
Installing AASPI Software on Linux

1

Installing AASPI Software on Linux (3-25-2014)

Kurt J. Marfurt (kmarfurt@ou.edu)

 Software Location

The current version of the AASPI software will be under a website called

geology.ou.edu/aaspi/software . This site is password protected with a user name and
password for each company. To avoid creation of confusion, this password is known to
the person who is the company “champion” for the AASPI consortium and an identified

IT contact who has root privileges on your network. People change assignments so
please send me an email at kmarfurt@ou.edu if you are the new person or need to
know the password. I will normally send out a note to each sponsor (including the IT

contact) when a new release has been made.

As of January 2014, we now release two compiled versions of the software to support

the Linux (Redhat 5 and above) and Windows (XP, 7, 8, 8.1) platforms. To simplify
things, the “uploads” subdirectory has been eliminated. Instead, you will find two new
directories under geology.ou.edu/aaspi/software : AASPI_for_Linux and

AASPI_for_Windows. Note that the source code for the two implementations is
identical. Most of the application code is written in FORTRAN2005, the graphical user

interfaces (including displays) are written in C++ using the Fox Toolkit (www.fox-

toolkit.org), while (when the porting is completed in early 2014) the shell scripts and a
few utilities are written in Python. We use the Intel compiler to support the Message
Passing Interface (MPI) parallelization libraries on both platforms. To avoid confusion,

the source code will only be distributed with the Linux version.

Sponsor Software Modifications and Ownership

Each sponsor has full access to the software source code. While most of our 20+
sponsors use the software in the compiled form, at least five “cherry pick” applications

and roll them into their own internal packages. It is perfectly permitted to use external
3rd party technical people to make such modifications for your internal and subsidiary
use. While commercial software “sales” of the software in its current state requires a

separate agreement, it would be naïve to think a software sponsor would expose
themselves to such complicated maintenance problems. It is therefore both reasonable
and permitted for a software vendor to recode, modify and improve upon our

applications within their framework (say, using C# or Java and their internal data
formats) using our software as a template. Furthermore, sponsors retain access and
rights to the previously distributed source code if they cease sponsorship for either

scientific or business reasons. Details of these issues are contained in the AASPI
sponsorship agreement signed by your organization.

Downloading the AASPI software to the ${AASPIHOME} directory

mailto:kmarfurt@ou.edu

Installing AASPI Software on Linux

2

Each company installation will have a different naming convention for disk drives. Let’s
assume that you have a directory called /external_software . In this case go to this

location by typing:

cd /external_software .

 First, you will need to gunzip and untar the AASPI software here by typing

tar zxvf AASPI_2014-01-15.tgz (or whatever the current version is).

 Alternatively, you may unpack the software with:

gunzip –c AASPI_2014-01-15.tgz | tar xvf –

This will create the directory AASPI. Within the AASPI directory there are several

subdirectories:

Directory
Name Contents

bin64 Precompiled 64-bit AASPI executables

documentation
A local version of the documentation under

http://geology.ou.edu/aaspi/documentation.html

ext_lib64
Precompiled 64-bit support libraries (fftw. Fox Toolkit,
intel64, openmpi)

ext_rpm
Source RPMs (Red Hat Package Manager) that may be
needed

ext_src
Source archives and fixes for support libraries (fftw, Fox
Toolkit, openmpi, SEPlib, SU).

include Windows include files (plus some AASPI 32-bit include files)

include64 AASPI 64-bit include and Fortran2005 module files.

 lib64 AASPI precompiled 64-bit library files

lists
a suite of tables containing attribute names that controls the
conversion of AASPI-format to SEGY-format files

maintenance scripts and instructions to compile and release the software

par AASPI default parameter files

pyscripts AASPI Python (*.py) scripts

scripts AASPI Bourne Shell (*.sh) LSF scripts.

sep_colors
Suite of color bars in SEP-format used by program
aaspi_plot

src
The AASPI source code with a subdirectory for each
application

 in addition to a directory called boonsville which contains some public domain data

from the UT BEG to test the software.

Installing AASPI Software on Linux

3

As of May 15th, 2014, the src folder has the following structure:

Directory
Name Contents

cpp_lib AASPI C++ library source codes (aapsi_io, aaspi_gui_lib)

cpp_poststack AASPI C++ post-stack GUI source codes

cpp_prestack AASPI C++ pre-stack GUI source codes

f90_lib
AASPI Fortran90 library source codes (lib_new_reorg, or

fortran_mod in Windows)

f90_poststack AASPI Fortran90 post-stack application source codes

f90_prestack AASPI Fortran90 pre-stack application source codes

linux_only
Other AASPI GUI and application source codes that have
not been ported to Windows

Several 3rd party binary libraries are used by the AASPI code: OpenMPI – Message

Passing Interface, and FFT-W – the Fastest Fourier Transform in the West.) As of
2014 we have removed all references to the SEP – Stanford Exploration Project, SU –
Seismic Unix libraries, since neither of these, nor “Madagascar” will run under
Windows. The Fortran90 compiler support libraries intel64 are also distributed with this

distribution. Currently we are using the Intel Fortran Compiler for Linux version 12.1.2
If you intend to use a different Fortran compiler, the source and most of the external

libraries will need to be recompiled. We can provide compiled versions using former or
future versions of Redhat on request.

The AASPI Software Tree

Although we try to be very explicit in our documentation about algorithm

implementation and assumptions, algorithm developers and tech group staff may wish
to examine details of how the software has been implemented. The figure below shows
a subset of the tree described above.

f90_poststack cpp_poststack

prog1 prog2 aaspi_prog1 aaspi_prog2

src pyscripts

prog1.f90

subroutine1.f90
Makefile

prog2.f90

subroutine2.f90
Makefile

aaspi_prog1.cpp

aaspi_prog1.h

main.cpp
main.h
Makefile

aaspi_prog2.cpp

aaspi_prog2.h

main.cpp
main.h
Makefile

aaspi_prog1.py

aaspi_prog2.py

Makefile.inc

${AASPIHOME}

bin64

prog1
prog2
aaspi_prog1

aaspi_prog2

Installing AASPI Software on Linux

4

Under ${AASPIHOME} there are src, bin64, and pyscripts directories. As of May 2014
we are using public domain git to control our software development and deployment

(http://git-scm.com) giving rise to a the slightly modified tree structure under src as

shown above. The Fortran90 source code is found under the f90_poststack and
f90_prestack subdirectories. Within each of these are a suite of application programs
(e.g. program dip3d.f90). These Fortran90 application programs are controlled by a

graphical user interface or GUI which are found under the cpp_poststack and
cpp_prestack directories. Our naming convention is simple, by adding the prefix aaspi_
before each program name (e.g. aaspi_dip3d.cpp). Each program has a simple

Makefile. These Makefiles include a file called ../../Makefile.inc where all the installation
specific paths and external libraries are defined. If you recompile the software you will
probably need to modify the src level Makefile.inc file but not any of the program level

Makefile files. (See optional compilation box below).

Following common programming conventions, after compilation the binary codes are
copied to the directory bin64 with names corresponding to the application (e.g. dip3d
and aaspi_dip3d) but without the extensions of .f90 or .cpp. Intermediate object and

executable code (not shown in the tree above) are stored under an obj64 directory

under each application or GUI. The GUIs residing in the bin64 directory are typically
invoked from master GUIs (such as aaspi_util and aaspi_util_prestack but can also be
directly invoked by typing the binary file name (e.g. aaspi_dip3d). In most cases, each

GUI will invoke a python script with a corresponding name (e.g. aaspi_dip3d.py) and
output a parameter file in the user directory (e.g. dip3d.parms). The python script reads

in the parameter file, parses the arguments into command line arguments and then

executes the corresponding program (e.g. dip3d).

Earlier versions of the AASPI software invoked the application code with command line

arguments directly from the GUI. Windows does not support this construct (or Linux
style pipes either). The introduction of the parameter file was key to the Linux port. An
ancillary benefit is that it also facilitates debugging by decoupling the GUI from the

application code.

http://git-scm.com/

Installing AASPI Software on Linux

5

Copying and unzipping the Boonsville test data volume

Recompiling the AASPI software (Optional)

90% of our current sponsors use the AASPI software “as is”. Some “cherry pick” key

ideas by inserting or reworking AASPI source code into their own application

development environment. In either of these two situations you will not need to recompile

the AASPI software.

Reasons for recompiling may include adding additional capabilities or improvements to

the current version of the software, better linkage to your commercial interpretation

package, or in at least one environment, recompiling using a machine-specific set of

optimized libraries. In our environment, the caretakers of the OU supercomputer center

(Oscer) have installed tuned versions of OpenMPI , fftw3, and lapack. Linking to these

optimized libraries requires recompiling.

In order to compile you will need to determine the name of your compiler (in our case at

OU the Intel compiler is called ifort64 for 64-bit architecture. The gnu gfortran compiler

in general does not support MPI). You will also need to learn the absolute paths of each

of the libraries that may be replaced. The only file that needs to be modified is

${AASPIHOME}/src/Makefile.inc (see tree structure above). You will note that the

variable F90 is set to ifort64 at OU for 64 bit compilation. Change it appropriately. More

troublesome is determining where your external libraries reside. They will need to be

explicitly defined using the complete path name, not some local short cut. You may find

that the environment variables in your xterm window are quite different that when the

Makefile is invoked. We will print out these variables in the June 2014 release of our

software to allow you to check these paths.

Once these variables have been set, change to the compilation directory by typing

cd ${AASPIHOME}/maintenance/deploy_scripts

Then type

python make_aaspi_linux.py

The make_aaspi_linux.py script will compile programs defined by two files:

aaspi_gui_list and aaspi_application_list. If you add new programs and wish to distribute

to another site you may wish to augment these lists.

Installing AASPI Software on Linux

6

Finally, we will wish to install some test code. We have chosen the Boonsville Survey.
This is a public domain survey acquired by the Texas Bureau of Economic Geology in

the Fort Worth Basin, TX, U.S.A. If you ever choose to publish any results from this
survey, you will need to properly acknowledge them. Obviously, data volumes belong
in a very different storage area than source code. In my case I will have some scratch

space on a disk called /scr1/users/kmarfurt.

 I will therefore cd to this spot, create a project directory called boonsville, and untar it,

by
typing:

cd /scr1/users/kmarfurt

mkdir boonsville

cd boonsville

tar xvf boonsville_test_data.tar

 While we are at it, let’s create a directory to include the binary AASPI-format output

files. (We explain this format and how to run the code in accompanying
documentation). For now, let’s create a directory to the side of the boonsville directory
by typing

Installing AASPI Software on Linux

7

mkdir /scr1/users/kmarfurt/AASPI_Data

where obviously, you will need to type the correct location for your data. In my home
directory, I will want to create a file called .datapath (note the dot “.” in front of
datapath!).

If you are either old or travel all over the world and cannot read a hangul or other user
friendly editors (I qualify for both cases), you will use vi and type:

vi ~/.datapath

In this file there is only one line, which in my case will read:

datapath=/scr1/users/kmarfurt/AASPI_Data/

Note the extra “/” at the end. Save it and continue to the next step. In previous
installations, you may have created directories called SEP_Data. Don’t worry about it.
Any name will do. We’ve changed the directory name to be “AASPI_Data” since SEP

will not be supported on Windows. Adding some confusion, you may see a reference
internal to the GUI software and python scripts to PATH_SEP. This is a variable that

defines the directory PATH “SEParator” which is a forward slash “/” in Linux and a

back slash “\” in Windows and has nothing to do with the Stanford Exploration Project.

Setting your ENVIRONMENT variables

One of the more commonly used routines is called aaspi_plot which displays 32
floating point data using a user-defined color bar. To see where the path of this routine
is, you would type:

which aaspi_plot

You will almost certainly get a response that says something like:

no aaspi_plot in /usr/bin /usr/etc/bin followed by a long list of other directories where

executable code may be found...

We therefore need to set our PATH. To determine what your current paths are you

type:

echo ${PATH}

 The braces { } are often optional, but it is good practice to always use them. The $
symbol indicates that we wish to echo the value of the variable PATH rather than the

alphanumeric letters “PATH” themselves. Most installations will have a company
specific .bashrc (for Linux) in your home directory. Your IT person will be very upset if

Installing AASPI Software on Linux

8

you modify these generic files. I have also found some installations that use a .cshrc
file on Linux to make the IT folks life a little simpler (csh is the login shell for some

UNIX systems). If you edit these files (note the dot “.” in front of it!), it will probably
have a statement that says something like “source my_cshrc” or “source .user_bashrc”
or simply “. .user_bashrc” where the in this case the first dot is shorthand for “source”.

Such a user_bashrc or equivalent construct allows a user to add his or her desired
quirks to the login process. For instance you may wish to alias a commonly used Linux
command such as rm to be another, with “rm –i” (such that you are prompted when

you attempt to erase files) with the line

alias rm=’rm –i’ .

You may also wish to set the delete key to be a backspace. To make life easier, we

have created shell scripts that set the PATH and other variables necessary for the
AASPI software to work properly. These are named set_aaspi_env.sh and
set_aaspi_env.csh for the Bash or C shell

respectively and are located in the scripts subdirectory of the AASPI directory. You will
need to source one of these file in either your .cshrc (or .my_cshrc) or .bashrc (or
user_bashrc) depending upon your shell. If you don’t happen to know which shell you

are using, you should be able to type

echo ${SHELL}

to see which shell you are using. You will need to add a line like

source /wherever/AASPI/scripts/set_aaspi_env.csh

or

. /wherever/AASPI/scripts/set_aaspi_env.sh (a dot followed by a space)

to your .cshrc or .bashrc file. This should set up most everything for you to run. BE

CAREFUL, IF YOU ARE RUNNING OTHER APPLICATIONS UNDER MPI YOU MAY
NEED TO INVOKE YOUR NORMAL INSTALLED VERSION! This is why your IT
support folks don’t want you messing with the generic .bashrc or .cshrc files!

There is one variable that needs to be edited at the top of the set_aaspi_env.sh (or

set_aaspi_env.csh) for AASPI to work properly. Look for the line that looks like:

export AASPIHOME=/home/aaspi/dist

and change it to point to your aaspi installation directory (something like
/external_software/AASPI). You will note that the variable ${AASPIHOME} is

used later in the script. Be sure you update the new file.

Installing AASPI Software on Linux

9

Once the set_aaspi_env.sh has been modified for your system and set_aaspi_env.sh
has been invoked in each user’s .bashrc they will need to source it in order to initialize
the new paths. Usually, you can do this by typing:

source ~/.bashrc

which of course will in turn source the recently edited file .my_bashrc

Now, if you type

which aaspi_plot

you should obtain a response like

/external_software_directory/AASPI/bin64/aaspi_plot

If this does not work, try invoking a new xterm to execute a clean run of the .bashrc
file.

Testing the graphics display utilities

Now let’s see if we can plot any data. Go to your boonsville directory and try to
plot it using aaspi_plot. In my case, I might type:

cd /scr1/users/kmarfurt/boonsville (your directory will be something different!)

Installing AASPI Software on Linux

10

aaspi_plot d_fn=d_boonsville_orig.H gainpanel=every &

aaspi_plot d_fn=d_boonsville_orig.H gainpanel=every &
After a short time the data should start plotting up. If they don’t, you may obtain two

different errors. If you obtain a response that says “no such file or directory” it indicates
one of the following four errors: (1) you did not spell d_boonsville_orig.H correctly, (2)

you added a space between the d_fn= and d_boonsvillle_orig.H , (3) you are not in

the directory with this file in it, or (4) you do not have read permission for this file.

A second common error is associated with X11 (or equivalent display) when running
on a remote compute server. In this case you need to echo your DISPLAY variable by

typing

echo ${DISPLAY}

The response should come back to your local terminal. If not, you will need to set the
DISPLAY variable by typing on the remote server window:

DISPLAY=local_computer_name:0.0 (in Linux)

and then on your local Linux window by typing

xhost +

If you are accessing your Linux server from a PC using PuTTY, you will need to invoke

Xming or its equivalent on the PC side. (Details can be found in Section 2 of the
documentation manual).

These commands are common to almost all computer applications (including
interpretation workstation software) requires some variant of these processes. If you
have a stand-alone computer, you may need to log in as root and type

DISPLAY=:0.0

xhost +

To determine if this works, you should try typing:

xterm –bg orange &

If an orange xterm window pops up you are in excellent shape.

Setting AASPI Default Parameters

Installing AASPI Software on Linux

11

One of the major changes made in the September 21, 2012 release was the inclusion

of an aaspi_default_parameters file containing, as the name implies, commonly used
defaults. Some of the defaults will be installation specific, such as default node list and
numbers of processors, and will be set by you, the person who installs the AASPI
software. This version of the aaspi_default_parameters file resides in the
${AASPIHOME}/par directory. Other parameters may be user specific, and will
(optionally) be set up by each user who will create the aaspi_default_parameters in

their home directory. Examples may include default velocity values which might be
10000 ft/s for someone working Tertiary targets and 18,000 ft/s for someone working
Paleozoic targets. Finally, a user may (optionally) wish to set up a list of default

parameters in their project directory. The search hierarchy will always be to search first
for parameters in the user local directory, then the user home directory, then the
${AASPIHOME}/par directory.

If I type in the following commands

cd ${AASPIHOME}/par
cat aaspi_default_parameters

I will see the following file, which, if you wish, can be edited with vi or any other editor:

We have set many of these parameters to be quite conservative. For instance, in a
classroom environment with dozens of students, we restrict our students to run on the

Installing AASPI Software on Linux

12

local node they have logged into (node_list=localhost) with just two processors
(processors_per_node=2). Those students doing research will run on multiple nodes
with more processors each (e.g. node_list=”d009 d010 d011 d012 d013 d014” and
processors_per_node=8) . Many companies have compute nodes with 64 processors.

We recommend that you as the software installation person, choose some reasonable

defaults for your environment.

Since the users will be able to modify their defaults, the following part of the

documentation will be replicated in section 3 of the AASPI online manual. You can
either create a new aaspi_default_parameters file in any directory of your choice and
later replace the version that came with the aaspi installation, or if you log on with write

permission to the ${AASPIHOME}/par directory and type

cd ${AASPIHOME}/par

aaspi_util &

The following GUI will appear:

Installing AASPI Software on Linux

13

Click the tab “Set AASPI Default Parameters” to obtain another GUI:

Installing AASPI Software on Linux

14

 Note that parameters in this GUI are identical to those in the
aaspi_default_parameters file. By construction, the default parameters are read from

an aaspi_default_parameters file in the following hierarchal order (1) in your local
directory, (2) in your home directory, and (3) in the ${AASPIHOME}/par directory. Any

Installing AASPI Software on Linux

15

changes you make will write out a file called aaspi_default_parameters. If you do this

in your home directory, this will be the new user defaults. If you do so (as the
installation person) in the ${AASPIHOME}/par directory, these parameters will become

the defaults for the entire system.

Several of these defaults are application and perhaps even data specific. Specifically,
those used by spectral decomposition programs spec_cmp and spec_cwt will depend
on data quality representative of deepwater or Paleozoic basins. However, the

following should be first set by the AASPI installation person and then modified (if
appropriate) by each user. The top of my GUI now looks like this:

 I will always with to use MPI, so this box remains checked. I will run on across several

nodes called tripolite, jade, and hematite. While tripolite has 12 processors, jade and
hematite only have 8, so I set the Processors per node to be 8, giving me a total of 24
processors. The GUI will add the quotation marks to the output file. If you log into a

large compute server with 64 nodes, but the data are on a remote disk farm, set
Processors per node =63, allowing the 64th processor (named the 0th processor in the
software) to serve as the master that does all the i/o asynchronously across the net.

Similarly, if someone is running ProMAX on one of the processors (e.g. simply loading
data for a subsequent run), reduce the number of processors requested to avoid
conflict. The operating system is clever enough to distribute he workload to the unused

processors.

While companies will obtain seismic data from a multitude of sources, many of

companies have strategic alliances with different vendors such that data always come
in with the same headers. Here, I have the byte locations for both the input SEGY data
volumes and the output (AASPI attribute) SEGY volumes set to the SEG 2002

standard. However, if you intend to load all of your data into Geoframe, it will be easier
if you set the output byte locations to be 9, 21, 73, and 77. Likewise, if most of your
data are coming from CGG, you will want to use their common byte formats for input.

The user can always change these values for any application. These are simply
defaults.

I have also defaulted the number of colors that can be used. More modern systems,
such as FFA, Transform, and Teraspark use 24-bit color (32-bit if you count
transparency). However, many interpretation packages are built upon previously

existing legacy software with most of them having a limitation of 256 colors (and
Kingdom Suite only 240). In principal, 256 colors allow a 16x16 2D color bar. I’ve set
the defaults to be 17x15, which uses 255 colors. AASPI display applications like hlplot

Installing AASPI Software on Linux

16

and crossplot will then set the remaining 256th color to white to display dead and
padded traces.

At OU, we use Petrel for most of our seismic interpretation. While Petrel will not allow
you to import more than 256 colors under their Template tab, internally, it can support

4096 colors. To achieve this we have written a simple Ocean utility called
aaspi_modulation_module_petrel_2011.1.64 that imports and assigns a 4096 color
bar to a data volume that has been converted to 16-bit brick format. We will put this

utility on our software directory for those of you who use Petrel. Note the 2D color bars
used by programs hlplot, hsplot, and crossplot will be 65*63, defining 4095 colors. As
before, the remaining (4096th) color will be set to white.

AASPI display program rgbplot works reasonably well with 163=4096 colors with the
number of red, green, and blue values being set to nrgb=16. The results of rgbplot are

almost worthless when using only 256 colors. Details on how to use these programs
will be described in Section 8.

The next group of default parameters controls the behavior of programs dip3d and
curvature3d. For smaller companies focused on resource plays or carbonates, a
reasonable installation-wide default might be chosen. However, it is more likely that

one business unit will work on Tertiary basin plays and other on older, more
consolidated resource plays. In the absence of depth migrated or depth converted
data, the dip estimates and curvature computations need to have a reference velocity.

We suggest using a velocity appropriate to your target of interest. Thus, for interpreters
working the Barnett Shale or Mississippi Lime plays, a relatively high velocity of 17000
ft/s may be appropriate.

One observation that many of the AASPI software users have noticed is how the
curvature anomalies are vertically smeared more than they would like to see. Part of

this smearing is due to an inappropriate velocity, and part of the smearing is due to our
choices at OU in implementing volumetric curvature operators. If our data are highly
complex, with dips ranging to 60 degrees, it makes sense to make the curvature

operators as isotropic as possible. Specifically, if a “long wavelength” operator reaches
out to 2000 ft (or about 18 traces for 110 ft spacing), then it should also reach up and
down 2000 ft. If our conversion velocity is 10000 ft/s this value we will reach up and

down 0.4 s in two-way travel time, or 100 samples for a 2 ms sample increment. In
faster, Paleozoic basins, this operator would be reduced to 0.22 s or 56 samples
vertically. Examining the derivative operators discussed in Section 10, we realize that

these extreme values have only a small effect. Nevertheless, the amount of vertical
mixing is directly controlled by the conversion velocity. The second parameter,
vcompress, provides additional control. Most of the shale gas plays have dips that

rarely exceed 5 degrees. Given this insight, there is no great motivation to use an
isotropic derivative operator such that we can “compress” the vertical operator
significantly, say to 50% or even 10% of its original value. Such increase in vertical

resolution may help differentiate subtle changes in folding between adjacent stacked

Installing AASPI Software on Linux

17

lithologies. Currently, the default value of vcompress=0.5 . We will discuss the impact

of such parameters in Section 10.

Once you have chosen reasonable defaults for your environment, simply click the
Save AASPI Default Parameters button in the lower right hand corner. If you are doing

this for the system installation, be sure to copy your modified file to replace
${AASPIHOME/par} .

Defining names used in the AASPI to SEGY conversion utilities

The AASPI system has the ability to rename the attribute files in manner more

consistent with your environment. Many of our sponsors use Oracle and other data
bases with a predefined naming convention. Some of the older interpretation software
(such as Geoframe) may be relatively limited in the number of characters a file name

can have. We therefore constructed a GUI that facilitates this naming strategy. We will
repeat this part of the documentation in Section 3 of the AASPI User Manual, but wish
to discuss it here so that you as the software installation person can predefine defaults

that are well-aligned with your company’s naming convention.

As with the default parameters defined above, and indeed with the interface between

the GUIs and the shell scripts, everything is controlled by intermediate files. The use of
files (rather than command line arguments) facilitates moving our software across the
Linux/Windows7 divide. In this case, the files actually reside in the

${AASPIHOME}/lists directory and have the form *.list

If I cat one of the aaspi_dip3d_list I note that it consists of two identical columns:

Installing AASPI Software on Linux

18

The column on the left will not be changed by the GUI and will form the root word if the
AASPI format files, which typically have the form

${root_left}_${unique_project_name}_${suffix}.H .

The column on the right can be changed. By default, the corresponding output file will

have the form of previous AASPI releases:

${root_right}_${unique_project_name}_${suffix}.segy .

However, in the GUI, one can not only modify the right hand column, but also add a

user-defined output prefix and output suffix (either of which may be blank). For
instance, several Geoframe users require the jobname to be the leading characters in
the file name. If there is a 16-character name limit, then the AASPI name needs to be

shortened.

To set this up with GUI, (1) choose the AASPI to SEGY Conversion (Multiple Files)

tab, and then (2) click Set Output File Names as shown below:

Installing AASPI Software on Linux

19

The GUI on the lower right appears. Click the tab of the programs for which you wish

to change the names. In this case, I’ve chose the dip3d tab. Rather than have my
output files begin with (4) inline_dip and (5) crossline_dip (the defaults), I’ve typed in
shorter file names consistent with Geoframe called IL_DIP and XL_DIP. Ideally, you

will only want to do this once and the person doing it will place it in the
${AASPIHOME}/lists directory so that everyone uses the same convention. For this
exercise, I did it in my home directory and generated the new aaspi_dip3d_list file:

I had run this job before with (1) the Unique Project Name of boonsville and (2) a Suffix

of 0. I set (3) Output Suffix to be “_1-15-2014” (today’s date) and (4) the Output Prefix

Installing AASPI Software on Linux

20

to be “bville”. I (5) put a checkmark in next to Convert dip3d attributes and then click
Execute. The conversion completes and I obtain the following files in my segy

subdirectory:

Testing ssh for use under mpi

See if you can ssh (secure shell) into one of the compute nodes (say big_oil_co_21) by
typing

ssh big_oil_co_21 ls

If you are successful, you should see your home directory listing on big_oil_co_21.

If you are requested to provide a password, type it in. Then repeat the command. If

you are unsuccessful, or alternatively, if the system did not remember that you had
previously provided a valid password, you will need to modify your ssh configuration.

Steps for enabling Passwordless ssh
===================================

ssh uses public key encryption to handle the initial user authentication. If you have not
done so already, you will need to create a public key/private key pair. Assuming that
you are using the openssh implantation of secure shell, you can use the handy utility

ssh-keygen to create a public/private key pair:

ssh-keygen –t dsa

It will now prompt you for the location to save the generated key. Press Enter to accept
the default. Then it will prompt you again for a passphrase. Press Enter again to set an

empty passphrase. If you were to enter something here, then you would need to enter
this passphrase each time you used ssh. It will now ask you to retype the passphrase
– hit Enter. This will create two files named something like /myhome/.ssh/id_dsa and

/myhome/.ssh/id_dsa.pub. These hold the private and public key respectively. We are
not done yet. You still need to specify who can connect. Type

cd ~/.ssh

 to change the directory to the hidden secure shell configuration directory in your home
directory. You should see the id_dsa and id_dsa.pub files in this directory. Now you
need to add your own public key to the authorized_keys file. If you don’t have this file
then you need to create it by copying your public key file to the authorized_keys file

with

Installing AASPI Software on Linux

21

cp id_dsa.pub authorized_keys

chmod 400 authorized_keys

If you do have an authorized_keys file, you will need to do the following:

chmod 600 authorized_keys

cat id_dsa_pub >> authorized_keys

chmod 400 authorized_keys

Secure shell is very security conscious so the permissions on the authorized_keys file
need to be set such that only the owner can read the file and no one can write to the
file. ssh will ignore these files if the permissions are set incorrectly. If everything is

correct, you should now be able to type:

ssh localhost ls

and see a listing of your home directory. Most cluster implementations mount the
user’s home directory across the different machines. If this is the case you are done.

On the other hand, if you want to use a set of various machines you will need to add
the contents of the id_dsa.pub file to each of the authorized_keys files on the various

machines.

Installing some extra python libraries

In 2013 we began the process of replacing our Bourne shell scripts (*.sh) files with
python scripts (*.py files), primarily because python runs in both Linux and Windows
environments. Many professional computer programmers are able to prototype

algorithmic applications as well as process control using python. Python comes “bare
bones” with most Linux applications. At present, program “aaspi_graph” is the only
application we have written that needs the more advanced python libraries, called

“numpy” (www.numpy.org) . Future developments may use “scipy” (www.SciPy.org).

If you are using RedHat, ask your systems person to type

1) yum install python-devel
2) python setup.py build

3) python setup.py install

In principle, you can plot any *.H file. In practice, you will wish to plot simples operators

and spectra from the curvature application programs that have the form
d_dr_operator*.H and d_dr_spectrum*.H . If you have one of these try by typing

Installing AASPI Software on Linux

22

aaspi_graph.py d_dr_operator_boonsville_long_w_0.H &

if you have that file.

We also have a python SEGY header utility that called PySEGY that needs
installation. Here are the steps:

1) sudo yum install python-devel (If you didn’t do it above)

2) Put PySEGY-1.0 (currently inside ${AASPIHOME}/pylib/) somewhere outside the

main AASPI directory... for example /apps/aaspi/PySEGY-1.0/

 Placing PySEGY-1.0 outside of the main AASPI directory (i.e. one level above)

allows you not to have to "reinstall" PySEGY (build, install steps) everytime there is a
new release of AASPI

3) cd PySEGY-1.0 (wherever it now lives)

4) python setup.py build

5) python setup.py install --home=/desired/path/ (such as /apps/aaspi/PySEGY-1.0/)

 This will create a PySEGY.so file in /apps/aaspi/PySEGY-1.0/lib64/python/

6) edit PYTHONPATH in set_aaspi_env.sh/csh to have:

 /apps/aaspi/PySEGY-1.0/lib64/python:/apps/aaspi/PySEGY-1.0 at the end **
This is probably the most crucial step as it is what allows python to find and use

PySEGY!! at the end ** This is probably the most crucial step as it is what allows
python to find and use PySEGY!!

