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3D PROBABILISTIC SEISMIC FACIES ANALYSIS – PROGRAM 
gtm3d (Generative Topographic Mapping) 

 
 
Overview 

 
Like Self-organizing Maps (SOM), Generative Topographic Mapping 
(GTM) maps high-dimensional data (e.g. five or more attributes per voxel or 12 

amplitude samples about a picked horizon) to a lower-dimensional (usually 2D or 3D) 
latent space, which are then mapped to a continuous 2D or 3D color bar. There are 
two major limitations to the popular Self-organizing Maps (SOM) clustering algorithm. 

First, there is no clear rule for selecting the training radius and the learning rate; 
these parameters are data dependent. Second, because of the absence of any 
defined cost function there is no measure of “confidence” in the final clustering results 

to indicate the convergence at the final iteration. GTM is a probabilistic reformulation 
of SOM that takes care of most of these shortcomings.   
 

First introduced by Bishop et al. (1998), GTM generates a probability density model 
that describes the distribution of N D-dimensional (multi-attribute) input data vectors, 
xn, in terms of a relatively smaller number, K, L-dimensional latent variables, uk, 

where L<D. Each latent variable in GTM defines the mean location, mk, of a D-

dimensional Gaussian distribution. The “mixture” or sum of these probability density 
functions statistically describes the input data. The model parameters (the means of 

the Gaussian probability density functions) are determined by maximizing the 
likelihood estimation of the summed probability density function that predicts the input 
data vectors, xn. 

 
In K-means and SOM clustering each data vector xn is assigned to the nearest 
cluster center or prototype vector, pk. In GTM, the “prototype vectors” are replaced by 

the uniformly placed grid points (nodes) uk, each of which share a certain 
“responsibility”, Rnk, in representing each data vector xn. Once found, there are 

several ways to display this relationship. The analogue to SOM would be to assign 
each data vector xn, to a cluster value, k, (and corresponding color) to the Gaussian 

uk component which is most responsible. The posterior probability of the data value 
xn is projected in the 2D latent space. We may choose to find the expected value 

(pdf-weighted mean) of the xn vectors or the most likely position (mode) of the data 
value and assign it a color corresponding to its location in L-dimensional latent space. 
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Figure 1: The prior distribution consists of latent space variables ordered on a 
regular grid (blue circles) residing in an L-dimensional latent space. In this figure L=2. 
A smaller number of J non-linear non-orthogonal Gaussian basis functions are used 

to interpolate latent space grid points to the D-dimensional data-space.   ϕj consists 

of a regular array of Gaussian functions with a predefined constant standard 
deviation. Thus with the linear combination of these basis functions the latent space 

(blue circles) are mapped to the data-space (blue spheres) on the 2D non-Euclidean 
manifold S. Thus, each node uk is then mapped to a corresponding point mk in data-

space, given by 𝐦k =  ∑ 𝐖𝑘𝑗ϕ𝑗(𝐮k)𝐽
𝑗=1  (equation 1). 

 

 
 

Figure 2: The 2D non-Euclidean manifold S with the mapped reference grid points in 
the data-space mk. A pdf is defined for a data-vector xn with a radially symmetric 

Gaussian functions with centers at mk and having a variance of 1/β given by 
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p(𝐱n|k, 𝐖, β) . The final probability density function of a GTM model is obtained by 

summing the contribution of each weighted pdf.  
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GTM Theory 

In general, we wish to find a nonlinear projection mk (uk;W) which maps the K points uk (k=1,2,3,…,K) in the 

two- or three-dimensional latent space into the K points in the D-dimensional data-space. This non-linear transformation 

is given by 

where W is a D x J matrix of unknown weights, ϕ𝑗(𝐮k) is a set of J non-linier basis functions, and  mk are reference 

vectors in the data space. A noise model (the probability of the existence of a particular data vector xn given weights W 

and inverse variance β) is introduced for each measured data vector xn. The probability density function, p, is represented 

by a suite of K radially symmetric D-dimensional Gaussian functions centered about mk with variance of 1/β: 

The prior probabilities of each of these components are assumed to be equal with a value of 1/K, for data vectors xn that 

range from n=1,2,….., N. Figure 1 illustrates the GTM mapping from an L=2-dimensional latent space to the 3-

dimensional data space. 

The probability density model (GTM model) is fit to a dataset X = {x1,x2,x3…….xN} to find the parameters W 

and β using a maximum likelihood estimation. One of the popular techniques used in parameter estimations is the 

Expectation Maximum (EM) algorithm. We calculate the N x K posterior probability or responsibility, Rnk, which each of 

the K components in latent space takes for every data-vector using the current values of the GTM model parameters W 

and β and Bayes theorem:                                                                                   

Equation 3 forms the “E-step” or Expectation step in the EM algorithm. The E-step is followed by the Maximum or “M-

step”, that uses these responsibilities to update the model for a new weight matrix W by solving a set of linear equations, 

where  

G𝑘𝑘 =  ∑ R𝑛𝑘
𝑁
𝑛=1  are the non-zero elements of the K x K diagonal matrix G, 

𝚽 is a K x J  Matrix with elements  𝚽 =  ϕ𝑗(𝐮𝑘),  

α is regularization constant to avoid division by zero, and  

I is the J x J identity matrix. 

 

The updated value of β is given by 

The initialization of W is done so that the initial GTM model approximates the principal components (largest 

eigenvectors) of the input data, xn. The value of β-1 is initialized to be the larger of the (L+1)th eigenvalue from PCA 

where L is the dimension of the latent space. In Figure 1, L=2, such that we initialize β-1 to be the inverse of the third 

eigenvalue. Figure 2 summarizes this workflow. 
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Figure 2. Generative topographic mapping (GTM) workflow. 
 
Data Visualization in GTM 

We will use the responsibility, 𝑅𝑛𝑘 , (also called the posterior probabilities) to 

determine the mode or the pdf-weighted mean of each input data vector, xn, in the 
lower dimensional latent space (Figure 2). The mode represents the grid point in the 
latent space having the maximum posterior probability value 

𝐔𝑚𝑜𝑑𝑒(𝐱𝑛) =  MAX(𝐮𝑘)    . 
The mean is simply 

𝐔𝑚𝑒𝑎𝑛(𝐱𝑛) =  ∑ 𝑅𝑘𝑛𝐮𝑘

𝐾

𝑘=1  

where uk are the grid positions in the 2D latent space. 

We use two ways of displaying our clusters. For simplicity, let’s assume we are using 

a 2D latent space. The more conventional way is to color the mode or mean of each 

data point using a 2D color bar (e.g. Strecker and Uden, 2002; Matos and Marfurt, 

2010). Unfortunately, most commercial interpretation software does not allow for 

simple 2D color bar manipulation. The second method uses crossplotting tools that 

are found in most commercial interpretation software packages. Rather than assign 

an integer label to a cluster as we do in SOM, we extract the GTM x and y (distances 

along eigenvectors 1 and 2) components in the latent space and output two 
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‘attributes’ that can then be crossplotted and edited using geoprobe technology.  This 

second approach facilitates the generation of one or more geobodies. 

 

 
Figure 3: Workflow for the data visualization by GTM. Bishop et al.(1998) used the 
posterior distribution “responsibility” matrix R, to compute either the mode or the 
mean of the projected N-dimensional data-vector xn , onto the lower 2D latent space 

nodes 𝐮𝑘 , The mean location will assign the value 𝐔𝑚𝑒𝑎𝑛(𝐱𝑛) to be the weighted 

average of the posterior distribution values and will in general fall in between 
neighboring values of 𝐮𝑘 . The mode will assign the value 𝐔𝑚𝑜𝑑𝑒 (𝐱𝑛)  to be the 

location of the greatest posterior distribution value in the 2D latent space and will 

always correspond to a discrete gridded value of 𝐮𝑘.   

 
Example 1: GTM data visualization of a reservoir completion problem 
 

Our first application of a GTM workflow uses engineering “attributes” rather than 
seismic attributes and is discussed in detail by Roy et al. (2012). The input data 
vectors, xn, correspond to n=137 horizontal wells from the Haynesville shale. The 

spatial distribution of the pilot holes are shown in Figure 4.  Each of the 137 well has 
13 engineering and 2 geologic parameters: 
 

1. Total clean volume of sand, 
2. Total proppant volume 
3. Total 100-mesh sand 

4. Total non-100-mesh sand 
5. Daily peak rate 
6. Cluster spacing 

7. Number of hydraulic fracture stages 
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8. Total perforations, 
9. Total perforation cluster, 

10. Total perforation length, 
11. Contour permeability 
12. Average treating rate 

13. Average proppant concentration, 
14. Thickness of the formation, and 
15. Porosity, 

 
describing a D=15-dimensional data space. Each of these 15 parameters are 

hypothesized to affect the EUR of each well: 

 
Each of the 15 input components are normalized using a z-score algorithm to remove 

the impact of measurement units and to precondition the data to be better 

represented by our Gaussian probability density functions. Applying the GTM 
technique to these data results in posterior probabilities (responsibility) in a 2D latent 
space that can be mapped to form a mode- or mean-distribution map of each input 

data vector in the output latent space. These projected points are then colored by the 
scaled estimated ultimate recovery (EUR) values. 
 

 

 
Figure 4: Spatial distribution of the pilot holes of 145 wells drilled in a Haynesville 

shale play of an area roughly 1000 km2. Colors correlate to EUR with blues indicating 
low EUR, cyan and yellow intermediate EUR, and red high EUR. 137 wells will be 
used to train and eight wells will be used to validate the GTM. Note high- and low-

EUR wells are not spatially separated. 
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Figure 5: The mean posterior distribution map of the “responsibilities” of the data in 

the 2D Latent space. Here the data-vectors are projected onto the mean locations 
calculated from their posterior probability values at the grid points. (a) Initial 
distribution of the posterior mean projections of the data in the latent space. (b) Final 

distribution of the posterior mean projections of the data in the latent space after 100 
iterations. The plot is color-coded by the scaled EUR values. Note the separation 
between the good (red) and the bad (blue) EUR values in (b).  

 

 
Figure 6. The mode posterior distribution map or the “responsibility” of the data in the 

2D latent space. The data-vectors are projected onto the most likely grid points (grid 
points with the highest value of Rnk). (a) Initial distribution of the posterior mode 
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projections of the data in the latent space. (b) Final distribution of the posterior mode 
projections of the data in the latent space after 100 iterations. The plot is color-coded 

from low to high EUR values. Note the latent space shows a more orderly separation 
between the good, moderate and the bad EURs for the final iteration. 
 

The mean or the mode of the posterior probability (responsibility) distribution map of 
every data-vector is plotted in the 2D latent space before and after convergence 
shown in Figures 5 and 6. Figure 5 depicts the distribution of the mean posterior 

probabilities for all the data vectors in the latent space. The mode values represent 
the most probable index location (location of the grid points in the latent space) 
having the maximum posterior probability values for all of the data-vectors. The color-

coding varies from the high (red) to low (blue) EUR values. Both the mean and the 
mode projections show better clustering or separation in the final iteration. Analysis of 
the components according to their importance still needs to be done. 
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AASPI implementation 
 

 
In the AASPI software, the GUI for GTM can be invoked by typing  
 

aaspi_gtm3d &  
 
or from the main aaspi_util  window by selecting the Volumetric Attributes drop down 

menu: 
 
 

 
 
 
Note :  
Since we are using a 2D manifold in N-dimensional space that is mapped to a 2D 
latent space, programs gtm3d and som3d require three or more input attribute 

volumes. Each attribute volume needs to be the same size. In the current version of 
software the time window (start time and end time) needs to be smaller (at least one 
sample) than the time window of input data.  

 
 
 

 
 
 

 
 
 

 
 
 

 
The following GUI will pop up: 
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As with SOM, the input consists of a suite of (1) seismic attribute volumes (3 or more 
volumes) that the interpreter has chosen to differentiate different seismic facies, rock 

types, lithologies, or other clusters. For example, a mass transport complex may be 
characterized by relatively low coherence, strongly converging reflectors, and high 
entropy (measured by the GLCM algorithm). Surrounding marine shales may be 

characterized by moderate coherence, low reflector convergence (i.e. parallel 
reflectors) and low GLCM entropy. Next, (2) enter the number of input volumes 
represents the dimensionality of the dataset (automatically updated). Then (3) select 
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the number of grid points to span the 2D latent space, K, (GTM Theory equation 2). 

These points are mapped to the data-space. Then (4) select the number of non-linear 
basis functions, J, – (GTM Theory equation 1) that form a regular array of Gaussian 

functions. A linear combination of these basis functions is used to map the points in 
the latent space to the data space. Both the latent space samples and the basis 

functions should be squared integers value, (e.g. (256…400…625…900 etc.….). 
They can be automatically selected from some pre-defined values in dropdown 
menu. Care should be taken so that the number of basis functions (J) should be less 

than the number of grid points in the 2D latent space (K). Next, (5) Enter the width of 

the basis functions relative to the distance between two neighboring basis function 
centers.. This width is used to define the standard deviation of the non-linear basis 
functions, which is constant for a GTM model. If s=2 the basis functions will have 

widths (std. dev) equals to two times the distance between two neighboring basis 
function centers. Initially the code runs a multiattribute PCA to initialize the starting 

values of W and β (see GTM Theory). Next, (6) enter the regularization factor, α, 

(GTM Theory equation 4) used to stabilize the linear equation for solving the new W. 
This prevents any division by zero. Next, (7), enter the number of iterations to run 
GTM. To minimize run times, only a fraction of the input dataset is used for training.  

Therefore (8) enter the factor to decimate the dataset, which will be used for training. 
For example the values 5, 5, 5 mean every 5th data-vector in a trace, inline, and 
crossline is used for training, such that we train on every 1 out of 125 samples from 

the input data. Finally, (9) choose if to output the mean projections for all training 
steps for QC purpose. 
 

 

 
In the Operation Window tab, similar to som3d, one can choose between defining 

the window using constant time or two horizons. Enter the (10) start time and the (11) 
end time of the data for GTM seismic facies classification. Here, we suggest the user 
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to take a one sample less than the actual size of the data, e.g. if the input data is 
0.000s to1.000s and the sampling rate is 4ms (0.004s). Then take the start time ≥ 

0.004s and end time ≤0.996s. We recommend limiting GTM to the target area since it 
is computationally intensive, and a horizon-based window is better for analyzing in a 
relatively constant deposition environment. Below is how to define an operation 

window using horizons. The panel shown is from som3d, and the gtm3d has an 
identical operation window panel. 
 

 
 
 

 



Volumetric Classification: Program gtm3d 

  

14 
 

Figure 1. (left) A gridded horizon file (EarthVision format). (right) An interpolated 
horizon file with five columns (ASCII free format). 
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Horizon definition 
 
The horizon definition panel will look the same for almost all AASPI GUIs: 
 

1. Start time (upper boundary) of the analysis window.  
2. End time (lower boundary of the analysis window.  
3. Toggle that allows one to do the analysis between the top and bottom time slices 

described in 1 and 2 above, or alternatively between two imported horizons. If 
USE HORIZON is selected, all horizon related options will be enabled. If the 
horizons extend beyond the window limits defined in 1 and 2, the analysis 
window will be clipped. 

4. Browse button to select the name of the upper (shallower) horizon. 
5. Button that displays the horizon contents (see Figure 1). 
6. Button to convert horizons from Windows to Linux format. If the files are 

generated from Windows based software (e.g. Petrel), they will have the 
annoying carriage return (^M) at the end of each line (Shown in Figure 1). Use 
these two buttons to delete those carriage returns. Note: This function depends 
on your Linux environment. If you do not have the program dos2unix it may not 
work. In these situations, the files may have been automatically converted to 
Linux and thus be properly read in.  

7. Browse button to select the name of the lower (deeper) horizon. 
8. Button that displays the horizon contents (see Figure 1). 
9. Button to convert horizons from Windows to Linux format. (see 6 above). 
10. Toggle that selects the horizon format. Currently gridded (e.g. EarthVision in 

Petrel) and interpolated (ASCII free format, e.g. SeisX) formats are supported. The 
gridded horizon are nodes of B-splines used in mapping and have no direct 
correlation to the seismic data survey. For example, gridded horizons may be 
computed simply from well tops. The x and y locations are aligned along north 
and east axes. In contrast interpolated horizons have are defined by line_no, 
cdp_no (crossline_no) and time triplets for each trace location. Examples of both 
format are shown in Figure 1. If interpolated is selected, the user needs to 
manually define each column in the file. 

11. Number of header lines to skip in the interpolated horizon files. 
12. Total number of columns in the interpolated horizon files. 
13. Enter the column number containing the line_no (inline_no) of the interpolated 

data triplet. 
14. Enter the column number containing the cdp_no (crossline_no) of the interpolated 

data triplet. 
15. Enter the column number containing the time or depth value of the interpolated 

data triplet. 
16. Znull value (indicate missing picks) in the horizon files. 
17. Toggle to choose between positive down and negative down for the horizon files 

(e.g. Petrel uses negative down). 
18. Choose the vertical units used to define the horizon files (either s, ms, kft, ft, km, 

or m). 
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 After providing all these parameters click “Execute GTM”. 

If the verbose option is chosen, the output to your xterm will look like the following 
image: 
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The number of iterations in the above example was set to be 40, such that the 
iteration will stop after 40 iterations (green arrow 1). The GTM training step ends 
(green arrow 2) and the results applied to the complete dataset (green arrow 3) to 

create two attributes that provide the cluster locations (projection of the mean 
posterior probability of the data-vectors) along the two axes in the latent space to be 
used in subsequent cross plotting.   

After the GTM classification has completed (shown by the green arrow 2 in the 
terminal window), one can QC the mean distribution of the posterior probability 
(responsibility) projections of the training data on the 2D latent space by clicking on 

“GTM QC Train Utility” (Presently this utility uses gnuplot). Gnuplot needs to be 
installed to view this utility. Otherwise the ASCII files generated can be viewed in any 
other graph utility manually. After clicking this flowing two gnuplot windows will pop 

up.  
 
 

 
 

 
A suite of plots to QC GTM convergence. The initial projection onto a 2D PC plane is 

shown in cyan. Subsequent iterations are of the mean distribution of the posterior 
probability (responsibilities) projections of the training data onto the 2D latent space are 
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shown in red. Note the projections of xn onto mk is nearly identical in the last two 
iterations (30 and 35), indicating convergence. 

 
 

 
The comparative plot of the posterior probability mean projections of the training data 
after iteration 1 (in red) and after iteration 40 (in blue). The initial projection is computed 
by projecting each data vector against the first two principal components. 
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The above terminal window shows the output created by the GTM program. The 
mean distributions of the posterior probability projections of the training data on the 

2D latent space are saved in ASCII files and are given by (green arrow 1). They are 
plotted by the gnuplot utility as shown earlier. The mean distribution of the posterior 
probability (responsibility) projections of the entire data volume onto the 2D latent 

space are saved as two separate AASPI-format *.H files given by (green arrow 2, 
names have been changed in the latest release) - 
gtm_axis1_latent_space_projection_${project_name}_${sufffix} and gtm_ 

axis2_latent_space_projection_${project_name}_${sufffix}). These two mean 
projection volumes can be colored by the crossplot, hsplot and the hlplot utility, which 
will generate the crossplot file and the sep colorbar and the Petrel colorbar (green 

arrow 3, names have also been changed in the latest release).  
 
 
The crossplot, hsplot and the hlplot utility GUI can be invoked by clicking on the 

“GTM Plot Menu” (yellow arrow) as shown in the GUI. Here the example is shown 
using the crossplot utility. 
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In the crossplot GUI the two mean distribution of the posterior probability projections 

(responsibilities) are plotted along (1) the x and (4) the y axes. The range of the two 

volumes should always be between 0 and 1(arrows 3 and 6). Press the “Scan” button 
(arrows 2 and 5) to find the amplitude range in the volumes. (7) Enter the maximum 

number of colors used for visualization. Remember that several of the major 
commercial workstation software packages limit you to 256 colors. Enter (9) the plot 
title and (10) the output crossplot file name more details on the crossplot workflow 

can be found in the program crossplot documentation. The output is generated as 
shown below.  
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Upper left figure shows a 2D color bar and upper right figure shows a 2D histogram 
mapped to the 2D GTM latent space. Note the clustering in the histogram into several 
“arms”. Bottom figure shows a time slice through the classified data volume at the 

Mississippi Lime level. White zones indicate dead no-permit areas which give rise to 
the anomalous histogram location in pink.  
 

The mean of the posterior probability in the latent space is plotted as a 2D histogram 
plot. The 2D colorbar is used to color seismic data-vectors according to their spatial 
position in the 2D latent space.  This crossplot volume generated from GTM 

clustering and its corresponding colorbar can be imported into commercial 
interpretation software for more sophisticated visualization and better integration with 
well data.  Simply convert the volumes 
gtm_axis1_latent_space_projection_${project_name}_${sufffix} and 
gtm_axis1_latent_space_projection_${project_name}_${sufffix}) as exported to segy 

format using the AASPI to SEGY (single file) utility as shown below: 
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Supervision:  

For a better analysis of the how likely one type of facies occurs we need to input some 
model wavelets from picked within the survey or areas of interest. Such analysis is 
performed by calculating the Bhattacharyya distance (Bhattacharyya, 1943) between 

the averaged responsibility pdf of supervision data in a particular facies and a data 
sample. In this way the similarity between this data sample and the particular facies is 
measured. This is done by clicking the “supervision” button (Arrow 1B). After which a 

few buttons becomes active. Currently two different types of supervision files are 
supported, being AASPI .H format mask files or ASCII format text file. More details 
about these two file types will be given in the later part of this section. The .H mask file 

is generated using utility aaspi_plot, and the ASCII text file is generated using utility 
aaspi_make_training_clusters. Use the button 2B to switch between these two types 
of supervision file. If ASCII file type is selected, the user can use button 3B to invoke 

aaspi_make_training_clusters and generate a supervision file. For how to use 
aaspi_make_training_clusters, please refer to the documentation of utility 
aaspi_make_training_clusters. 

 
An AASPI .H format mask file is a 3D volume of facies labels and shares the same 
geometry as input seismic (attribute) volumes. Each sample point is assigned an integer 

number representing a facies, and the program gtm3d will pair the input seismic 
attribute with such facies label at the same spatial location to form a supervision dataset. 
An ASCII format text supervision file is a list of supervision vectors. If N is the total 

number of columns in that file, then the first N-1 columns are input attributes (one 
attribute a column), and column N is the facies label. In this way, each row of this file 
represents an N dimensional data vector, which consists of N-1 attributes and 1 facies 

label. 
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Then the corresponding supervision file should be provided using one of the Browses 
(4B), and fill in the number of facies (masks) at 5B. The reset button (6B) can be used 

to start over unsupervised GTM analysis. 
 

 

 

 
The above two figures show the most likely occurrence of facies Type 1 and Type 2. 
The output files are names as 
gtm_bhattacharyya_distance_mask_n_${project_name}_${suffix}, where n is the 
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facies label index. The magenta color highlights regions with the highest probability 
(90-100 %) of occurrence of the facies similar to the facies around an input well. The 

blue regions have very low likely that the facies is similar to the facies around the 
input well. And the black regions have no similarity to the facies type around the input 
well. 

 
 
 

Creation of volume probes in Petrel using the latent space projections onto 
eigenvectors 1 and 2 
 

The generated GTM projections can be then imported to any commercial seismic 
data interpretation packages for better visualization. In this document we use Petrel 
as an example for illustration purpose. The 
gtm_axis1_latent_space_projection_${project_name}_${sufffix} and 
gtm_axis2_latent_space_projection _${project_name}_${suffix} files are converted 

into .segy and are imported into Petrel. Generate a volume probe with these two 

volumes around the selected horizon as shown below. Crossplot utility which is 
common in most of the commercial software can be used to crossplot these two 
volumes and then the clusters on the latent space can be picked manually and 

colored which then can be simultaneously visualized in the seismic volume. 
 

 
 
Figure above shows the crossplotting tool as it appears in Petrel. Note the file names 

have changed in the recent release and are shown in the gray box.  
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Figure 11. The pdfs on the latent space as it appears on Petrel’s crossplot tool.  
 
In Petrel’s “Opacity” tab click on Crossplot to generate a 2D histogram of the two 

volumes as shown above. Also click on density as marked with the green arrow. The 

resulting image shows the mean distribution of the posterior probability 
(responsibility) projections of the volume probe selected on the 2D latent space. The 

“high-density” of the histogram appear in the crossplot as bright colors (light red, 
yellow, green, blue, and violet). Once visualized, the interpreter draws polygons 
around hypothesized clusters which are then plotted using Petrel’s volume probe 

tool. 

11 



Volumetric Classification: Program gtm3d 

  

26 
 

 
Figure 12. Interpreter-generated polygons displayed on top of the 2D historgram 
shown in the previous image. In this manner, the interpreter can select clusters of 
interest and see how they relate to well control or classic interpretation (e.g. salt 

bodies, mass transport complexes, gas-charged fans) in the 3D volume. 
 
Pressing “Ctrl” key to select multiple polygons on the cross-plot. In the Figure 12 we 

have select six polygons representing most of the data distribution. Figure 13 shows 
a horizon slice along the top Mississippi Lime through the interpreter-generated 
clusters.  

 
 

Figure 13. Interpreter generated clusters. Image logs indicate that the blue colors 
correspond to tight lime and tight chert while red and green correspond to porous 
tripolite and fractured chert. 
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Example 2: Veracruz Basin, Southern Mexico 
 
The following example comes from a carbonate wash play in the Veracruz Basin, 

Mexico, described by Roy et al. (2014). 
 

 

 
 

Figure 14. The 2D cross- plot of the mean posterior distribution map of the 
“responsibilities” of the data onto the 2D Latent space for the reservoir units EOC-30 

and EOC-10. The cross plot is generated by cross plotting to GTM projection volumes. 
(a) The projection of the mean “responsibilities” of EOC-30 unit. The 2D histogram is on 

the right and the scatter crossplot is on the left. Seven clusters are visible on the latent 
pace corresponding to the high-density points. These clusters are delineated by 
polygons with different colors and in the subsequent figure will help to visualize the 

different classes in the seismic data. (b) The projection of the mean “responsibilities” of 
EOC-10 unit. The mineralogy content and porosity distribution for the EOC-10 and the 
EOC-30 reservoir units being similar the clusters for both of these reservoir units lie on 

the same location in the 2D latent space. They are also color-coded similarly since both 
reservoir units have similar rock type. (c) Regional conceptual sedimentary model (Roy, 
2013). 
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Figure 14. Generating the seismic facies volume (geobodies) from GTM clustering 
within the reservoir units EOC-10 and EOC-30, considering the input seismic volumes - 

lambda-rho (λρ) vs. mu-rho (μρ) and P-wave impedance (Zp) vs. Vp to Vs ratio (Vp/Vs). 
Different polygons around classes signify rock types for reservoir units (a) EOC-10 and 
(b) EOC-30. Seven different facies class have been identified from the clusters in the 

latent space and are delineated by polygons of different colors. (c) The horizon probe 
generated for the EOC -10 and the EOC-30 reservoir units after the unsupervised GTM 
analysis. The white arrows highlight the faults. The most abundant facies are the orange 

facies  (Roy, 2013). 
 
 

Example 3: Barnett Shale 
 
This example comes from a paper by Roy (2013), applying GTM to the Barnett Shale 

play. 
The inputs to our GTM algorithm are different seismic inversion volumes (P-
impedance, lambda-rho, mu-rho) which help in understanding the highly 

heterogeneous nature of the Barnett shale. For the above attribute generations the 
seismic data between the Marble faults horizon and the Viola limestone is 
considered. The impedance volumes better reflect a heterogeneous shale reservoir 

based rock type. 
 



Volumetric Classification: Program gtm3d 

  

29 
 

 
 
Figure 15. The mean posterior distribution map of “responsibilities” of the training 

data in 2d latent space. Here, the first graph shows initial projection, on the two 
projection axis. Here, you can see that the separation in the data increases and data 
is getting clustered.     
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Figure 5.13. Well-probes for Well A generated by cross-plotting the two GTM projection 
volumes. (a) The 2D histogram generated from the cross-plot of the two GTM projection 
volumes. (b) Eight user-defined polygons drawn around the clusters seen in (a). (c) 

Brittle-ductile couplets proposed by Slatt et al, (2011). (d) Well-probe data colored by 
the clusters selected in (b). The Upper Barnett, the Lower Barnett exhibit a different 
cluster composition and are in turn different from the intervening Forestburg Limestone 

(in gray). (e) The microseismic events from this well are plotted along with the well-
probe. Note the microseismic events are more localized in the red and light green facies 
and misses the brown facies, thus the red and light green facies 125 are interpreted as 

brittle and brown facies to be ductile. The results are consistent with the 2nd order 
brittle-ductile couplets proposed by Slatt et al, (2011). 
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Figure 16. Four different zones within the Barnett Shale selected using a gamma ray 
log from a well within the survey. The corresponding 2D histograms of the mean 
posterior probability projections for (b) the Upper Barnett (zone B), (c) the top of the 

Lower Barnett (zone C), (d) the middle of the Lower Barnett (zone D) and (e) the 
bottom of the Lower Barnett Shale (zone E) are shown. 
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Figure 17: 2d histogram of zone D defined above and below by stratal slices 

corresponding to the well log picks in Figure 5.15a. (b) User defined polygons are 
created and are colored consistent with the well-probes in Figures 5.13 and 5.14. (c) 
The facies volume probe of middle section of the Lower Barnett Shale zone D 

visualized along with the well-probes with the colors selected according to the 
clusters in (b). Note that this zone has least similarity to the Upper Barnett Shale. 
With more of the microseismic events concentrated in the pink, light green and red 

facies as seen in the well-probes, and the dominance of siliceous non-calcareous 
shale lithofacies (Singh, 2008), this zone 3 is interpreted as brittle with results 
consistent with Perez (2013). 
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Figure 18. 2d histogram of zone E defined above and below by stratal slices 

corresponding to the well log picks in Figure 5.15a. (b) User defined polygons are 
created and are colored consistent with the well-probes in Figures 5.13 and 5.14. (c) 
The facies volume probe of bottom section of the Lower Barnett Shale zone E 

visualized along with the well-probes with the colors selected according to the 
clusters in (b). This zone corresponds to the hot gamma ray zone (Pollastro et al., 
2007). Six clusters are also identified from the mean posterior probability projections 

(in the top inset) are polygons are drawn and are colored consistent with the well-
probes. With very few of the microseismic events in the brown colored facies we 
interpret from (Singh, 2008 and Perez 2013) the brown colored rock to be ductile and 

high in TOC content. The pink, light green and red facies are the regions with brittle 
shale. 
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