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CONSTRAINED LEAST-SQUARES SPECTRAL ANALYSIS – 
PROGRAM spec_clssa 
 

Alternative Spectral Decomposition Algorithms 
 
Spectral decomposition methods can be divided into three classes: those that use 
quadratic forms, those that use linear forms and those that use atom decomposition. 
Quadratic forms are based on Wigner-Ville distribution, which can be easily designed 
but lose the phase component of the data and therefore cannot be used in 
reconstruction. Linear forms are based on short time Fourier transform (STFT), and 
include the S transform and the continuous wavelet transform (or CWT) as in program 
spec_cwt. Program spec_clssa is a nonlinear implementation of the short time Fourier 
transform. Atomic decomposition reconstructs the signal by using small “atom-sized” 
signals (in our case wavelets), such as complex matching pursuit (program spec_cmp) 
and the Hilbert-Huang transform. 

spec_clssa computation flow chart 
 
While there is only one input file to program spec_clssa, there are many output files 
which can easily fill your disk drives. Detailed spectral analysis will typically be done 
about a reservoir or other zone of interest, such that the input data volume may be 
windowed. If this is not the case, it is best to first run several of the statistical summary 
volumes including the peak magnitude, peak frequency, and peak phase, and phase 
residue entire volume. These spectra may be sufficient for your analysis. If not, the peak 
frequency volume will serve as a guide as to which spectral components are well tuned. 
 
 
 
 



Spectral Attributes: Program spec_clssa 
 

 

Attribute-Assisted Seismic Processing and Interpretation - 8 December 2015 Page 2 
 

 
 
Figure 1. The flow chart for program spec_clssa – constrained least-squares spectral 
analysis. 
 
 

Computing spectral components 
 
To begin, click the Volumetric Attributes tab in the aaspi_util window and select the 
program spec_clssa : 
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Program spec_clssa performs spectral decomposition using a constrained least-
squares spectral analysis method. The following window appears: 
 

 
 
You will note that many of the attributes appear to be similar to those of program 
spec_cmp, spectral decomposition using a complex matching pursuit algorithm. First, 
enter the (1) the name of the Seismic Input (*.H)  file you wish to decompose, as well as 
a Unique Project Name and Suffix as you have done for other AASPI programs.  
 
Constrained least-squares spectral analysis (clssa) 
 
Puryear et al. (2012) proposed an inversion-based algorithm for computing the time 
frequency analysis of reflection seismograms using constrained least-squares spectral 
analysis. The method resulted in spectra that have reduced window smearing for a 
given window length relative to the discrete Fourier transform irrespective of window 
shape, and a time-frequency analysis with a combination of time and frequency 
resolution that is superior to the short time Fourier transform and the continuous wavelet 
transform.  As compared with the continuous wavelet transform, the method has 
improved temporal resolution, particularly at low frequencies.  
 



Spectral Attributes: Program spec_clssa 
 

 

Attribute-Assisted Seismic Processing and Interpretation - 8 December 2015 Page 4 
 

Seismic spectral decomposition is a trace-by-trace operation. Because each 1D seismic 
trace is converted to a 2D time-frequency panel, the process expands the dimensions of 
the original data via a non-unique transformation, suggesting an inversion-based 
approach to the problem. Several investigators have used different empirical criteria to 
define inversion-based spectral analysis methods. Following the Portniaguine and 
Castagna (2004) approach to seismic wavelet decomposition and reflectivity inversion, 
we invert the normal equations by applying an iteratively reweighted least-squares 
regularization algorithm to the complex spectral decomposition inverse problem as 
described in the box “Mathematical Implementation”. 
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Mathematical Implementation 
 

Start with the definition of the forward problem. 

Fm d  ,                                                                    (A1) 

where F is the kernel matrix composed of complex sinusoidal basis functions,  

 

)2sin()2cos()]2(exp[ tfnkitfnktfnkiFnk   ,        (A2) 

 

mk=m(2πk∆f) is the model parameter vector (i.e. the desired spectral coefficients), and dn=d(n∆t) is the windowed 

seismic amplitude data. Forming the normal equations by multipying both sides of equation A1 by  FH , the complex 

conjugate or Hilbert transpose of F, gives 

dFFmF
HH  .                                                                 (A3) 

 

The objective of the inverse problem is to compute m given F and d. The classical least-squares solution to equation A1 

is then 

                  dFFFm
HH 1

 .                                                            (A4) 

Conventional Fourier transforms used in filtering are constructed to be orthogonal, such that IFF
H  , where I is the 

identity matrix. In this case, equation A4 reduces to 

dFm
H ,                                                                  (A5) 

which is equivalent to the discrete Fourier transform of the windowed trace segment. If the analysis window is T=0.1 s, 

orthogonality requires ∆f=1/T=10 Hz. If we wish to estimate intermediate spectral components at a 2 Hz interval, we 

need to use the more general equation A4. A finer frequency increment results an underdetermined system with more 

unknowns than equations. We constrain the inversion by introducing two diagonal matrices. The data weight matrix, 

Wd, acts as a taper, where smaller weights at the window edges provides for greater tolerance of the misfit. In contrast, 

the model weight matrix, Wm, change iteratively, in general favoring the strongest spectral components, and attenuating 

the corresponding weaker aliases. Applying Wm and Wd to equation A1,   
-1

d m m dW FW (W ) m = W d     ,                                             (A6) 

we introduce the weighted quantities 

w d mF = W FW and 
-1

w m
m = W m  ,                                           (A6) 

and then recast equation A5 as a model and data-weighted ill-posed inverse problem: 

w w dF m = W d .                                                            (A7) 

To solve equation A7, we add regularization: 
222min wdww mdWmF                                                (A8) 

where α is a regularization parameter that can be varied to control the sparsity and stability of the solution. Note that if 

Wm is proportional to m, small values of m become large values of mw which are then minimized, giving us a sparse 

solution. Using an analytical Lagrange solution to equation A8, we solve first for the weighted model parameters 

                        dWIFFFm d

H

ww

H

ww

1
   ,                                        (A9) 

followed by reconstruction  

m wm = W m  .                                                       (A10) 

Values of α are chosen to be a percentage of H

wwFF . Portniaguine and Castagna (2004) find the CLSSA utilizing a real 

basis function to be not quite as good as using a complex basis function, but better than the conventional DFT. This is 

significant because CLSSA using only the real waveform has precisely the same temporal resolution as the Fourier 

transform while having greatly improved frequency resolution. This indicates that, for a given window, CLSSA has a 

better Heisenberg uncertainty product (standard deviation of the waveform in time multiplied by the standard deviation 

of the spectrum) than does the Fourier transform. Thus far, they have not found a window for which this is not the case. 
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The Reconstruction parameters (2) indicates the four corner frequencies f1, f2, f3, and f4 
used to reconstruct the seismic data after flattening. A raised-cosine taper is applied 
between f1and f2 as well as between f3 and f4.  The choice of frequency increment and 
range does not significantly impact the decomposition time, only the output size of the 
data if you choose to output either spectral magnitude or spectral phase components as 
either a sequence of constant frequency volumes or as an equivalent 4D volume. In this 
example we used a 40 ms window, which implies a frequency resolution of ∆f=1/.040 
s=25 Hz is necessary to reconstruct the data using a DFT. Using this argument, we can 
say that the spectra is oversampled, which is validated by the excellent reconstruction 
on the right.  
 

 
 
The (3) Window length indicates the length of the time window function used in spectral 
decomposition. As discussed above, the CLSSA algorithm is focused on solving an 
inverse problem. The window length parameter determines how long the inverse 
operator would cover, which can affect the time-frequency resolution. As an iterative 
method, the (4) Number of iterations defines the number of iterations used in iteratively 
reweighted least-squares solution. A larger number of iterations provides a more-
accurate least-squares approximation, but also consumes more time. The (5) alphaf 
scaling parameter is the regularization parameter α in equations A8 and A9 above, 
which stabilizes the least-squares regression process. 
 
The (6) Phase residue threshold (Percent) limits the phase residue attribute 
computation. When it is larger, more phase residue will appear corresponding to weaker 
events. 
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The Phase Residue 

 
Ghiglia and Pritt (1998) provide an excellent survey of 2D phase-unwrapping techniques and show how a 

complex residue theorem based on vector calculus can be applied to the phase-unwrapping problem. They use a 

rectangular integration path aligned with the t and f axes. We choose a smaller diamond-shaped integration path 

about each sample (j∆t, k∆f) given by  
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 (B1) 

where ψ is the phase and W is a wrapping operator that produces an output that falls between ±π.If the integral Ijk 

in equation B1 is nonzero, there are inconsistent phase points, which Ghiglia and Pritt (1998) call “phase 

residues”. The figure below shows how the residue is calculated for a small portion of a typical wrapped time-

frequency phase matrix. Area A is continuous, with a phase residue = 0.0, while area B is discontinuous with a 

phase residue = 1.0 . 

 

Figure B1. Line integrals about analysis points A and B used to compute the phase residue. 

 

Matos et al. (2011) find phase attributes are sensitive to the same kinds of stratigraphic discontinuities seen by 

analyzing the magnitude component of time-frequency distribution using wavelet transforms and the continuous 

wavelet transform. Because phase is often a more seismic measure than magnitude, it holds significant promise 

in mapping stratigraphic unconformities. 

Accurate computation of phase residues requires relatively fine sampling across frequency. We suggest setting 

the computational ∆f=1 Hz. Unfortunately, if you do this and choose to output these many components as well, 

you may fill up your disk drive. To analyze individual components we suggest a coarser output ∆f=5 Hz for 

subsequent loading into your interpretation workstation. 
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Statistical measures of the spectrum 
 
Like program spec_cmp, program spec_clssa provides several statistical measures of 
the spectrum that can be used in addition to or in place of the full 4D spectral 
components. The peak spectral magnitude, peak spectral frequency, and peak spectral 
phase are easy to understand. You obtain these by placing a checkmark in front of 
Want peak attributes?  
 

 

Statistical measures of the spectrum 

 
Gaussian statistics such as the mean, standard deviation, kurtosis, and skewness are sometimes used to represent 

a seismic spectrum, with the mean representing the average spectrum, the standard deviation the bandwidth, and 

kurtosis and skewness deviations from the  Gaussian spectrum model. Unfortunately, seismic processors try as 

hard as they can to make the spectra flat, which is decidedly non-Gaussian. Zhang (2010) therefore constructed a 

suite of attributes that better define these kinds of spectra. The local bandwidth is defined as the difference 

between user-defined percentiles. The range-trimmed mean is simply the average frequency within these 

percentiles. The slope is a measure of how the spectrum changes with frequency – e.g. increasing, flat, or 

decreasing. Finally, the roughness is a measure of local smoothness of the spectrum. 

 

 
 

Figure B1. The shape of a spectrum (in green) containing 50 or more components 

approximated by average frequency,  bandwidth,  slope, and   roughness attributes. 
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Individual spectral components 
 
If you place a checkmark in front of Want spec mag cmpt? or Want spec phase cmpt?, 
you will obtain each of the spectral components that range between f1 and f4 with the 
desired Frequency Increment. For interpretation of the components on most 
interpretation workstations, it may be easier to load these components separately. If you 
place a check mark in front of  (9) Store cmpts as 4D cubes?, you obtain spectral 
gathers that are ordered with the time axis running fastest, followed by the frequency 
axis, (such that the first two indices represent a time-frequency distribution) followed by 
the CDP numbers (inline axis) and line numbers (crossline axis).  The 4D volumes will 
have the following names for this job: 
 

 
 
If you ask for spectral components not to be stored as a 4D cube the constant-
frequency 3D spectral magnitude and spectral phase volumes will have the frequency 
value encoded in the file name: 

 

 
There are several ‘expert’ controls under the Extended tab: 
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Since the amount of output can be quite large, it may be useful to run spec_clssa on 
only a limited range of (1) inlines and (2) crosslines.  
 
You will probably want to experiment with these parameters a bit to calibrate them for 
the kind of data your encounter. It is reasonable to expect that most surveys of a similar 
vintage from the Gulf of Mexico will have similar spectral ranges and signal-to-noise 
ratios. Likewise, similar surveys acquired in the Permian Basin of west Texas will be 
similar to each other. In order to simplify parameter choices, In order to simplify 
parameter choices, you can then cat AASPI “.parms” file to examine its content or set it 
to your desired default parameters:  
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The file in your working directory will always take precedence over the one in the 
${AASPIHOME}/scripts directory.   
 
 
As in all the AASPI GUIs, click Execute to run the program. The end of your run should 
looks something like the following: 
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Example 1: Comparison of the three decomposition algorithms 
 
Our first example compares vertical slices of spectral components at 20 Hz and 50 Hz 
through the UT BEG Stratton data volume. Note that 20 Hz has a period of 0.050 s 
which is larger than the 0.040 s analysis window used in spec_clssa. The 20 Hz 
component from spec_cwt is not really a component, but rather the relatively broad 
band response of a Morlet wavelet centered at 20 Hz, with a Gaussian spectrum with 
half power = f. The 20 Hz component from spec_cmp is the complex sum of all 20 Hz 
components of Morlet wavelets about a given time sample. For this reason, both 
spec_clssa and spec_cmp have higher frequency resolution than spec_cwt. 
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Example 2: clssa applied to the Boonsville survey 
 
Now, plot some of the results. Since we did not choose to store the spectral magnitude 
and phase components as a 4D cubes, we have several 3D volumes we can plot 
separately.  
 
Plotting the same time slice as in all the other examples, and setting Allpos=y in our 
SEP Viewer GUI for the strictly positive magnitude, the spec_mag_3d_clssa_d_20.H 
(the 20 Hz magnitude component) file looks like this:    
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While the spec_mag_3d_clssa_d_50.H (the 50 Hz magnitude component) file looks like 
this:    

 
 
The phase components will range from -1800 to +1800, so set Allpos=n and choose a 
cyclical color bar to plot spec_phase_3d_clssa_d_20.H (the 20 Hz phase component): 
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and spec_phase_3d_clssa_d_50.H (the 50 Hz phase component): 
 

 
 
Several measures of the spectrum at each time sample are also computed. The 
simplest one is the peak magnitude (the greatest value of the spectrum) here as the file 
peak_magnitude_clssa_d.H: 
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We can also plot the corresponding frequency at this value (the peak frequency) which 
for this case is the file peak_freq_3d_clssa_d.H plotted against the frequency.sep 
(magenta-red-yellow-green_cyan_blue) color bar: 

 
 
 
Plotting Spectral Components 
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We provide a simple graphical interface to quality control the spectral components. 
Many commercial workstation software products now provide excellent interactive 
visualization of 4D volumes (t, x, y, and typically offset h, but in our case frequency, f). 
Our crude tool plot_4D_spectral_components can be found under the Display tools 
tab: 
 

 
 
Previously, I had computed spectral components for the Boonsville survey and stored 
them as a 4D volume (t,f,line_no,cdp_no) in a file spec_phase_4d_clssa_d_0.H 
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The upper selection bar allows me to plot a constant frequency section or a constant 
time section. I’ve chosen the 1.1s time slice. I choose the energy.sep color bar and 
obtain these slices of different frequencies at 1.1s time slice: 
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First, 5 Hz component at 1.1s: 
 

 

 
Then, 35 Hz component at 1.1s: 
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The upper selection bar allows me to plot a constant frequency section or a constant 
time section. I’ve chosen the 20 Hz component. I choose the energy.sep color bar and 
obtain these time slice through a 20 Hz volume: 
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First, 0.8s time slice of 20 Hz component: 
 

 
 
Then, 1.4s time slice of 20 Hz component: 
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I can also generate similar plots of the spec_mag_4d_clssa_0.H 4D volume. 
 

 
 
I display the 31 Hz and 41 Hz spectral magnitude slices at 1.1 s: 
 
 
First, 31 Hz spectral magnitude slices at 1.1 s: 
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Then, 41 Hz spectral magnitude slices at 1.1 s: 
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