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Summary 
Cluster analysis like the PCA and Self-organizing maps (SOM) are 

routinely done on different horizontal wells considering several horizontal 

well parameters, which affect the Estimated Ultimate Recoveries (EURs) 

of the wells.  A new clustering workflow through Generative Topographic 

Model (GTM model), was done to classify 15 sets of horizontal well 

parameters in a one of the recent shale plays. Finally correlating the 

results with normalized EURs, allow an estimation of EUR based on the 

most relevant parameters. 

Figure 2: (a) The data in the 
first three principal 

components and the 
corresponding plot is color-
coded by the EUR values of 
the wells. (b) These 3 PCA 

components are the input to 
the k-means algorithm, which 

finds the centroid for the 
three classes according to 

good (green color), low (blue 
color) and mixed (red) EURs.  

Introduction 
For cluster analysis our dataset consisted of 137 horizontal wells from 

the Haynesville shale. The geologic locations of the wells are given in 

Figure 1.  Each of the 137 well has 15 horizontal well parameters, which 

affects the EUR of a well.. Apart from this dataset 8 more wells were 

used for validation. The 15 horizontal well parameters considered for 

analysis are listed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions and Future Work 
PCA, K-means & SOM analysis on the set of 15 horizontal well parameters helps 

in clustering the data according to the good, moderate/mixed and the bad EURs. 

EURs from the posterior probability of the dataset gives a good classification of 

the Latent space in terms of EURs. The validating results show a good correlation 

between the projected EURs vs. true EURs using the GTM model. Most probable 

EUR prediction based on the GTM model can be extended to more dataset to test 

the robustness of the workflow. 
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• 15 horizontal well parameters (D=15)

• 137 Training wells (Training data) 
(N=137)

• Train Dataset (137-by-15)

• 8 Validation wells (Test data)

• Test Dataset (8-by-15) 
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Figure 2: (a) The data in the first three principal components and the corresponding plot is color-coded by the EUR values of the 

wells. (b) These 3 PCA components are the input to the k-means algorithm, which finds the centroid for the three classes 

according to good (green color), low (blue color) and mixed (red) EURs.  
 

Figure (Left)  Flowchart  EUR prediction through GTM modeling. Figure (Right) (a) The posterior probability of the data-vector from the nth well. (b) The EUR for the nth well, En is multiplied with the posterior projection values onto 2D latent space in (a). The result 

gives an EUR map for 1 well. (c) Then, we can formulate a weighted sum of the EUR at each grid point k in the latent space for all the wells (given by Equation 1) and form the EUR “map” over the latent space. Note the high correlation of the latent space with the 

EURs. (d) Plot showing the predicted EUR from the EUR property map in (a) vs. the true EUR for the 8 . 
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Figure (a) Some of the wells from the mean posterior probability distribution map are analyzed as highlighted. The upper corner 

corresponds to wells with high EUR and the bottom corner corresponds to wells with low EUR.  

 

Figure (b) The 15 normalized well parameters for each of the two set of wells are averaged and are plotted forming two sets of 

averaged data-vectors. The red corresponds to the average data-vector for wells with good EURs and blue is the average data-

vector for wells with low EURs. Note that mostly the well parameters differ radically for the two cases. The wells with good EURs 

have higher proppant, sand volume, less cluster spacing, higher fracture stages, more perforations, and higher porosity, 

whereas the wells with bad EURs have opposite characters (highlighted with arrows).  
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