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Latent space modeling of seismic data: An overview

Modeling of seismic data takes two forms: those based 
on physical or geological (phenomenological) models 

and those that are data-driven (probabilistic) models. In the 
phenomenological approach, physical and geologic models 
are tied to seismic data either through geologic analogs 
or principles of structural deformation and sedimentary 
deposition. Th e results are then compared to the observed 
data, and the model is iterated as necessary to improve 
agreement. In contrast, probabilistic modeling looks at 
patterns in the data. Th e data could include raw seismic 
observations or seismic attributes. Probabilities can then be 
assigned to observations or potential observations; however, 
many common techniques such as neural networks and 
clustering do not explicitly take this step.

While phenomenological modeling has the strength that 
it is tightly linked to geology, it is a hypothesis-driven ap-
proach and lacks the fl exibility of more exploratory, data-
driven methods. Furthermore, the probabilistic approach has 
attractive properties in that it can provide a strong quantita-
tive assessment of reservoir uncertainty. However, probabi-
listic modeling of seismic data can become mathematically 
infeasible due to high dimensionality that introduces high 
levels of statistical uncertainty.  

Wallet and Marfurt (2008) observed that each seismic at-
tribute can be represented as a dimension of a d-dimensional 
space in which the data reside where d is the number of attri-
butes. A common method for dealing with high-dimensional 
data is to reduce the dimension using a linear projection (Guo 
et al., 2006). In modeling spectral decomposition of seismic 
data, the attribute space may be several hundred dimensions. 
In the concrete example presented later in this paper, we mod-
el 16-sample vertical windows of seismic traces. Each of these 
60-ms waveforms, represented by a 16-dimensional vector, 
resides in a 16-dimensional attribute space. Th roughout the 
rest of this paper, we will refer to waveforms, and these should 
be understood to be observations in attribute space.

Th e approach discussed in this paper is to model the 
data as a lower-dimensional manifold representation of a la-
tent space embedded in attribute space. A manifold can be 
thought of a space that can be approximately mapped into a 
Euclidean space. For instance, a one-dimensional manifold 
can take the form of a line or a curve that can be straight-
ened out to form a one-dimensional Euclidean space. A latent 
space is a lower-dimensional manifold embedded in attribute 
space that approximately contains the vast majority of the 
probability mass. If a latent space model is correct, virtually 
all observed waveforms in a seismic data set should fall close 
to the latent space. Figure 1 shows a pedagogical example of a 
one-dimensional latent space in a two-dimensional attribute 
space. In this case, the data should be mapped into the latent 
space by orthogonal projection with the manifold of the la-
tent space corresponding with straightening the green line.
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Figure 2 shows the motivation behind our eff ort. Th is 
fi gure shows two points in attribute space (waveforms) in 
the set of all possible waveforms. One of these waveforms 
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Figure 1. A pedagogical example of a one-dimensional latent space 
manifold embedded in two dimensions. Note that while points A and 
B are relatively close in Euclidean distance in the attribute space, they 
are extremely distant when mapped into the latent space as points A' 
and B'. Th e green curve represents a possible latent space that might 
explain this data set. A point distant from this green line would be of 
very low probability and would be considered implausible.

Figure 2. Seismic waveforms (or vectors) representing two points in 
the set of possible seismic waveforms of 16 samples in length. Th e blue 
segment is taken from the real data set and is entirely plausible while 
the red segment is artifi cially created and is highly improbable.
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diff usion maps. Th ese methods diff er in their assumptions, 
strengths, and weaknesses. SOM learn the latent space by 
simultaneously clustering the data and ordering the clusters 

is an actual observation while the other is artifi cially created 
to be improbable. In this concrete example, it would be im-
probable since seismic data are band-limited, and the sudden 
discontinuity would appear outside of the seismic frequency 
band. Our approach seeks to model the regions of attribute 
space that are associated with plausible observations while not 
modeling regions associated with implausible observations. In 
keeping with our general philosophy of letting the data speak 
for themselves, the space of plausible observations, the latent 
space, is garnered from the data set being modeled. Hence, 
what is improbable is estimated based upon the data.

In summary, the goal of latent space modeling is to take 
our attribute data and map them into a lower-dimensional 
space. Once the data are mapped in this way, they may be vi-
sualized as an image or used for further processing such as in 
pattern recognition or facies analysis. To keep things simple 
in this paper, we focus upon concrete methods for estimating 
or learning these latent spaces from a data set. In statistics and 
computer science, the process of gaining information from a 
data set is often referred to as learning, and we will use this 
term to describe estimating the latent space from a data set. 
We will defi ne these methods without giving details of their 
mathematics or implementation; then, we will discuss their 
relative merits and show some results of their application to 
seismic data.

We will discuss three methods of learning the latent space 
corresponding to the embedded manifold: self organizing 
maps (SOM), generative topographical maps (GTM), and 

Figure 3. Seismic data that were modeled using SOM and 
GTM. (a) Vertical section through the seismic data fl attened 
on the continuous Skinner horizon. Th e interval between the 
dashed lines shows the extent of the waveforms we modeled. 
(b) Phantom horizon slice 28 ms below the Skinner. Th is 
represents the tops of the modeled waveforms.

Figure 4. Th e survey area corresponding to the seismic data modeled 
in this paper contains a series of incised channels with varying 
characteristics. Th ese channels have been previously mapped using a 
combination of well logs, seismic interpretation, and seismic attribute 
analysis. A detailed discussion of the various channels present in this 
system can be found in Suarez et al. (2008).
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along the manifold. GTM learn the latent space by estimat-
ing a maximum likelihood solution of a constrained probabil-
ity density function (PDF). Diff usion maps learn the latent 
space by learning the manifold defi ned by principal inter-
point connectivities. 

Self organizing maps
Self organizing maps (SOM) learn the latent space by a re-
cursive clustering algorithm. An initial manifold is selected 
and uniformly populated with cluster centers. Th e observed 
waveforms are then recursively entered into the model in a 
random manner. Each observation is mapped to a neighbor-
hood of closest clusters defi ned by point-to-cluster distances, 
and the clusters are subsequently updated, thereby pulling 
the latent space to better fi t the data. It is superior to the 
commonly used k-means algorithm as it assigns the ordered 
clusters which can be used with an ordered color map (Co-

leou et al., 2003), and it is this ordering that justifi es catego-
rizing SOM as a method of latent space modeling.  

While the clusters themselves are defi ned in the original 
n-dimensional space, they are mapped into a lower-dimen-
sional, typically one- or two-dimensional, latent space. Each 
waveform can be mapped into the latent space according to 
its nearest clusters. Since the representation is defi ned by this 
set of clusters, SOM is a form of vector quantization.

SOM has a number of strengths. It is easy to implement. 
Furthermore, it is relatively computationally inexpensive both 
in terms of memory and processing. It is also well understood, 
and it has been the subject of a considerable body of research 
and commercial software development. However, it does have 
a number of weaknesses. Th e most obvious of these is related 
to the initialization. Th e resultant model depends upon the 
initial conditions and the order in which the data are incor-
porated into the model. Furthermore, while SOM learns the 

Figure 5. Images related to running SOM upon the data set. Th e new images agree with the previous interpretation while providing additional 
richness that promises to aid in future analysis. Additionally, the black arrows denote what we interpret to be a fan feature not previously seen.  
(a) Th e output SOM with the latent space mapped vectors displayed as an image. (b) Th e SOM image blended with a coherency image. (c) Th e 
interpretation shown in Figure 4 overlain on the SOM image. (d) Th e color map used in the display of the SOM image (de Matos et al., 2009). 
Each hexagon represents a cluster with images (a) through (c) being colored with this color map.
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Figure 6. Images related to running GTM upon the data set. Th e new images agree with the previous interpretation while providing additional 
richness that promises to aid in future analysis. Additionally, the black arrows denote what we interpret to be a fan feature not previously seen.  
(a) Th e output GTM with the latent space mapped vectors displayed as an image. (b) Th e GTM image blended with a coherency image. (c) Th e 
interpretation shown in Figure 4 overlain on the GTM image. (d) Th e color map used in the display of the SOM image. Each dot represents a 
cluster with the latent space thus expressed in a discrete two-dimensional space.

latent space, there is no provision for learning the dimension 
of this space. Additionally, the theoretical basis for SOM is 
weaker than for other methods. For instance, while multiple 
iterations through the data set can be performed, there is no 
proof of convergence. Finally, though diff erent starting con-
ditions will result in diff erent models, there is not an obvious 
criterion for model comparison.

Generative topological maps
Generative topological maps (GTM), as the name implies, 
learn the latent space by fi tting a probability density function 
(PDF) to observed waveforms. Like SOM, GTM starts with 
an initial latent space, uniformly populated with clusters. 
However, the clusters in GTM are themselves parametrically 
defi ned as multivariate Gaussian distributions. In this way, 
the PDF is a Gaussian mixture model. Th e initial model is 
then updated using an expectation-maximization (EM) al-

gorithm. Th e clusters are constrained to a uniformly spaced 
grid which is projected onto a changing nonlinear manifold 
with the EM algorithm adjusting the manifold position in 
data space. Th e EM algorithm is an iterative optimization 
algorithm that is guaranteed to converge to a possibly local 
maximum point in the likelihood surface. In other words, 
the latent space is calculated in such a way as to maximize 
the likelihood of the data.

GTM was developed to address several weaknesses in 
SOM, and it thus has a number of notable strengths. Firstly, 
it is based upon Bayesian fi rst principles, and it is proven to 
converge. Like with SOM, GTM can possibly converge to 
diff erent solutions depending upon initialization. However, 
diff erent GTM models may be assessed and compared based 
upon likelihood. Furthermore, since GTM is a generative 
model, it may be used to generate random observations that 
could be useful for geostatistical applications. Finally, since 
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GTM is based upon mixture models, it should be possible to 
formulate a Bayesian solution to the problem of latent space 
modeling.

GTM does have a number of weaknesses. Like SOM, the 
dimension of the latent space must be decided upon a priori. 
Furthermore, GTM is more computationally demanding 
than SOM in terms of memory and processing requirements. 
However, recursive forms of the EM algorithm have been for-
mulated, and such an approach could easily be derived for 
GTM which could reduce the memory demands of GTM.

Diff usion maps
Diff usion mapping, also known as “spectral clustering”, 
learns the latent space of the data based upon principal in-
terpoint distances between the observations. Possible dis-
tance measures include cross-correlation, L1 (Manhattan 
distance), and L2 (Euclidean distance). Diff usion maps work 
by calculating the full matrix of interpoint similarities of a 
data set. Th is similarity matrix is then normalized to sum to 
one along each row. In this manner, the matrix thus corre-
sponds to the diff usion probability matrix for random jumps 
between points, hence the name of this method. Eigenanaly-
sis is then performed to determine the principal axes of this 
similarity matrix. A detailed discussion of the mathematics 
of this method may be found in a number of other sources 
(e.g. Coifman et al., 2005).

When using diff usion maps, the dimensionality of the 
manifold can be decided using the eigenvalues of the distance 
matrix which is a major strength of diff usion maps relative to 
the other methods. Th e other major strength of this method 
is that it is closed form and completely deterministic while 
the other methods are iterative and subject to their initializa-
tion conditions. 

Unfortunately, diff usion maps have two major drawbacks. 
Th e fi rst is that it is extremely computationally demanding 
both in terms of processing and memory. Th e principal bot-
tleneck in this regard is the need to perform an eigenvalue 
decomposition of an n x n matrix where n is the number 
of observed waveforms. For a typical data set, memory re-
quirements to store this matrix could easily reach hundreds of 
gigabytes with computational requirements running to sev-

eral multiples of this. Large decimation of the data set is thus 
often necessary. Unfortunately, this runs afoul of the second 
major drawback of this method. Th e mapped latent space is 
defi ned by the eigenvectors with each observed waveform 
used in the eigenvalue decomposition having a corresponding 
vector. Th us, observations that are not in the training data are 
not defi ned in the latent space model! Fortunately, a method 
for mapping arbitrary observations into this space has been 
developed though this can be complex to implement.

Application
We demonstrate the concept of latent space modeling by ap-
plying SOM and GTM to a seismic land survey acquired in 
the eastern part of the Anadarko Basin in central Oklahoma. 
We targeted our analysis upon the Middle Pennsylvanian 
Red Fork Formation. Th e interpretation challenge is to map 
a series of incised valleys (Suarez et al., 2008).

To defi ne our attribute space, we begin by interpreting 
a horizon on the Upper Red Fork Formation. An image of 
the seismic amplitudes corresponding to 28 ms below this 
horizon can be found in Figure 3. An interpretation of this 
formation based upon seismic attribute analysis is shown in 
Figure 4. We then extracted 16 samples from each trace start-
ing 28 ms below our interpreted horizon. Th ese waveforms 
were then considered as a 16-dimensional attribute space. 
We then ran both SOM and GTM using implementations 
in Matlab upon this data set with the goal of learning a two-
dimensional latent space, and we examined the results using a 
two-dimensional color mapping.

Most commercial applications of SOM use a one-di-
mensional latent space, with the waveforms plotted against 
a one dimensional “rainbow” color bar. Currently, there are 
no commercial implementations of GTM for seismic analy-
sis. In our examples of both SOM and GTM, we use a two-
dimensional latent space, and map the waveforms against a 
two-dimensional HSV color map.

Figure 5 and Figure 6 show resultant images for single 
runs of SOM and GTM, respectively. Th ese fi gures also show 
the interpretation contained in Figure 4 overlain upon the 
images derived using the latent space projections. Examining 
these images shows that the previously interpreted features 
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are easily seen using both latent space methods. Within these 
features is visible additional richness that is likely to be useful 
in more complex analysis. In addition, both methods show 
what we interpret as a fan feature across the northern top of 
the primary channel.

Conclusions
Latent space modeling provides a useful tool for understand-
ing and interpreting higher-dimensional data derived from 
seismic amplitude and attribute data. We show the applica-
tion of two latent space modeling techniques, self organizing 
maps (SOM) and generative topographical maps (GTM). 
Th e results show that these methods can characterize depo-
sitional features that are not easily seen using conventional 
seismic attributes. In addition to highlighting details within 
the incised valleys and overbank deposits, we are also able to 
visualize what appears to be a corresponding fan. Like almost 
all attributes, latent space modeling methods are sensitive to 
input seismic data quality, and thereby suff er from acquisi-
tion footprint. Th e rich nature of the resulting projected data 
promises to be useful in well-log-constrained automated and 
semi-automated facies analysis.

While diff usion maps off er unique benefi ts, the method 
is currently too computationally intensive to handle seismic 
data volumes. However, Wallet and Perez (2009) show that 
diff usion maps are very eff ective in clustering well logs to 
form bed-set parameterization of parasequences. Currently, 

we are investigating using diff usion maps with a greatly deci-
mated subset of the data as an initialization method for both 
SOM and GTM.
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