Enhanced AASPI Algorithms: October 2021			
Application Name	Application Description	Location	Software Documentation
instantaneous_attributes	Broke out routines agc and avt into separate programs because most users will not think of them as being "instantaneous"	under aaspi_util > Single trace attributes	http://mcee.ou.edu/aaspi/docum entation/Single Trace Calculation s-instantaneous attributes.pdf
spec_cmp, spec_cwt	Improved dip correction computation. Also allow optional output of dip correction volume for QC.	under aaspi_util > Spectra attributes	http://mcee.ou.edu/aaspi/docum entation/Spectral_Attributes- spec_cmp.pdf
corender	Reworked defaults for HSL and RGB images. Added an explicit CMY blending option. By default, the coherence family of attributes will have their axes flipped (low values plotted against either RGB or CMY)	under aaspi_util > Display tools	http://mcee.ou.edu/aaspi/docum entation/Display_Tools- aaspi_corender.pdf
rgb_cmy_plot	Modified orientation of colors to be consistent with RGB and CMY displays in commercial software and in program corender	under aaspi_util > Display tools	http://mcee.ou.edu/aaspi/docum entation/Display Tools- rgb_cmy_plot.pdf
sof3d	Set frequency filter defaults to be 0 to Nyquist to avoid filtering signal for depth-migrated data that might be particularly broad band	under aaspi_util > Geometric attributes	http://mcee.ou.edu/aaspi/docum entation/Geometric_Attributes- sof3d.pdf
fault_enhancement	Fixed a memory leak! If fault probability falls below a user- defined threshold, the fault dip azimuth and fault dip magnitude are set to have znull values	under aaspi_util > Image processing	http://mcee.ou.edu/aaspi/docum entation/Image_Processing- fault_enhancement.pdf

skeletonize3d	Now output skeletonized fault dip azimuth and fault dip magnitude corresponding to non-zero values of fault probability and set to have znull values elsewhere. Addressed the correlation and machine learning challenges associated with dip azimuth and dip magnitude measures, where the dip azimuth jumps 360° at ±180° and for slight changes of vertical faults of ±1° to either side by 180°. The algorithm now optionally outputs four additional volumes: the north and east components of fault strike and the horizontal and vertical components of fault dip.	under aaspi_util > Image processing	http://mcee.ou.edu/aaspi/docum entation/Image_Processing- skeletonize3d.pdf
	Reworked display options and defaults to be consistent		http://mcee.ou.edu/aaspi/docum
	with program corender and with the interactive	under aaspi_util > QC	entation/Display_Tools-
aaspi_plot	parameters on the image after display	Plotting	aaspi_plot.pdf
CNN_fault_prediction	Reduced core memory requirements to be two overlapping rows of 128×128×128 blocks or <i>nt</i> ×128×256 voxels where <i>nt</i> is the number of time or depth samples. Previous version required entire amplitude and label data volumes to remain in memory.	under aaspi_util > Machine learning toolbox > CNN Fault	http://mcee.ou.edu/aaspi/docum entation/Machine Learning Tool box-cnn_fault.pdf
filter_single_attribute	Provided the option to <i>subtract</i> the filtered version from the original data. In this manner, we can apply a median filter along structure, enhance stratigraphic anomalies parallel to structure (e.g. condensed sections or just low amplitude shale-on-shale reflections), and subtract them from the original coherence volume, leaving steeply dipping fault anomalies.	under aaspi_util > Image Processing	<u>http://mcee.ou.edu/aaspi/docum</u> <u>entation/Image_Processing-</u> <u>filter_single_attribute.pdf</u>
iterative_fault_enhance ment	Modified the workflow to apply filter_single_attribute to reduce anomalies subparallel to structure prior to iterative fault enhancement	under aaspi_util > AASPI Workflows	http://mcee.ou.edu/aaspi/docum entation/Workflows- iterative_fault_enhancement_wor kflow.pdf

	Reworked to allow user to output slices through the		http://mcee.ou.edu/aaspi/docum
	chosen header values that can be plotted for effective	under aaspi_util > Other	entation/Other Utilities-
display_headers	quality control	utilities	display aaspi headers.pdf
	Added an optional Laplacian of the input seismic		
	amplitude volume, including multispectral computation.		
	Although amplitude curvature provides more robust, long		http://mcee.ou.edu/aaspi/docum
	wavelength results, this short wavelength multispectral	under aaspi_util >	entation/Geometric Attributes-
similarity3d	capability is considerably faster	Geometric attributes	<u>similarity3d.pdf</u>
	Previous algorithm normalized attributes used the		
	Mahalanobis distance. Using the machine learning toolkit,		
	the new algorithm normalizes in two steps: first by		
	allowing z-score or logarithmic scaling, then second by		
	computing the first several (orthogonal) principal		
	components and clustering in that domain. Finally, the		
	clusters are plotted against a 2D color bar defined by the		
	first two eigenvectors. This algorithm provides more		http://mcee.ou.edu/aaspi/docum
	stable results when using large numbers of correlated	under aaspi_util > Machine	entation/Volumetric_Classificatio
kmeans3d	attributes.	learning toolbox	<u>n-kmeans3d.pdf</u>
	Reorganization of the GUI with algorithms now being		
	broken into shallow learning and deep learning categories,		
	with the shallow learning further subdivided into	under aaspi_util > Machine	
machine learning toolbox	supervised and unsupervised subcategories	learning toolbox	
	Now provide a way to eliminate spikes in the histogram		
	prior to normalization, training, and classification.		
	Although some spikes occur next to mute zones and dead		
	traces, most occur when the data are somehow clipped,		
	such as forcing the porosity from 3rd party software to	under aaspi_util > Machine	
machine learning toolbox	range between 0 and 100%.	learning toolbox	
	Now allow window-based computation to reduce		http://mcee.ou.edu/aaspi/docum
	computation effort. Horizon limited computations will	under aaspi_util >	entation/Geometric Attributes-
glcm3d	come later	Geometric attributes	glcm3d.pdf

			http://mcee.ou.edu/aaspi/docum
	Now output an additional file showing the probability that	under aaspi_util >	entation/Volumetric_Classificatio
som3d	each voxel belongs to a given class	Volumetric classification	<u>n-som3d.pdf</u>