New AASPI Algorithms: September 2017						
			Software			
Application Name	Application Description	Location	Documentation	AASPI References		
		currently application				
		found under	precious few	http://mcee.ou.edu/aas		
		aaspi_util/Other	parameters to choose.	pi/documentation/Data		
	(Windows operating system only) Convert to and	Utilities - aaspi_util	More detailed	<u>Conversion-</u>		
	from Petrel ZGY-format files and AASPI-format	GUI will be reworked	documentation will be	Converting_postack_da		
zgy_write_batch and	files, thereby avoiding generation of a	by December 2017 to	generated with new	ta_from_ZGY_to_AASPI		
zgy_read_batch	intermediate SEGY-format files.	be cleaner	version of aaspi_util	_formats.pdf		
	Allow unlimited input attributes and wells.					
	Algorithm now runs faster, especially for vertical		-			
	wells. Currently only works with well trajectories		http://mcee.ou.edu/aas			
	(well segments not implemented yet). Request	under aaspi_util >	pi/documentation/Attri	http://mcee.ou.edu/aas		
	guidance from user-community on formats that	Attribute Correlation	bute_Correlation-	pi/publications/2017/X		
cigar_probe	define irregular well paths.	Tools tab	<u>cigar_probe.pdf</u>	uan_AAPG_2017.pdf		
				http://mcee.ou.edu/aas		
				pi/publications/2017/R		
				afael_Pires%20de%20Li		
				ma_SEG_Absrtact_Fall_		
				2017_Quntifying%20fau		
			http://mcee.ou.edu/aas	lt%20connectivety%20d		
	uses coherence or other edge-sensitive attribute		pi/documentation/Imag	rilling%20hazards%20th		
	as a proxy for fluid connectivity between a	under aaspi_util >	e_Processing-	rough%20simple%20flo		
fault_connectivity	reservoir and an assumed aquifer	Image Processing tab	fault_connectivity.pdf	w%20computations.pdf		
	A Gaussian Mixuture Model classification					
	algorithm. When applied to multiple 3D volumes,					
	this algorithm provides results that are similar to,					
	but more adaptive than kmeans3d classification,					
	but less definitive than som3d or gtm3d		http://mcee.ou.edu/aas	http://mcee.ou.edu/aas		
	projections. Our intial applications are to define	under aaspi_util >	pi/documentation/Volu	pi/upload/AASPI_These		
	"optimal" clusters in the 2d latent space of SOM	Volumetric	metric_Classification-	s/2017_AASPI_Theses/		
gmm3d	projections.	Classification tab	gmm3d.pdf	hardisty_thesis.pdf		

	Classical instantaneous attributes including			
	envelope, frequency, and phase, to facilitate their			
	use in clustering or to compare to more			
	sophisticated attributes such as spectral			
	decomposition. The amplitude volume technique			
	(AVT) is in this package; like spec_vmd, the AVT			
	appears to provide information lower than the			
	measured seismic spectrum. Future research will			
	determine if this "rhythm of the data" is real or			
	just a visual apparition.Sweetness is included in		http://mcee.ou.edu/aas	
	this package, which provides tool for sand		pi/documentation/Singl	
	estimation. Unwrapping phase is also in this	under aaspi_util >	e_trace_attributes-	
instantaneous_attrib	package, which produces continuous phase	Single Trace Attributes	Instantaneous_attribute	Classical algorithms by
utes	information.	tab	<u>s.pdf</u>	others
				Seismic Interpretation
				of the Exmouth Plateau,
				North Carnarvon Basin,
				Australia: An
				Application of Data
	Generate pseudo3d from a suite of 2D lines and		http://mcee.ou.edu/aas	Conditioning, Seismic
	reverse. Also allow users to import an unlimited		pi/documentation/Othe	Attributes, and Self-
	number of SEGY 2D lines, each with its own file, at	under aaspi_util >	r_Utilities-	Organizing Map on 2D
pseudo3d	once.	Other Utilities	2D_seismic_utilities.pdf	Data
				http://mcee.ou.edu/aas
	Computes coherence, amplitude gradients, and			pi/publications/2017/qi
	other attributes on each azimuthal or offset		http://mcee.ou.edu/aas	<u>%20et%20al.%202017%</u>
	component. Computes multioffset and	under	pi/documentation/Volu	20Multiazimuth%20coh
	multiazimuth coherence and amplitude gradients	aaspi_util_prestack >	metric Attributes-	erence_Volumetric_attr
similarity_prestack	by summing the covariance matrix	Data Analysis tab	similarity3d.pdf	<u>ibutes</u>

	Variational mode decomposition - an algorithm			
	that uses spectral components of the measured			
	data as the carrier wave, where the "signal" is			
	lower frequency - perhaps lower than the			
	bandwidth of the seismic data. The analogy is a			
	540 kHz radio station carrying a human voice with			http://mcee.ou.edu/aas
	frequencies ranging from 0.3 to 3.4 kHz. We are			pi/publications/2017/Ta
	currently working on the interpretational value of			o_Fangyu_SOM_VMD_
	such measures, which is not unrelated to the low			<u>2017.pdf ;</u>
	frequency (lower than the measured spectrum)			http://mcee.ou.edu/aas
	features seen in the AZT attribute available under	under aaspi_util >	Documentation under	pi/publications/2017/Fa
spec_vmd	instantaneous_attributes.	Spectral Attributes tab	construction.	ngyu_vmd_2017.pdf
	Simple utilities to combine multiple volumes (e.g.			
	azimuthally-limited migrated stacks) that may			
	come from a contractor into a single 4D volume (t,			
	phi, cdp_no, line_no) that can serve as input for			
volume_combine	similarity_prestack, sof_prestack, and other	under		
and	algorithms. Volume separate breaks a 4D or 5D	aaspi_util_prestack >	Documentation under	Simple utility. No paper
volume_separate	volume back into multiple 3D volumes	Prestack Utilities	construction.	needed.