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Summary 

Seismic surveys provide an invaluable source for 

understanding depositional histories and structural 

configurations, important in a range of applications from 

hydrocarbon accumulations, to geothermal, and carbon 

sequestration studies. Although manual fault interpretation 

by a skilled interpreter using knowledge of lithology and 

structural style usually provides the most accurate fault 

surfaces, time constraints rarely allow an interpreter to pick 

every line in a large 3D seismic survey.  

 

For good quality data, horizon mapping is easily accelerated 

using auto-trackers that follow continuous reflectors, 

stopping at interpreter-posted discontinuities.  Fault 

digitization is a more complex task, where the interpreter 

manually picks a grid of fault sticks which are then linked to 

create a three-dimensional fault mesh. Interpreters often 

employ coherence images to help them pick a set of fault 

samples, fault by fault, and line by line, or more commonly, 

on every nth line.  The continuity of coherence images can be 

enhanced using a variety of nonlinear filters or replaced 

altogether using convolutional neural networks.   

 

In this study, we use active contours to convert fault 

probability volumes into a set of fault objects. This study 

employs a semi-automatic approach that scans high 

probability fault locations and moves from low to high 

probability values to fit the fault image’s shape. This 

approach reduces the time to map faults in a seismic section 

since active contours act as an auto tracker of fault 

probability or coherence volumes. 

Introduction 

Fault identification is a manual, time-consuming, and 

sometimes-uncertain process; many tools are used as an aid 

to seismic interpreters to map horizons (Pedersen et al., 

2002; Goldner et al., 2015). Although many filters can be 

used to improve the quality of coherence images,  converting 

such images into a fault object is still a difficult task. 

 

Structural features, such as faults or folds, are often easier 

seen in seismic datasets using attributes related to structural, 

stratigraphic, and discontinuity properties  (Chopra and 

Marfurt, 2005; Barnes, 2016). In particular, the coherence 

family of attributes based on crosscorrelation, semblance, 

eigenstructure analysis, Sobel filters, predictive error filters, 

and the gradient structure tensor  (Bahorich and Farmer, 

1995; Marfurt et al., 1998; Gersztenkorn and Marfurt, 1999; 

Barnes, 2006) provide good fault images. The continuity of 

coherence images can be enhanced and skeletonized using a 

variety of nonlinear filters (Pedersen et al., 2002; Barnes, 

2006; Aare and Wallet, 2011; Machado et al., 2016; Wu and 

Hale, 2016; Qi et al., 2019),  or replaced altogether using 

convolutional neural networks (Xiong et al., 2018; Wu et al., 

2019; Qi et al., 2020)  to create a fault probability volume 

such as the result shown in Figure 1.  

 

 

Figure 1:  A representative vertical slice through the GSB survey, offshore New Zealand, showing seismic amplitude co-rendered with fault 

probability using Qi et al.’s (2019) approach. High fault probability values (in black) delineate a suite of normal faults and minor discontinuities 

associated with mass transport complexes. 
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Fault surface objects from fault probability volumes using active contours 

A common workflow to map faults in seismic datasets uses 

an amplitude volume co-rendered with a coherence or fault 

probability volume to provide a means to visualize both 

values at the same time. Automation in large 3D data sets 

has been achieved in horizon picking by auto trackers (Dorn, 

1998), but manual and semi-automatic digitizing is still a 

usual way to create fault objects such as fault sticks or three-

dimensional meshes. Admasu et al. (2006) and Mora et al. 

(2020) discuss semi-automatic while Admasu et al. (2006),  

Cohen et al. (2006) and Wu and Hale (2016) discuss 

automatic fault object construction. 

 

 

This study employs a semi-automatic approach to map faults 

using an active contour algorithm to find high probability 

values. Active contours scan the initial location of a fault, 

and the algorithm moves from a point with low to high 

probability fault values to fit the shape of the fault volume. 

Data description 

We use a 3D survey in the Great South Basin (GSB) 

southeast of the South Island, New Zealand (Figure 2). The 

data were acquired and time-migrated by ExxonMobil and 

cropped from 1.2 to 2.2 s for this study. We use commercial 

software for seismic display and conventional fault 

interpretation, where the faults are exported in a fault stick 

format.  

Active contours 

 

First introduced by (Kass et al. (1988), active contour is a is 

a computer vision algorithm that attempts to identify shape 

boundaries in images when the approximated outline is 

known. This algorithm changes the shape of a polyline and 

fits it according to the maximum values of an image; it can 

also create illusory contours fitting values where boundary 

data are absent (Kass et al., 1988). We follow Admasu et al. 

(2006) in using this method to map faults. 

 

The active contour model is based on a controlled 

continuous spline under image forces and external forces. 

There are three different terms controlling the Snake energy,  

𝐸snake 
∗ =  ∫  

1

0

 𝐸int (𝐯(𝑠)) + 𝐸image (𝐯(𝑠))      (1)

 + 𝐸con (𝐯(𝑠))𝑑𝑠 ,

 

where 𝐸int  is the internal energy or line smoothness, 𝐸image  

is the image energy and  𝐸con  is a constraint term used to 

guide the contour line towards or away from a particular 

value. 

 

 

The internal energy  

 

𝐸in = 𝐸cont + 𝐸curv 
                  (2) 

where the term Econt makes the  the contour act as a 

membrane (line stretch and point distance), and where the 

term  𝐸curv 
  modifies the behavior to act as a thin plate spline 

(curvature and smoothness) (Kass et al., 1988). 

 

 

The image energy is defined as  

𝐸image = 𝑤line 𝐸line + 𝑤edge 𝐸edge + 𝑤term 𝐸term       (3) 

where wline, wedge, and wterm are weights. The first term is the 

line energy due to the intensity values of the image and will 

be attracted to high or low values depending on the initial 

configuration.  The second term, or image gradient, acts to 

attract the contour to large image gradients. The third term 

is used to find line segment terminations and corners using 

line curvature. 

Methodology 

Figure 1 shows a representative vertical slice through the 

seismic amplitude volume co-rendered with a skeletonized 

fault-enhanced volume following Qi et al. (2019). We then 

extract objects from the fault probability volume using active 

contours. First, we calculate multispectral coherence (Li et 

 

Figure 2. (a) Map of New Zealand showing plate tectonic 

boundaries and the South Island’s strike-slip plate limit. (b) Map 

of the southern part of the South Island and the GSB seismic 

volume location. 
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Fault surface objects from fault probability volumes using active contours 

al., 2017); as a second step, we use the weighted energy to 

seek discontinuities favored by eigenvectors at the reflector 

locations; in that way, the method reduces stair-step artifacts 

and enhances fault probabilities (Qi et al., 2019). After we 

calculate the fault probability, we skeletonize (Qi et al., 
2019) to provide input to the active contour extraction 

method (Figure 3).   

 

 

Figure 3 shows the active contour process. We pick fault 

samples every 10 to 20 lines close to the fault position to 

define the fault trend. As a second step, we use interpolation 

methods on the picked samples to create an approximated 

location in every section near the fault.  

 

The third step is the active contour algorithm calculation, a 

main fault trend is estimated to define the initial direction of 

the analysis. The algorithm starts by measuring the distance 

of the estimated fault, and the algorithm scans the line 

samples of one fault; then, the algorithm creates a connection 

between the points to create a spline; the algorithm then 

starts to find high probability values and smooths the result 

as shown in Figure 4. Figure 4 shows how the initial fault 

position (red line) fits the fault position in the section (blue 

line). The algorithm then moves to a neighboring line and 

restart the process; at the end of the entire process, a list of 

adjusted points to fault probability is found. 

 

The final step in Figure 3 is exporting sample values to a 

stick file format to plot the result in visualization software. 

Results 

We imported the stick file into commercial software and 

analyzed it with a seismic volume to see the match between 

the original data and the extracted surface. We found that 

active contours lines were fitted to fault probabilities in the 

lines by scanning image contrast and gradients.  

 

Figure 5 shows the initial interpreted surface, and the 

extracted result, plenty of samples are created resembling a 

highly detailed mesh. Visual inspection reveals some non-

continuous fault probabilities connected; consequently, the 

mesh does not have holes or absent samples inside the mesh. 

Active contours can follow high probability values close to 

the sample; however, this behavior can drive to 

automatically attach lines to local maximums not related to 

the mapped fault, as an example, following channels or to 

other faults. The previous behavior creates anomalous picks, 

added to sample creation where there is no data, the 

interpreter must be aware of these anomalies and remove 

them manually.  

 

 

Figure 3. Fault object extraction workflow. 

  

Figure 4. A vertical slice through the fault probability where the initial manual fault pick is defined by the dashed red line. The final active 

contour mapped fault appears as the continuous blue line. The zoomed inset  shows how the initial line moves towards high fault probability 

values. 
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Fault surface objects from fault probability volumes using active contours 

The manually fault interpretation generates piecewise linear 

features that approximate the fault trend. In detail, the fault 

surfaces are not always straight and planar; the active 

contours can fit arcuate and listric shapes on vertical slices.  

The manual picks only need to approximate the fault trend.  

 

In the presence of fault probability noise and artifacts,  active 

contours can get lost; for this reason our recommendation is 

to use fault enhancement processes (Qi et al., 2019) to 

smooth and reduce artifacts and undesired features. 

Conclusions and future work  

Our research proves that it is possible to use active contours 

to speed up interpretation workflows and optimize time in 

semi-automatic approaches. The active contour approach 

shows that it is possible to follow high probability values that 

resemble a fault in a seismic section, adaptatively changing 

the line’s shape to fit values that match a fault. Seismic 

attributes sometimes do not show continuous fault 

probability values due to resolution or quality. However, the 

active contour can continually draw a fault when voxels do 

not appear in the processed attribute. 

 

We use this method to create an entire fault object, but active 

contour has the potential to be used in interactive picking by 

creating three or four points to guide the spline, and then 

track high probability values, resembling the fault shape in 

individual lines acting as an auto tracker.  

 

We think the active contour can use other attributes as 

additional weights. For example, coherence measures are 

most accurate at envelope maximum, and we should be able 

to use this information to better define the fault surface. 

 

In future work, we will compute fault dip, fault azimuth, and 

fault cylindricity attributes from our more detailed fault 

surfaces. 
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Figure 5. Three slices through the  fault probability volume and fault objects. (a) Red dots indicate  the initial manual fault picks made on every 

10th inline and the resulting spline-interpolated surface. (b) The more detailed fault surface  extracted object resulting from  active contours, where 

the detailed fault shape is defined for  every inline.  
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