

ConocoPhillips Estimation of Effective Porosity and Saturation Volume by Extended Elastic Impedance approach: A case study

Fig: 1: Approximate Location of Study Area

Richards 1980),

$$R = A + Bsin^2 q \tag{1}$$

$$R(\chi) = A + B \tan \chi \tag{}$$

$$EEI(\chi) = \alpha_0 \rho_0 \left[\begin{pmatrix} \rho & q & r \\ \frac{\alpha}{\alpha_0} & \frac{\beta}{\beta_0} & \frac{\beta}{\beta_0} \\ \frac{\beta}{\beta_0} & \frac{\rho}{\beta_0} \end{pmatrix} \right]$$
(3)

Where α = P-wave velocity,

Sumit Verma, University of Oklahoma

Arsalan, S., and Yadav, A., 2009, Application of extended elastic impedance: A case study from Krishna-Godavari Basin, India, The Leading Edge, October issue, 1204-1209. Whitecombe, D., Conolly, P., Reagan, R. and Redshaw, T., 2002, Extended elastic impedance for fluid and lithology prediction, January-February issue Geophysics, 67, 63-67.

Bastia, R. and Nayak, P. K., 2006, Tectonostratigraphy and depositional patterns in Krishna Offshore Basin, Bay of Bengal, The Leading Edge, July issue, 839-845.

EEI (þ eff P-Sonic	Density	Rt	2	EEI	φ eff	P-Sonic	Density	Rt
				1	Zan	>	{{}}	}	}
		- Hurt		/	Ş	ſ,	\sum	$\langle \rangle$	
				Zone 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		}		<u>_</u>
					MA	N		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
					NV VV		3	Š	}
A A A A A A A A A A A A A A A A A A A		2000-Laborator				}			
			Fi	gure8. Z	Zoom	ed portic	on of low	er part of	fzone

.Correlations between Effective Porosity log and saturation log with EEI is up to 90%, at particular angles.

2. Zone 1, 2 and 4 : low EEI value on the log and porosity match is very good is porosity section.

3. In the 3rd zone the lower zone porosity could not be captured clearly.

-The reason for this is possibly: The zone 1, 2 and 4 are clean channel sands, where as the zone 3 is having laminations of sand and shale : may be part of levee.

Conclusions:

EEI derived porosity has better correlation(>85%) compared to the Pimpedance derived porosity(65%).

Well overlaid sections indicate good property match at the well and fair property distribution away from the well.

A very good match of ϕ_{eff} and Sw, allows EEI-derived volumes to be used in mapping the character of reservoir sand in 3D space and further quantitative reservoir characterization.

EEI approach can be adopted in other similar fields.

Acknowledgment: I am indebted to Reliance Industries Ltd. for providing me the opportunity and permission to publish this paper.