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A B S T R A C T   

Accurate seismic well tie is essential for seismic inversion and reservoir characterization. The procedure of 
seismic well tie involves shifting, stretching and squeezing the synthetic seismogram computed from well logs to 
match the seismic traces at or near the borehole location. Numerous methods have been proposed for nonlinear 
alignment between synthetic and real seismograms. However, most well-tie methods are prone to over-stretching 
and the alignment result is sensitive to the chosen window size. To solve those problems, we propose a variable- 
size window resampling (VWR) algorithm and integrate with convolutional neural network (CNN) for automatic 
seismic well tie. Using VWR algorithm to reconstruct the waveforms in synthetic seismogram can simulate the 
variety of subsurface velocity. CNN can learn the characteristic of different waveforms and recognize the most 
correlated waveforms between synthetic and real seismograms for sequence alignment. We first use VWR al-
gorithm to reconstruct a large number of synthetic seismograms for train set generation. We then build an CNN 
model that named well-tie net for training to learn the feature of different resampled synthetic seismograms. 
Finally, we use the well trained CNN model to segment the real seismogram and align with the synthetic seis-
mogram for seismic well tie. We apply our method into the synthetic test and real seismic data with well logs and 
obtain high correlated seismic-well tie. We also compare with the conventional method dynamic time warping 
(DTW) to illustrate the effectiveness and robustness of our proposed method. Our proposed method can avoid the 
problem of over-stretching by using the variable-size window resampling algorithm and automatically tying the 
well to seismic trace using well-tie net. In addition, the train set for our method is generated automatically.   

1. Introduction 

Tying well log to seismic trace is a key step to connect seismic data to 
geological property. Seismic data is commonly interpreted in the time- 
domain, while the well logs are recorded in the depth-domain. The 
time-depth function between seismic and well log is depending on the 
velocity. However, the velocity is nonlinear and varying with the depth, 
which a precise velocity model is very hard to obtain. Many authors 
summarized the common procedure of seismic well ties (Peterson et al., 
1955; White, 1980; White, 1997; White and Simm, 2003), which in-
cludes four steps: (1) computing a reflectivity series using the velocity 
log and density log, (2) estimating a proper wavelet, (3) generating a 
synthetic seismogram through the convolution, (4) matching the syn-
thetic seismogram with the real seismogram through shifting, stretching 
and squeezing. 

Time consuming and possible over-stretching are the two challenges 
for seismic well tie. Manually tying is matching the synthetic to the real 
seismogram point by point, which is time consuming. Many automatic 
methods have been proposed to overcome this issue. White and Simm 
(2003) tie the well log to seismic using a window based cross correlation 
method, whereas it limited to linear shift features. Besides, the align-
ment result of window-based methods is varying with the chosen win-
dow size and the best window size is hard to determine. Nonlinear 
alignment methods (Muñoz and Hale, 2012; Herrera et al., 2014) have 
been proposed based on the dynamic time warping (DTW) (Sakoe and 
Chiba, 1978). However, those methods focus on better alignment result 
and may cause the problem of over-stretching. Herrera and van der Baan 
(2014) added a global constraint to keep the stretch and squeeze within 
reasonable bounds. Whereas, the alignment results may vary within 
different constrain conditions. Numerous methods (Hale, 2013; Muñoz 
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and Hale, 2015) aimed to smooth the alignment result by using dynamic 
warping of seismic images (DIW), which set the maximum strain for 
each sample. Wu and Caumon (2017) proposed a DTW based method to 
simultaneously tie multiple wells to seismic image by flattening syn-
thetic and corresponding real seismograms. 

CNN (LeCun et al., 1998) is a computational model that composed of 
multiple processing layers, which can learn features of target data with 
different scales (LeCun et al., 2015). CNN based methods have obtained 
great successes in speech recognition and objects detection. Those 
methods for objects segmentation include AlexNet (Krizhevsky et al., 
2012), Region-based convolutional neural network (RCNN) (Girshick 
et al., 2014), GoogleNet (Szegedy et al., 2015), VggNet (Simonyan and 
Zisserman, 2015), and so on. However, these methods can only recog-
nize the target object in regional level. Fully connected convolutional 
neural network (FCN) (Long et al., 2015) dramatically improved the 
capability of objects detection from regional level to element level. He 
et al. (2015) proposed Residual neural network (ResNet) that adds a skip 
connection into CNN architecture to make training of a very deep 
network possible. Recently, numerous CNN based approaches have been 
applied into seismic interpretation (Huang et al., 2017; Di et al., 2018; 
Pham et al., 2018; Shi et al., 2018; Zhao and Mukhopadhyay, 2018; Wu 
et al., 2018, 2019a, 2019b, 2020; Liu et al., 2020) Those methods have 
achieved robust and effective results for seismic interpretation. How-
ever, most of these methods require the man-made label in the process of 
data preparation for CNN training. Manually picking training data and 
training label is very time consuming and the prediction result is 
depending on the quality of those manual training label. Wu et al. 
(2019c) proposed an unsupervised CNN for seismic fault detection by 
building millions of synthetic fault models in the training processing. 
Another unsupervised learning method like waveform embedding for 
horizon picking (Shi et al., 2020) is learning the features of nearby 
waveforms using fixed-size window. 

Inspired by these CNN based works, we propose a two-step automatic 
seismic well tie method. The first step is simulating the variety subsur-
face velocity. In this step, we develop the variable-size window resample 
(VWR) algorithm to resample the synthetic seismogram. By using VWR, 
we can generate a lot of resampled synthetic seismograms, which have 
the same length with the original synthetic seismogram but different 
waveforms. Hence, we can use those resampled synthetic seismograms 
to simulate different subsurface velocity models. The second step is 
building an unsupervised segmentation CNN for automatic seismic well 
tie, which named well-tie net. In well-tie net, we use the resampled 
synthetic seismograms and the corresponding class labels as the training 
set, which do not require the manually picking labels as training data. 
After training process, we apply the well-trained CNN model into the 
real seismogram for segmentation. Finally, we can align the synthetic 
seismogram with real seismogram based on the segmentation 
boundaries. 

This paper is organized as follows: We first briefly introduce the 
general procedure of seismic well tie. We then present our proposed 
waveform resampling algorithm VWR for subsurface velocity simula-
tion. We next discuss the detail of our proposed well-tie net for auto-
matic seismic-well tie. We finally apply it into synthetic and real data to 
demonstrate the robustness and effectiveness of our proposed method. 

1.1. Conventional procedure of seismic well tie 

Seismic well tie is a procedure of matching the synthetic seismogram 
that computed from well logs to the real seismic trace near the borehole 
location (Walden and White, 1984). The common procedure of seismic 
well tie can be concluded into four steps. The first step is computing the 
reflectivity series r(z) based on the velocity log v(z) and density log ρ(z): 

r(z)=
ρ(z + Δz)v(z + Δz) − ρ(z)v(z)
ρ(z + Δz)v(z + Δz) + ρ(z)v(z) (1) 

The second step is estimating an proper wavelet w(τ). The third step 

is calculating the synthetic seismogram x(τ) by convolving the reflec-
tivity series with the wavelet w(τ): 

x(τ)= r(z)* w(τ) (2)  

where * denotes the convolution operator. 
The final step is shifting, squeezing and stretching the synthetic 

seismogram to match the real seismic trace. Manually seismic well tie is 
very time-consuming to obtain a good alignment result. Many automatic 
seismic well tie methods have been proposed to accelerate the procedure 
of alignment. However, most of them cannot avoid the problem of over- 
stretching (Hale, 2013). 

1.2. Variable-size window resampling for subsurface velocity simulation 

The subsurface velocity is varying with depth and the time-depth 
function between well log and seismic trace is determined by velocity. 
A precise subsurface velocity model is the key factor to guarantee a 
reasonable seismic well tie. However, we usually can only get an 
approximately velocity model but not a precise one. Hence, the first part 
of our method for seismic well tie is reconstructing the synthetic seis-
mogram to simulate different situations of the subsurface velocity 
model.We present an example to demonstrate that the length and 
waveform of a real seismogram are highly dependent on the variety 
subsurface velocity. We thus generate a synthetic seismogram with 
defined length and waveform (Fig. 1a), where the depth is 300 m and the 
sample rate is 0.5 m. To simulate the corresponding real seismogram in 
the time-domain, we assume the subsurface velocities are 1500 m/s, 
2000 m/s and 2500 m/s, respectively. Here, we obtain three different 
real seismograms in Fig. 1b. Note that both the synthetic seismogram 
and real seismogram have a similar waveform but different lengths. 
Thus, we need to align the synthetic seismogram with the real seismo-
gram to compute an accurate time-depth function. 

Fig. 2 shows the workflow for reconstructed synthetic seismograms 
generation. The first step is well data conditioning for improving the 
quality of input data. The second step is extracting initial statistical 
wavelet only use seismic trace near borehole. The third step is 
computing the reflectivity from density and velocity log, then con-
voloving with statistical wavelet to generate the initial synthetic seis-
mogram. The fourth step is using check shot data to estimate the initial 
time depth function. The fifth step is combining seismic trace and well 
log to extract wavelet with constant phase and update the synthetic 
seismogram. The sixth step is segmenting the synthetic seismogram 
based on the well log markers (Fig. 3). The final step is using our 

Fig. 1. Illustrating that the length and waveform of real seismogram highly 
depends on the variety of subsurface velocity models. (a) Synthetic seismogram 
that the depth is 300 m and the sample rate is 0.5 m. (b) Three simulated real 
seismograms with different subsurface velocities, which we assume the sub-
surface velocities are 1500 m/s, 2000 m/s, and 2500 m/s, respectively. 
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proposed variable-size window resampling (VWR) algorithm to resam-
ple the divided waveforms in synthetic seismogram and output the 
reconstructed synthetic seismograms. 

Our proposed VWR algorithm is shown as follow: 
Consider a synthetic seismogram X with length L has been divided 

into N waveforms wi based on formation markers, which the length of 
each waveform is li. Next, we change the length of each waveform from 

li to l̂i , where 
∑N

i=1
l =

∑N

i=1
l̂ = L. To avoid abnormal velocity change, we set 

a constraint that the shift length s is range from [-10 %, 10 %] of the 
waveform length li. Then, we generate the resampled waveform ŵi 

based on the shifted waveform length l̂i (Fig. 4). Finally, we group all the 
resampled waveforms to generate the reconstructed synthetic seismo-
gram X̂. Hence, we can use those reconstructed synthetic seismograms 

to simulate different subsurface velocity models. 

1.3. Well-tie net for automatic seismic well tie 

The second part of our method is developing a CNN model (well-tie 
net) for automatic seismic well tie. 

1.4. Train set generation 

Train set includes train data and corresponding label. It is essential 
for CNN model and the quality of train set has a great influence on the 
prediction accuracy of CNN model. 

Fig. 5 shows the workflow of train set generation. We start with 
producing the original class label based on the formation markers (the 
segments are labeled with different integer number from top to bottom). 
We then divide the original synthetic seismogram into several 
segmented waveforms based on the formation markers. Next, we apply 
VWR algorithm to resample each segmented waveform and produce the 
updated label. We finally connect all the resampled waveforms and 
updated labels to generate the reconstructed synthetic waveforms and 
corresponding labels. VWR algorithm can produce a large number of 
variable train set at one time, which meet the requirement of train set for 
CNN model. Fig. 6a shows five representative reconstructed synthetic 
seismograms and Fig. 6b shows the corresponding labels. Note that the 
varying characteristic of waveforms and labels in those reconstructed 
synthetic seismograms. 

1.5. Well-tie net 

After train set preparation, the next step is building an CNN model to 
learn the characteristic of different waveforms. Fig. 7 shows the archi-
tecture of our proposed well-tie net. 

The CNN model contains two main parts: encoder and decoder, 
which consist of a sequence of nonlinear processing layers and followed 
by a classification layer. The role of the encoder is transforming the 
input data into feature maps and capturing its effective information. The 
encoder contains a series of nonlinear processing layers and each layer 
contains convolution filters, batch-normalization regularizer (BN) (Ioffe 
and Szegedy, 2015), rectified linear units (ReLU) activation operator 
and max-pooling operator. The objective of the convolution filter is 
extracting the feature of input waveforms to form the feature maps. The 
equation of the convolution filter is shown as:  

O = b + f * z,                                                                                (3) 

Where * denotes the convolution operation, b denotes the bias term, z is 

Fig. 2. Our proposed workflow for reconstructed synthetic seismo-
grams generation. 

Fig. 3. The process that divide the synthetic seismogram based on the forma-
tion markers. 

Fig. 4. The procedure for generating resampled synthetic seismogram. To 
avoid abnormal velocity change, we set a constraint that the shift length s is 
range from [-10 %, 10 %] of the waveform length. 
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the input waveforms, f is the convolution filter, and O is the output 
feature map. With the max-pooling operator, the encoder down-samples 
the feature maps and learns the features of waveforms with different 
scales. Then, the encoder transfer the feature maps to the decoder. 

Different from the encoder, the decoder contains an up-sampling 
operator in its processing layers. The role of the decoder is recon-
structing feature maps and constructing the relationship between the 
input data and target labels. In this paper, the encoder and decoder show 
a symmetric architecture and the decoder will reconstruct the feature 
maps and figure out the relationship between the waveforms (training 
data) and target locations (class labels). Finally, we use a softmax clas-
sifier to give each waveform sample with the probabilities for each label. 

1.6. Automatic seismic well tie using well-tie net 

The final step of our method is training the proposed CNN model 
using reconstructed synthetic seismograms and testing in the real seis-
mogram. Fig. 8 shows the workflow of training and testing process. We 
feed the resampled synthetic seismograms and corresponding labels into 
CNN model for training. In the training process, our CNN model achieves 
the converge state after 20 epochs and the accuracy is larger than 99 %. 
As a result, we apply the well-trained CNN model into the real seismo-
gram for segmentation and output the class label. Then, we can align the 

Fig. 5. The workflow of train set generation. We start 
with producing the original class label based on the 
formation markers (the segments are labeled with 
different integer number from top to bottom). We 
then divide the original synthetic seismogram into 
several segmented waveforms based on the formation 
markers. Next, we apply VWR algorithm to resample 
each segmented waveform and produce the updated 
label. We finally connect all the resampled waveforms 
and updated labels to generate the reconstructed 
synthetic waveforms and corresponding labels.   

Fig. 6. The resampled synthetic seismograms and corresponding class label. (a) Five representative resampled synthetic seismograms. (b) The corresponding 
training labels. 

Fig. 7. The architecture of our proposed CNN model for automatic seismic 
well tie. 
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synthetic seismogram with the real seismogram and compute the time- 
depth function based on these segmented waveforms (Fig. 9). 

1.7. Applications 

To evaluate the performance of our proposed method for automatic 
seismic well tie, we apply our method to synthetic data and real data. 

1.8. Synthetic test 

Consider two synthetic seismograms f(t) and g(t) with length N =
128 samples displayed in Fig. 10. The shift function s(t) = f(t) −
g(t)between these two synthetic seismograms is a sinusoidal function. 
According to this sinusoidal function, the shift range between two 
adjacent points |e(t) = s(t + 1) − s(t)| < 1. In other words, the situation 
of 100 % stretching or squeezing would not happen, which can avoid the 
abnormal velocity change. 

Since there is no formation markers for these synthetic seismograms, 
we first segment the synthetic seismogram f(t) with a fixed-size window 
and generate corresponding label. We then use VWR algorithm to 
generate the reconstructed synthetic seismograms for train set prepa-
ration. The size of the resampling window is range from 4 to 12 and the 

volume of reconstructed synthetic seismograms is 10000. We use 30 % 
of the reconstructed synthetic seismograms as train set and apply the 
rest of 70 % data into blind test to validate our CNN model. During the 
training process our CNN model is converged after 20 epochs and the 
training accuracy is greater than 99 % and the test accuacy is over 93 %. 
Then, we apply the well-trained model into the synthetic seismogram 
g(t) to segment the best matching waveforms. Finally, we align these two 
sequences and computing the shift function between f(t) and g(t) based 
on the segmented waveforms. Fig. 11 shows the alignment result and the 
comparison between the true shift function and the shift function using 
our proposed method. Note that our CNN model have recognized the 
best matching waveforms between f(t) and g(t). We compare our 
computed shift function with the original shift function, which shows a 
very good match result. 

1.9. Real data test 

We apply our proposed method into two different field examples. 
The first field example is from the open source data F3-block including 
3D post-stack seismic data and four wells (Fig. 12). In this work, we 
choose two wells to evaluate the performance of our proposed method 
and compare with the conventional method DTW. 

To automatically tying well logs with seismic traces near the bore-
hole location, we begin by computing the synthetic seismogram from 
well F03-2. We first follow the process of reconstructed synthetic seis-

Fig. 8. The workflow of training and testing process.  

Fig. 9. The aligned synthetic seismogram with the real seismogram and the 
corresponding time-depth function. 

Fig. 10. Two synthetic seismograms f(t) (first line) and g(t) (second line) with 
the known sinusoidal equation shifts (third line). 

Fig. 11. The alignment result between f(t) and g(t) (first line), the comparison 
between true shift function (black) and the shift function computed by using 
our proposed method (red). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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mograms generation workflow in Fig. 2 to extract the wavelet. Fig. 13a 
and c shows our extracted initial statistical wavelet and contant phase 
wavelet by using seismic data and well log, which Fig. 13b and d shows 
the corresponded amplitude spectrum and phase. We then convolve the 
constant phase wavelet with the reflectivity to generate the synthetic 
seismograms Xusing equation (2). As shown in Fig. 14a, the synthetic 
seismogram (red) computed based on well logs do not match seismic 
traces (black). 

Next, we follow the procedure in Fig. 5 to generate the train set. We 
segment the synthetic seismograms Xbased on the formation markers 
and generate the corresponding class labels with different numbers from 
top to bottom. We then resample the synthetic seismograms using VWR. 
The shift difference between the resampling windows and original 
segementation window is range from − 10 % to 10 %. Thus, the 

reconstructed synthetic seismograms and corresponding labels are 
treated as train set for the following CNN based automatic seismic well 
tie. The total number of train set is 100000. 

To apply our proposed CNN model aligning the synthetic seismo-
gram with seismic traces, we first feed the training set into our CNN 
model. Our CNN model meets a converge state after 50 epochs. Both the 
training accuracy and validation accuracy exceed 97 %. Afterward, we 
apply the well-trained model into real seismogram to pick the most 
correlated waveforms and segment the sequence. Fig. 14b shows the 
alignment result using well-tie net. In comparison, we use DTW to 
illustrate the robustness of our proposed method. Fig. 14c shows the 
alignment result using DTW. Note the zoom view in blue box and green 
box that our proposed method shows a very good matching and smooth 
result between the real seismogram and synthetic seismogram. Whereas, 
the alignment result using DTW contains several over-stretching parts 
indicate by green arrows in green box. 

We also compute the time-depth function and interval velocity dif-
ference to validate the robustness of our proposed method and compare 
with DTW. Fig. 15a shows the initial time-depth function (black curve), 
final time-depth function (red curve) calculating by using well-tie net 
and final time-depth function computed by using DTW (green curve). 
After detailed comparisons, our method shows a very smooth result and 
does not show any rapid change in the time-depth function. In contrast, 
we observe the unpractical big shift between the initial time-depth 
function and final time-depth function computed by using DTW. Be-
sides, Fig. 15b shows the initial interval velocity (black curve), interval 
velocity using well tie net (red curve) and interval velocity using DTW 
(green curve). From Fig. 15c we can see that the interval velocity dif-
ference by using well-tie net is smaller than 10 %, while the velocity 
difference by using DTW have shown the abnormal velocity change 
indicated by blue arrows. 

Fig. 16 shows another field example using well F03-4. We first 
compute the synthetic seismogram using the density log and velocity 
log. We then estimate the initial time-depth function using the velocity 
log. As shown in Fig. 16a, the synthetic seismogram (red curve) 
computed with the initial time-depth function does not match the real 
seismogram (black curve). Next, we repeat the procedure for well F03-2 
to match the synthetic seismogram with the real seismogram shown in 
Fig. 16b. We use DTW as the comparison method to align these 

Fig. 12. The survey of the first field example. This survey is from the open 
source data F3-block that include 3D post-stack seismic data and four wells. 

Fig. 13. The extracted wavelet and spectrum for computing the synthetic seismogram. (a) the extracted initial statistical wavelet. (b) the amplitude and phase 
spectrum that correspond to the initial statistical wavelet. (c) the extracted constant phase wavelet after check shot correction. (d) the amplitude and phase spectrum 
that correspond to the constant phase wavelet. 
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seismograms. We observe the alignment result using our proposed 
method (Fig. 16b) is matched very well. However, the aligned synthetic 
seismogram using DTW (Fig. 16c) shows significant differences with the 
original synthetic seismogram, which displayed in the zoom view of 
green box indicated by green arrows. We also compute the time-depth 
function to illustrate the robustness of our proposed method and 
compare with DTW. As shown in Fig. 17a, the initial time-depth function 
(black curve) is almost same with the final time-depth function 
computed by using well-tie net (red curve) but shows significant dif-
ference with DTW (green curve). Besides, Fig. 17b shows the initial in-
terval velocity (black curve), interval velocity using well tie net (red 
curve) and interval velocity using DTW (green curve). From Fig. 17c we 

can see that the interval velocity difference by using well-tie net is 
smaller than 10 %, while the velocity difference by using DTW have 
shown the abnormal velocity change indicated by blue arrows. 

The second field example is the well JV37 that located in Oklahoma, 
US. We also follow the procedure for the frist field example to align the 
synthetic seismogram with real seismogram using well-tie net and DTW, 
respectively (Fig. 18). We observe the alignment result using our pro-
posed method (Fig. 18b) is matched very well. However, the aligned 
synthetic seismogram using DTW (Fig. 18c) shows significant differ-
ences with the original synthetic seismogram, which displayed in the 
zoom view of green box indicated by green arrows. Thus, we can 

Fig. 14. The seismic-well tie result of the first field example well F03-2. (a) The 
aligned synthetic seismogram (red) and real seismogram (black) using initial 
time-depth function. (b) The aligned synthetic seismogram (red) and real 
seismogram (black) using well-tie net. (c) The aligned synthetic seismogram 
(red) and real seismogram (black) using DTW. Note the zoom view (blue and 
green boxes) over-stretching area indicate by green arrows. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 15. (a) the comparison of time-depth function among the original (black), 
well-tie net (red) and DTW (green) in the well F03-2. (b) the comparison of 
interval velocity among the original (black), well-tie net (red) and DTW (green). 
(c) the comparison of interval velocity difference between the well-tie net (red) 
and DTW (green). Note that the interval velocity difference by using well-tie net 
is smaller than 10 %, while the velocity difference by using DTW have shown 
the abnormal velocity change indicated by blue arrows. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 16. The seismic-well tie result of the second field example well F03-4. (a) 
The aligned synthetic seismogram (red) and real seismogram (black) using 
initial time-depth function. (b) The aligned synthetic seismogram (red) and real 
seismogram (black) using well-tie net. (c) The aligned synthetic seismogram 
(red) and real seismogram (black) using DTW. Note the zoom view (blue and 
green boxes) over-stretching area indicate by green arrows. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 17. (a) the comparison of time-depth function among the original (black), 
well-tie net (red) and DTW (green) in well F03-4. (b) the comparison of interval 
velocity among the original (black), well-tie net (red) and DTW (green). (c) the 
comparison of interval velocity difference between the well-tie net (red) and 
DTW (green). Note that the interval velocity difference by using well-tie net is 
smaller than 10 %, while the velocity difference by using DTW have shown the 
abnormal velocity change indicated by blue arrows. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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conclude that our proposed method for automatic seismic well tie can 
not only obtain an accurate alignment result but also avoid the problem 
of over-stretching. 

1.10. Disscussion 

The number of train set is a key factor affecting the performance of 
CNN model. We have designed an experiment to test the prediction 
accuracy of CNN model by applying different train set volume. We set 
the number of reconstructed synthetic seismograms are 100, 500, 1000, 
2000 and 5000, respectively. The corresponding test accuracy are 44.3 
%, 71.6 %, 91.2 %, 93.1 % and 93.3 %, respectively. This experiment 
result indicate that if the train set number is over 1000, our proposed 
well-tie net can avoid the problem of overfiting and get a satisfied well- 
tie result. 

Besides, we believe the stretching range of variable size window is 
also a key influence factor to the train set quality. Larger shift range can 
simulate more subsurface velocity models, while it would cause 
abnormal velocity change. To achieve a reasonable seismic well tie 
result, we set the variable size windows are shifting range from − 10 % to 
10 %. 

2. Conclusions 

We propose a two-step automatic seismic well tie method. Our 
method first simulates the variety subsurface velocity. We then use CNN 
model to learn the features of different waveforms and tie the well to 
seismic automatically. 

To simulate the variety subsurface velocity, we present a variable- 
size window resampling (VWR) algorithm to resample the synthetic 
seismogram. By generating a large number of different resampled syn-
thetic seismograms, we can simulate different situations of subsurface 
velocity models. To learn the characteristic of different resampled syn-
thetic seismogram, we propose an unsupervised segmentation CNN 
model, which named well-tie net. We use well-tie net to learn the fea-
tures of waveforms and output the corresponding class labels. With 
those class labels, we can segment the real seismogram and align with 

the synthetic seismogram according to the segmentation boundaries. 
The problem of over-stretching is often caused by the point-to-point 

alignment. This kind of methods are usually focus on the high correla-
tion matching but ignore the waveform similarity. Although the 
window-based alignment method is aligning the sequences by matching 
the similar waveform, the alignment result is varying with the chosen 
window size. Our proposed VWR algorithm using a variable-size win-
dow can not only obtain high correlation alignment result, but also 
avoid the problem of over-stretching. In addition, the well-tie net is 
using the resampled synthetic seismograms and corresponding training 
labels as the training set, which do not require the manually picked 
labels. 
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