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1. Introduction

The most popular seismic attributes fall into three broad categories –
those that are sensitive to lateral changes in waveform and structure
such as coherence and curvature, those sensitive to thin bed tuning
and stratigraphy, such as spectral components, and those sensitive to
lithology and fluid properties – such as AVO and impedance inversion.
Earlier we presented Kohonen Self Organizing Maps for unsupervised
multiattribute clustering which is routinely done by interpreters to
differentiate depositional packages characterized by subtle changes in
the stratigraphic column as well as lateral changes in texture.

Here we propose a newer clustering algorithm based on the
Generative Topographic Mapping (Bishop et al, 1998). Although GTM
has its origin from Self-organizing Maps, it overcomes most of the
limitations of SOM. GTM is a probability density model which describes
the distribution of multi-dimensional data in terms of a smaller number
of latent space variables. GTM consists of constrained mixture of
Gaussians in which the model parameters are determined by
maximum likelihood using Expectation Maximization(EM) algorithm.

2. The Generative Topographic Mapping

GTM is defined by specifying a set of points {ui} in latent space,
together with a set of basis functions {ϕj (u)}. The adaptive parameters
W and β define a constrained mixture of Gaussians with centers Wϕ(ui)
and a common covariance matrix given by β-1I. After initializing W and β
training involves alternating between the E-step in which the posterior
probabilities are evaluated and the M-step in which W and β are re-
estimated. Evaluation of the log likelihood using at the end of each
cycle can be used to monitor convergence. (Bishop et al, 1998). After
re-estimating the W we calculate the posterior mean projection of the
data in the latent space and color it by the 2D HSV colorscale.
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SOM Analysis : The coloring is done  
by comparing the trained vectors in 
the latent space with the data.

GTM Analysis : Each x-y data point is 
colored by its corresponding posterior 
projected mean in the latent space. 

The above GTM analysis was done by (Wallet et al 2009). The
input data consisted of 16 sample seismic amplitude as input.
(a) is the seismic facies map from the GTM analysis. (b) This
GTM image is blended with the coherency image to highlight
the channel boundaries better. (c) geologic interpretation map
overlaid on the GTM image. The black arrow denotes which
may be a crevasse splay. (d) The projected means with HSV
colors with each dots represent a cluster with the two
dimensional latent space.
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The aim is to define a non-linear transformation from the latent
space to the data space by some linear combination of the basis
functions φ so that each point u in the latent space is mapped to
a corresponding point y in the D- dimensional data space

where W is a D x M weight matrix

where mi are the reference vectors

Define Gaussian functions which becomes the orthogonal basis
functions to map the latent space points to the original
dimensional space.

The initialization of W is done by evaluating the data covariance
matrix and obtain the first and the second principal eigenvectors.
β-1 is initialized to be square of half of the grid spacing of the
PCA-projected latent points in data space.

The above parametric equation is fitted to the dataset {xn} by
Expectation Maximum (EM) algorithm.
Using Bayes’ theorem the posterior probability which every ith
component takes for every data point xn is given by

This equation used to monitor convergence.

The probability distribution function of the GTM model is 
obtained by summing over all the above equation. 

Noise model of the data vector x

…………….M Step

Re-estimate the Weight matrix W : Wnew

Re-estimate the inverse parameter:

…………….E Step

where 

Both SOM and GTM are unsupervised data driven clustering algorithm. However GTM
addresses the shortcomings of SOM clustering algorithm. The GTM model defines a
probability density, there is a cost function associated with it and there is a proof of
convergence. From the comparison of the SOM and the GTM results for the Lambda-Mu-
Rho analysis, the output facies map is similar, mostly the coloring of the facies is
different. Different colors in the map in the above analysis should represent the variability
of the geomechanical character of the Barnett shale. We are more confident with the
GTM results which is a more superior algorithm.
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