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Machine learning in the geosciences 
has become increasingly popular in 
the last few years, but what exactly 

is machine learning? While it might sound 
intimidating, machine learning is simply 
using a variety of algorithms designed to 
seek out different patterns in the data that 
the interpreter might not notice easily at 
first. Machine learning can be divided into 
two main learning processes: supervised 
learning, which classifies the data with 
some user input, and unsupervised 
learning, which clusters the data.  

Overall, machine learning has introduced 
us to a whole different world that has taken 
geoscientists by surprise. However, the 
real question is how much can we trust 
the machine? How accurate can it be? And 
the most intriguing question of all – can 
machine learning replace the interpreter? 

We will analyze three machine learning 
processes to assess the pros and cons of 
utilization of convolutional neural networks 
for fault prediction versus interpretations 
made by the user in a highly complex 
polygonal fault section of a 3-D seismic 
reflection dataset. 

Convolutional Neural Networks

Our study utilizes convolutional neural 
networks to predict faults on a time-
migrated, 3-D seismic reflection dataset 
situated on the Rankin Platform, offshore 
northwest Australia. A convolutional neural 
network, also known as “CNN,” employs 
a base dataset trained for a specific task. 
Then the generated model parameters, 
or learned features, are transferred to 
a second CNN target to be trained on a 
different task (figure 1). CNN application 
falls in the realm of supervised machine 
learning because it uses a small training set 

to find patterns for the data classification. 
In summary, CNN is used as a feature 
extractor to classify data or, in our case, to 
predict faults. 

There are four steps used in 
convolutional neural networks for fault 
prediction: 

u Constructing the training data 
samples, which could be the interpretation 
performed by an interpreter, or a suite of 
synthetic or modeled data samples with 
their corresponding fault labels 

u Training the CNN 
u Validating the results, and 
u Testing the CNN on the target data 

volume. 

CNN fault prediction uses an 
initial network defined by a U-shaped 
architecture. It is to say, at each step of the 
training, the amplitude data is convolved 
with coefficients and later submitted to 
data reduction. Once the network reaches 
the bottom of the U, the data gets inverted 
by going through transposed convolutional 

operators, data reduction and activators 
to predict the location of the faults 
(figure 2). In our case, we performed the 
convolutional neural network for fault 
prediction, fault enhancement and fault 
skeletonization on polygonal faults that 
are Paleocene-Eocene age in our seismic 
reflection data set. 

CNN fault prediction uses the original 
seismic amplitude volume, the CNN 
configuration and the CNN weights 
(provided in the software) to generate a 
fault prediction volume. The generated 
output is a continuous but lower-resolution 
volume than a coherence attribute 
volume. This prompted us to perform 
fault enhancement, a post-stack attribute 
that enhances locally planar features, 
unconformities and other discontinuities, 
parallel or subparallel to reflector dip 
within a seismic attribute volume, which 
generates an output with sharper faults. 
Subsequently, fault skeletonization was 
performed, which has the effect of thinning 
the various faults and other planar features. 
This algorithm picks on discontinuity 
features such as faults and unconformities 
by using dip magnitude and dip azimuth as 
previously generated inputs (figure 3).  

Checking Results Against 
a Human Interpreter 

Why do we want to use a convolutional 
neural network for fault prediction? 

Our goal is to compare the 
interpretations made by a geoscientist 
who knows the background geology of 
the area of interest and has experience on 
the interpretation of a seismic reflection 
data set against the predictions made by 

Convolutional Neural Network for Fault Prediction 
Interpreter versus machine learning

Figure 1. Visual representation of a transfer learning process of simple convolutional neural network

Figure 2. Schematic 
diagram of the U-net 
shape architecture used 
by the CNN model

Figure 4. Vertical lines of (A) seismic amplitude, (B) fault prediction, (C) fault enhancement, and (D) fault skeletonize 
showing good picks, marked by green arrows, and bad picks, marked by red arrows.

Figure 5. Vertical cross-sections illustrating colored faults manually picked by the interpreter versus fault 
prediction generated by the algorithms with arrows indicating good picks, green arrows, and bad picks, red 
arrows. (A) Seismic amplitude, (B) fault prediction, (C) fault enhancement, (D) skeletonize. 

Continued on next page u

Geophysical Corner



5AUGUST 2021     EXPLORER.AAPG.org

the machine and draw comparisons and 
conclusions. We applied CNN for fault 
prediction on a section of our seismic 
volume characterized by the presence 
of polygonal faults that are Paleocene-
Eocene age. Polygonal faults are non-
tectonic extensional normal faults with 
low displacements (throw more than 
100 meters). They are usually developed 
at the initial stages of consolidations 
of sediments and form a polygonal 
arrangement in plan-view, hence their 
name. These faults are most of the time 
linked to the dewatering and compaction 
of fine-grained sediments, and they play 
a vital role in fluid migration because they 
have the potential to reduce or enhance the 
sealing capacity of successions.

Figure 4 shows a comparison 
of a vertical seismic segment with 
the equivalent segments from fault 
prediction, fault enhancement and fault 
skeletonization processes. Figure 4A 
displays a simple seismic amplitude 
cross-section of the polygonal fault area 
with green arrows indicating good picks 
and red arrows indicating bad picks. If we 
observe the exact figure, we notice that 
the other algorithms look slightly different 
(figure 4). However, the most important 
feature that we need to notice from figure 4 
is where and how each algorithm picks the 
faults compared to the seismic amplitude 
volume. Some areas, marked by the green 
arrows, have good picks, meaning that the 
same faults seen on the seismic amplitude 
volume were picked by the machine on 
the other three equivalent algorithms 
successfully.

Nonetheless, in other areas, the 
machine could not pick some discernible 
faults that are present on the seismic 
amplitude volume (figure 4B, C, D), leaving 
us with questions about the accuracy of 

the algorithms when picking these highly 
complex networks of faults. Moreover, 
looking back at figure 4A, the seismic 
amplitude volume, we notice that there 
are various faults with similar dips spread 

throughout the vertical line that the other 
algorithms do not seem to catch at all (figure 4 
B, C). The only algorithm closer to representing 
what we observe on the amplitude volume is 
CNN skeletonize (figure 4D). 

If we evaluate figure 5, we have a 
vertical seismic amplitude cross-section 
with the equivalent segments of the 
other algorithms against the location of 
faults interpreted by the user. The user 
interpreted the faults only by using the 
amplitude volume and indicating the 
discontinued reflectors and changes in the 
dip as faults (figure 5A). Figure 5B shows 
a CNN fault prediction vertical line against 
two manually picked faults. As we notice, 
in figure 5B, the southwestern fault is 
relatively close to the location and dip that 
the machine predicted. That is to say, it is 
a good pick. However, the northeastern 
fault is a bad pick because the manually 
picked fault does not have a close location 
and dip as the fault interpreted by CNN 
fault prediction. The algorithm shows that 
the wrongly predicted fault location has 
a complete opposite dip compared to 
the user-interpreted fault on the seismic 
amplitude volume, or it is not even close. 

We have CNN fault enhancement 
volume on the next cross-section against 
the same previous manually picked 
faults (figure 5C). As shown in figure 5C, 
the northeastern fault once more does 
not correspond to the location and dip 
of the fault interpreted by the machine. 
Hence, it is a terrible pick. The last volume 
generated by using a convolutional neural 
network is fault skeletonize (figure 5D). 
Fault skeletonization uses the CNN fault 
prediction and fault enhancement volume 
plus fault dip magnitude and dip azimuth 
to generate a sharper volume that picks 
on every discontinuous structure and 
unconformities (figure 3).

Nonetheless, the algorithm fails to 
characterize the same northeastern fault 
that the interpreter manually picked. 
Moreover, if we look closely at the seismic 
amplitude volume, there are many 
identifiable faults that an interpreter will 
pick due to the discontinuous reflectors 
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Figure 3. Schematic diagram 
representing the workflow 
utilized for this study
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and changes in dip (figure 5A). However, 
upon observing the equivalent vertical 
section for all the other algorithms. We 
notice that none of the algorithms pick on 
these faults (figure 5B, C, D). Is it because 
they are too small for the machine to see 
them? Or because the algorithm only picks 
on the most prominent faults? Or is it due 
to the difference in the training data used in 
comparison to these types of faults that we 
want to pick? 

An Excellent Tool, With Limitations

Machine learning is an excellent 
tool that saves time, speeds up lengthy 
processes and facilitates interpretations, 
but like every other suitable tool, it comes 
with its limitations. That is why it should 
be a common practice always to scroll, 
perform quality control throughout the 
data, and make sure the algorithm worked 
correctly and represents reasonable results 
that match your intuition or interpretation 
before using it for final purposes. While 
we believe that machine learning is a 
potential tool that can be used for different 
purposes, it will not completely replace 
the in-context geologic knowledge and 
interpretations made by experts in the area 
of interest.  

(Editors Note: The Geophysical Corner is 
a regular column in the EXPLORER, edited 
by Satinder Chopra, Founder and President 
of SamiGeo, Calgary, Canada, and a past 
AAPG-SEG Joint Distinguished Lecturer.)


