), we
hypothesize that high correlated attributes can complement each other because
using them together improves the performance of the neural networks when dif-
ferentiating between salt and nonsalt seismic facies.
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posed of coherence, GLCM contrast, total energy, and
dip deviation as input in the neural network for per-
forming the seismic facies classification.

In Figure 14, we show the learning curve when using
all of the candidate attributes as input. We note that for
r > 0.45, the model shows high training (ET) and vali-
dation (EV) errors possibly associated with underfit-
ting, whereas when using values of r < 0.45, there is
a large gap between the training (ET) and validation
(EV) errors indicating that the model is overfitting
the data. We hypothesize that the increasing gap be-
tween these errors might be associated with the Hughes
phenomenon (Hughes, 1968) due to the increasing num-
ber of attributes used as the input.

To perform an unbiased comparison,
we consider two possible cases when
computing the seismic facies volume us-
ing all seven candidate seismic attrib-
utes. Case 1 consists of selecting the
smallest validation error giving by
Ev = 0.01977 and r ¼ 0.2without consid-
ering the large gap existing between the
validation and training errors. Case 2
tries to minimize the gap between the
training and validation errors. Here,
we select r ¼ 0.45 as the optimal
smoothing parameter because it pro-
vides training and validation errors that
are closer to each other (EV = 0.02325
and ET = 0.02322).

In both cases, we note that there is an
increase in the validation error ranging
from 14.6% to 27.4% and a decrease in
the accuracy, precision, recall, and
specificity compared to the results ob-
tained using the exhaustive PNN attrib-
ute subset.

In Figure 15, we show the compari-
son of the PNN facies prediction vol-
umes corendered with the seismic
amplitude along inline 391 considering
case 1 (Figure 15a), case 2 (Figure 15b),
and the exhaustive PNN attribute subset
(Figure 15c). In general, we note that
salt diapir 1 shows a similar internal re-
sponse and only minor changes in the
edge definition (the blue arrows). There-
fore, including more attributes does not
provide any significant change or im-
provement in the facies prediction.
However, cases 1 and 2 show an in-
crease of voxels associated with normal
faults (the yellow arrows) and seismic
noise (the red rectangle), being misclas-
sified as salt seismic facies compared to
the results obtained using the exhaus-
tive PNN attribute subset.

Analyzing the PNN facies prediction
corendered with the seismic amplitude

volume at t ¼ 1.78 s for case 1, case 2, and the attribute
subset selected using the exhaustive PNN workflow
(Figure 16), we still observe that salt diapir 1 does
not show any significant change when including more
attributes as inputs in the algorithm. However, when
studying salt diapir 2, which is used as the test data
set to assess the performance of the model when clas-
sifying unseen data, we note that the result obtained us-
ing the exhaustive PNN attribute subset (Figure 16c)
displays a better internal result compared to the facies
volumes obtained in cases 1 and 2 (Figure 16a and 16b)
in which salt diapir 2 has more gaps possibly associated
with coherent migration artifacts being misclassified as
nonsalt seismic facies (the yellow arrows).

Figure 11. Correlation heat map of the validation data set. The absolute Pear-
son’s correlation varies from 0.52 to 0.95, and the Spearman’s rank correlation
ranges from 0.73 to 0.97 in combination 1. Similar to the correlations obtained
from the training data set, the coherence still shows a high correlation with the
GLCM contrast and the dip deviation seismic attributes.
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Finally, from the results obtained after applying the
exhaustive PNN algorithm, we note that from seven in-
put candidate attributes, a suite of four seismic attrib-
utes composed of coherence, GLCM contrast, total
energy, and dip deviation provide the best combination
to distinguish between salt and nonsalt seismic facies.
We can quantitatively show that this combination gen-
erates a more robust, simpler, less computationally
expensive model that avoids the Hughes (1968) phe-
nomenon while removing irrelevant attributes that do
not contribute to making a better model.

Application of the Adam optimization technique
To overcome the limitation associated with the ex-

haustive search algorithm in which a fixed smoothing
parameter r is used, we implement an optional step
in the exhaustive PNN workflow that consists of apply-
ing the Adam optimization technique to find a distinct

smoothing parameter for each seismic attribute for fur-
ther improving the performance of the neural network
when using the best combination of attributes given by
the coherence, GLCM contrast, total energy, and dip
deviation.

Figure 12. PNN facies prediction corendered with the seis-
mic amplitude along inline 391 using (a) dip deviation and
(b) dip deviation and coherence as the input attributes. In gen-
eral, the PNN correctly classifies between salt and nonsalt
seismic facies. Voxels associated with coherent noise (the
blue arrows), normal faults (the yellow arrows), and noisy
areas (the red rectangle) that tend to be misclassified as salt
are diminished when using the combination of dip deviation
and coherence as input compared to the results obtained
when using only dip deviation. Note that, although the dip
deviation and coherence have a high correlation, they comple-
ment each other, which results in a better seismic facies clas-
sification.

Figure 13. PNN facies prediction corendered with the seis-
mic amplitude at time slice t ¼ 1.78 s using (a) dip deviation
and (b) dip deviation and coherence as input attributes. When
using dip deviation and coherence as input, salt diapir 2 shows
a better internal definition (the yellow arrows), whereas salt
diapir 1 has a better delineation of its edges (the blue arrows).
Note that on both examples, the size of the salt diapirs is over-
estimated because the models tend to classify some con-
formal sediments as the salt seismic facies.

Figure 14. Learning curve when using all of the candidate
attributes as input. For r > 0.45, the model shows high train-
ing (ET) and validation (EV) errors possibly implying under-
fitting, whereas for r < 0.45, there is a large gap between the
errors leading to overfitting possibly related to the Hughes
phenomenon (Hughes, 1968). Two cases are generated for
analysis: case 1, which is associated with the smallest valida-
tion error (EV), and case 2, which minimizes the gap between
the training and validation errors.
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Adam is a computationally efficient first-order gra-
dient stochastic optimization technique that computes
adaptive learning rates from the first and second mo-
ments of the gradients. Therefore, it provides robust re-
sults when facing large data sets, noisy or sparse
gradients, and nonstationary problems (Kingma and
Ba, 2015).

For selecting a suite of smoothing parameters r’s to
be used as the starting point in the Adam optimization
technique, we implement a random initialization ap-
proach to guarantee symmetry-breaking during training
with values ranging from 0.05 to 0.15 because from the

exhaustive search algorithm we determine that a
smoothing parameter close to 0.1 is providing the high-
est accuracy (Figure 8).

Figure 17 shows the validation error at different iter-
ations during the implementation of the Adam algo-
rithm. We observe that the minimum validation error
(EV) obtained is equal to 0.01627 associated with iter-
ation 15th and smoothing parameters equal to 0.065,
0.075, 0.104, and 0.222, respectively. This new EV is
smaller than the EV using a fixed smoothing parameter
of 0.1 for all seismic attributes in combination 1. More-
over, we note an improvement in the performance
evaluation metrics after implementing Adam.

Finally, we also compute the training error (ET) us-
ing the new suite of smoothing parameters at iteration
15 (Figure 17). We observe that ET is equal to 0.01266;
thus, it guarantees that we are obtaining a balanced
bias-variance trade-off model after implementing Adam.

In Figure 18, we show the results when applying the
exhaustive PNN using different smoothing parameters
for each seismic attribute in combination 1 after imple-
menting Adam along inline 391. We note that the neural
network is still correctly classifying between the salt

Figure 15. PNN facies prediction volumes corendered with
the seismic amplitude along inline 391 for (a) case 1, (b) case
2, and (c) exhaustive PNN attribute subset used as the input.
Note that including more attributes does not show any signifi-
cant change or improvement in the seismic facies classifica-
tion (the blue arrows). Moreover, when using the exhaustive
PNN attribute subset as the input, we observe fewer voxels
related to seismic noise (the red rectangle) and normal faults
(the yellow arrows) being misclassified as salt.

Figure 16. PNN facies prediction corendered with the seis-
mic amplitude volume at time slice t ¼ 1.78 s for (a) case 1,
(b) case 2, and (c) exhaustive PNN attribute subset. Note that
the results obtained using the exhaustive PNN attribute subset
show a better internal definition of salt diapir 2, whereas salt
diapir 1 does not show any significant change or improvement
if more attributes are included. Therefore, using the exhaus-
tive PNN algorithm, we can remove irrelevant attributes and
generate a more robust, simpler classifier to perform our seis-
mic facies classification.
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(purple facies; red arrow) and the background geology
(the green facies). Moreover, the flanks of the salt diapir
(the orange arrows) are better delineated than the re-
sults obtained when using a fixed smoothing parameter
(Figure 18a). In addition, low-amplitude discontinuities
related to normal faults are no longer classified as salt
when applying Adam (the yellow arrow). However,
gaps associated with coherent migration artifacts inside
salt diapir 1 and noisy data in the edges of the survey are
still misclassified by the algorithm.

In Figure 18b, we examine the PNN facies prediction
after applying Adam corendered with the seismic ampli-
tude volume along time slice 1.78 s. We observe that
both salt diapirs are still correctly classified by the pro-
posed workflow. Moreover, salt diapir 2, which is used
as test data, looks better defined than when using the
same smoothing parameter for each seismic attribute in
combination 1.

Finally, analyzing the PNN salt probability volume
along inline 391 (Figure 18c) and time slice 1.78 s (Fig-
ure 18d), we observe that the purple facies associated

Figure 17. Validation error during the implementation of the
Adam algorithm. The minimum validation error EV = 0.01627
is obtained at iteration 15th and the smoothing parameters r’s
equal to 0.065, 0.075, 0.104, and 0.222. Note that by relaxing
the fixed smoothing parameter condition, there is a decrease
in the validation error (EV) and an increase in the evaluation
metrics of the model. Finally, at iteration 15th, ET = 0.01266,
which guarantees a balanced bias-variance trade-off.

Figure 18. PNN facies prediction using Adam corendered with the seismic amplitude (a) along inline 391 and (b) at time slice
t ¼ 1.78 s. The PNN is still correctly classifying between salt (purple facies; the red arrow) and nonsalt seismic facies (the green
facies). Flanks of salt diapir 1 are better delineated, whereas salt diapir 2, which is used as a test data set, is correctly classified and
has better definition compared to the results obtained using a fixed smoothing parameter r for each seismic attribute in combi-
nation 1. However, some voxels associated with coherent noise (the blue arrows) and seismic noise toward the edges of the survey
(the red rectangle) are still being misclassified as salt. PNN facies probability volume using Adam (c) along inline 391 and (d) at
time slice 1.78 s. Salt diapir 1 shows an internal increase in the probabilities (the green arrow), whereas salt diapir 2 still shows high
probabilities during the classification.
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with salt diapir 1 shows an internal increase in the prob-
abilities (the green arrow), whereas salt diapir 2 still
shows high probabilities during the classification; thus,
by applying Adam in the exhaustive PNN algorithm we
can improve the performance of our model when differ-
entiating between salt and nonsalt seismic facies in the
Eugene Island seismic volume.

Geobody extraction
To obtain a 3D distribution of the salt diapirs present

in the Eugene Island seismic survey and isolate them
from the surrounding conformal reflectors, we perform
a geobody extraction (Meyer et al., 2001) to model and
extract the voxels from our PNN facies prediction and
PNN salt probability volumes computed using the opti-
mal combination of attributes given by coherence,
GLCM contrast, total energy, and dip deviation and a
suite of smoothing parameters for each of these attrib-
utes after applying Adam.

In Figure 19, we show the 3D salt mapping using as
the criterion voxels characterized by salt facies with
probabilities higher than 75%. We note that we are able
to extract with high accuracy salt diapirs 1 and 2 (pur-
ples facies; the red arrows) from the surrounding geol-
ogy. We also observe that salt diapir 2, which is used as
the testing data set in this study, shows some gaps (the
blue arrow), which we hypothesize are associated with
misclassified salt facies as background geology or salt
voxels that show probabilities lower than 75% due to
the presence of crossing coherent migration artifacts.

Salt diapir 1 is well defined internally with salt voxels
being classified with very high confidence (Figure 18c)
by the exhaustive PNN algorithm.

Computational effort
The Eugene Island data volume used in this study

consisted of 700 inlines, 700 crosslines, and 750 vertical
samples, giving a total of 367.5 million voxels. The poly-
gons constructed on the seven inlines provided 28,500
training and 5500 validation voxels. Using 60 processors
on an Intel workstation, the time for the exhaustive
search algorithm to find the best of 127 attribute com-
binations was 23.5 min. After training found the best
combination to be four attributes, the final classifica-
tion took 2.6 h.

Conclusion
Application of exhaustive PNN to a 3D Gulf of

Mexico seismic survey proved to be a powerful tool
in selecting the optimal combination of seismic attrib-
utes to perform a supervised seismic facies classifica-
tion to distinguish between salt and nonsalt seismic
facies. Coupling an exhaustive search algorithm to-
gether with a PNN, we determine that from seven input
candidate attributes, the best combination is given by
using only four attributes composed of the coherence,
GLCM contrast, total energy, and dip deviation with a
smoothing parameter r of 0.1. Moreover, applying a
first-order gradient optimization technique called
Adam, we can further improve the performance of
the proposed algorithm by finding different smoothing
parameters for each of the seismic attributes while
maintaining a balanced bias-variance trade-off. Because
a high correlation between attributes does not neces-
sarily imply that they are redundant, and they might
complement each other providing better class separa-
tion, we found that our proposed workflow can gener-
ate a simpler, more robust, less computationally
expensive model by removing irrelevant attributes
while maintaining attributes that can complement each
other. Furthermore, the occurrence of the Hughes phe-
nomenon is reduced after performing the attribute se-
lection workflow. Finally, a geobody extraction is
conducted to delineate the 3D distribution of the salt
diapirs and isolate them from nonsalt seismic facies. Us-
ing the seismic classification results obtained from
Adam and looking for voxels characterized by salt fa-
cies with probabilities higher than 75%, we extract salt
diapirs 1 and 2 (the purple facies) from the surrounding
geology with high accuracy. In general, salt diapir 2,
used as a test data set in this study, is well-defined
although some gaps are visible possibly related to mis-
classification or low confidence values due to the pres-
ence of crossing coherent migration artifacts. Salt
diapir 1 is better internally defined than salt diapir 2 be-
cause salt voxels are classified with higher confidence
by the exhaustive PNN algorithm.

Figure 19. Geobody generation extracting salt facies from
the PNN facies prediction volume with probabilities higher
than 75% obtained from the PNN salt probability volume. Salt
diapirs 1 and 2 (purples facies; the red arrows) are extracted
with high accuracy from the surrounding conformal reflec-
tors. However, salt diapir 2, which is used as a test data
set to assess the performance of the classifier, shows some
gaps (the blue arrow) possibly related to salt facies misclas-
sified as background geology or salt voxels that show proba-
bilities lower than 75%.
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Appendix A

Preprocessing for the exhaustive PNN algorithm
Seismic attributes often have different units of meas-

urement and ranges of values. For example, coherence
ranges from 0 to 1, whereas the seismic envelope may
range between 0 and +10000, thereby requiring normaliza-
tion to balance their contribution to any subsequent clas-
sification. Following Walden (1985), Honorio et al. (2014),
and Lubo-Robles and Marfurt (2019), we know that, in
general, seismic attributes are characterized by super-
Gaussian distributions whereas other attributes such as
coherence and spectral magnitude components show a
Poisson distribution bias towards 0, or for coherence, bias
towards 1. In this paper, we perform a simple but robust
scaling that avoids knowledge of the detailed distribution
and is resistant to the presence of outliers given by

ascaledm ¼ am − q2m
q3m − q1m

; (A-1)

where each attribute is centered about their median q2
and is scaled by the IQR given by the difference between
q3 and q1, which are the 75th and 25th percentiles. The
robust scaling percentiles are computed from the training
data and are used to scale the training, validation, and test-
ing data sets.

The PNN algorithm for finding different smoothing
parameters

To find a different smoothing parameter r for each
seismic attribute, we need to compute the derivatives
of the continuous error function with respect to the
smoothing parameters (Masters, 1995). Then, using
these derivatives together with a first-order optimiza-
tion technique such as Adam, we update the smoothing
parameters to minimize the error.

Masters (1995) computes the derivative of the error
function for a single sample in the validation. In this
study, we are interested in minimizing the global error
E. Therefore, we generalize Masters (1995) to compute
the derivative of the global continuous error E given by

∂E
∂ri

¼ 1
H

XH
h¼1

�
2½PkðxÞ − 1�

�
∂PkðxÞ
∂ri

�

þ 2
X
j≠k

�
PjðxÞ

∂PjðxÞ
∂ri

��
; (A-2)

where

∂PkðxÞ
∂ri

¼

1
Nk

��
2
PNk

n¼1 δkne
−
P

M
m¼1

ðxm −ascalednm Þ2
r2
i

�
ðxm−ascalednm Þ2

r3i

�
−
�P

K
k¼1

1
Nk

��
2
PNk

n¼1 δkne
−
P

M
m¼1

ðxm −ascalednm Þ2
r2
i

�
ðxm−ascalednm Þ2

r3i

��
PkðxÞ

P
K

�
1
Nk

PNk
n¼1 δkne

−
P

M
m¼1

ðxm −ascalednm Þ2
r2
i

�

(A-3)

where P represents the normalized probabilities given
by the estimated density function of each class k di-
vided by the sum of all the density functions of all
classes, K represents the total number of classes, H
is the number of samples in the validation data set,
and δnk is the Kronecker delta function.

Then, following Kingma and Ba (2015) and using the
derivative of the continuous error functions ∂E∕∂ri, we
apply the first-order gradient stochastic optimization al-
gorithm called Adam that uses adaptive learning rates
by computing the first and second moments of the gra-
dients. The learning rule is given by

rþi ¼ ri − αm̂t∕
ffiffiffiffi
v̂t

p
þ e; (A-4)

where t is the current iteration of a user-defined total
number of iterations T, rþi is the updated smoothing
parameter for each attribute, ri is the smoothing param-
eter of the previous iteration, and m̂t and v̂t are the bias-
corrected first and second moment estimations of the
gradient ∂E∕∂ri (equation A-2). The Adam algorithm
also uses hyperparameters for the step size α and a
small constant e to avoid division by zero.

With this background, the bias-corrected first and
second moment estimations (Kingma and Ba, 2015)
are given by

m̂t ¼
�
β1mt−1 þ ð1 − β1Þ

∂E
∂rit

�
∕ð1 − βt1Þ (A-5)

and

v̂t ¼
�
β2vt−1 þ ð1 − β2Þ

∂E
∂ri

2

t

�
∕ð1 − βt2Þ; (A-6)

where β1 and β2 are also hyperparameters for the Adam
algorithm. In the first iteration, t = 0, mt, and vt are ini-
tialized to zero. According to Kingma and Ba (2015),
good default values for the hyperparameters are
β1 ¼ 0.9, β2 = 0.999, α = 0.001, and e ¼ 10−8. However,
in this paper, we use a step size of α = 0.01, which re-
sults in faster convergence with a reduced number of
iterations, T, needed to decrease the validation er-
ror EV.
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