Volumetric Classification: Program gtm3d

3D PROBABILISTIC SEISMIC FACIES ANALYSIS - PROGRAM
gtm3d (Generative Topographic Mapping)

Overview

Like Self-organizing Maps (SOM), Generative Topographic Mapping N
(GTM) maps high-dimensional data (e.g. five or more attributes per voxel or 12
amplitude samples about a picked horizon) to a lower-dimensional (usually 2D or 3D)
latent space, which are then mapped to a continuous 2D or 3D color bar. There are
two major limitations to the popular Self-organizing Maps (SOM) clustering algorithm.
First, there is no clear rule for selecting the training radius and the learning rate;
these parameters are data dependent. Second, because of the absence of any
defined cost function there is no measure of “confidence” in the final clustering results
to indicate the convergence at the final iteration. GTM is a probabilistic reformulation
of SOM that takes care of most of these shortcomings.

First introduced by Bishop et al. (1998), GTM generates a probability density model
that describes the distribution of N D-dimensional (multi-attribute) input data vectors,
Xn, In terms of a relatively smaller number, K, L-dimensional latent variables, uy.
where L<D. Each latent variable in GTM defines the mean location, my, of a D-
dimensional Gaussian distribution. The “mixture” or sum of these probability density
functions statistically describes the input data. The model parameters (the means of
the Gaussian probability density functions) are determined by maximizing the
likelihood estimation of the summed probability density function that predicts the input
data vectors, X.

In K-means and SOM clustering each data vector x, is assigned to the nearest
cluster center or prototype vector, pk. In GTM, the “prototype vectors” are replaced by
the uniformly placed grid points (nodes) ug, each of which share a certain
“responsibility”, Rpk, in representing each data vector x, Once found, there are
several ways to display this relationship. The analogue to SOM would be to assign
each data vector x, toa cluster value, k, (and corresponding color) to the Gaussian
ux component which is most responsible. The posterior probability of the data value
Xn IS projected in the 2D latent space. We may choose to find the expected value
(pdf-weighted mean) of the x,, vectors or the most likely position (mode) of the data
value and assign it a color corresponding to its location in L-dimensional latent space.
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Figure 1. The prior distribution consists of latent space variables ordered on a
regular grid (blue circles) residing in an L-dimensional latent space. In this figure L=2.
A smaller number of J non-linear non-orthogonal Gaussian basis functions are used
to interpolate latent space grid points to the D-dimensional data-space. ¢; consists
of a regular array of Gaussian functions with a predefined constant standard
deviation. Thus with the linear combination of these basis functions the latent space
(blue circles) are mapped to the data-space (blue spheres) on the 2D non-Euclidean
manifold S. Thus, each node uy is then mapped to a corresponding point my in data-
space, given by my = Z§=1ij¢j(uk) (equation 1).
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Figure 2: The 2D non-Euclidean manifold S with the mapped reference grid points in
the data-space my. A pdf is defined for a data-vector x, with a radially symmetric
Gaussian functions with centers at my and having a variance of 1/ given by



Volumetric Classification: Program gtm3d

p(x,lk, W,B) . The final probability density function of a GTM model is obtained by
summing the contribution of each weighted pdf.
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GTM Theory
In general, we wish to find a nonlinear projection my (ux; W) which maps the K points ux (k=1,2,3,...,K) in the
two- or three-dimensional latent space into the K points in the D-dimensional data-space. This non-linear transformation

is given by

J
my = Z Wy (), (€Y
=1

where W is a D x J matrix of unknown weights, ¢ ;(uy) is a set of J non-linier basis functions, and my are reference
vectors in the data space. A noise model (the probability of the existence of a particular data vector x, given weights W
and inverse variance f) is introduced for each measured data vector x,. The probability density function, p, is represented

by a suite of K radially symmetric D-dimensional Gaussian functions centered about my with variance of 1/f:
K
1 ﬁ 2 _£||“lk_xnl|2
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The prior probabilities of each of these components are assumed to be equal with a value of 1/K, for data vectors X, that
range from n=1,2,...., N. Figure 1 illustrates the GTM mapping from an L=2-dimensional latent space to the 3-
dimensional data space.

The probability density model (GTM model) is fit to a dataset X = {X1,X2,X3.+.... xn} to find the parameters W
and P using a maximum likelihood estimation. One of the popular techniques used in parameter estimations is the
Expectation Maximum (EM) algorithm. We calculate the N x K posterior probability or responsibility, Rn, which each of
the K components in latent space takes for every data-vector using the current values of the GTM model parameters W

and S and Bayes theorem:

B
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Equation 3 forms the “E-step” or Expectation step in the EM algorithm. The E-step is followed by the Maximum or “M-
step”, that uses these responsibilities to update the model for a new weight matrix W by solving a set of linear equations,
a
<<I>TG<I> + EI) W o = ®TRX 4)
where
Grr = YN_, R,y are the non-zero elements of the K x K diagonal matrix G,
® isaKxJ Matrix with elements ® = ¢;(uy),
ais regularization constant to avoid division by zero, and

| is the J x J identity matrix.

The updated value of £ is given by

N K
1 1 Z
Boon = W0 2 2 e [[Woy e 0100 =)

n=1k=1

)

The initialization of W is done so that the initial GTM model approximates the principal components (largest
eigenvectors) of the input data, x,. The value of g is initialized to be the larger of the (L+1)" eigenvalue from PCA

where L is the dimension of the latent space. In Figure 1, L=2, such that we initialize ™ to be the inverse of the third

eigenvalue. Figure 2 summarizes this workflow.
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Figure 2. Generative topographic mapping (GTM) workflow.

Data Visualization in GTM

We will use the responsibility, R, , (also called the posterior probabilities) to
determine the mode or the pdf-weighted mean of each input data vector, x,, in the
lower dimensional latent space (Figure 2). The mode represents the grid point in the
latent space having the maximum posterior probability value

Unnoge(Xn) = MAX(uy)

The mean is simply

K
Unnean(Xn) = 2 Rynuy
k=1

where uy are the grid positions in the 2D latent space.

We use two ways of displaying our clusters. For simplicity, let's assume we are using
a 2D latent space. The more conventional way is to color the mode or mean of each
data point using a 2D color bar (e.g. Strecker and Uden, 2002; Matos and Marfurt,
2010). Unfortunately, most commercial interpretation software does not allow for
simple 2D color bar manipulation. The second method uses crossplotting tools that
are found in most commercial interpretation software packages. Rather than assign
an integer label to a cluster as we do in SOM, we extract the GTM x and y (distances
along eigenvectors 1 and 2) components in the latent space and output two
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‘attributes’ that can then be crossplotted and edited using geoprobe technology. This
second approach facilitates the generation of one or more geobodies.

Calculate the Posterior Probability Projection of posterior probability on the 2D
R,, foreach data point and project Latent space grid points for a data-vector
on the grid points on the 2D latent
space
A 4
2 common
methods
v
k4 A 4 MEAN
MEAN: Mean of the MODE : Maximum 7 -
Posterior Probability Likelihood of the Scatter MODE
distribution on the 2D Posterior Probability
latent space fora distributions at the
data-vector grid points (nodes) on
the 2D latent space for
a data-vector

Figure 3. Workflow for the data visualization by GTM. Bishop et al.(1998) used the
posterior distribution “responsibility” matrix R, to compute either the mode or the
mean of the projected N-dimensional data-vector x,, onto the lower 2D latent space
nodes u,, The mean location will assign the value U,,.,»(X;,) to be the weighted
average of the posterior distribution values and will in general fall in between
neighboring values of u,. The mode will assign the value U,,,4. (X,) to be the
location of the greatest posterior distribution value in the 2D latent space and will
always correspond to a discrete gridded value of uy,.

Example 1: GTM data visualization of areservoir completion problem

Our first application of a GTM workflow uses engineering “attributes” rather than
seismic attributes and is discussed in detail by Roy et al. (2012). The input data
vectors, X, correspond to n=137 horizontal wells from the Haynesville shale. The
spatial distribution of the pilot holes are shown in Figure 4. Each of the 137 well has
13 engineering and 2 geologic parameters:

Total clean volume of sand,

Total proppant volume

Total 100-mesh sand

Total non-100-mesh sand

Daily peak rate

Cluster spacing

Number of hydraulic fracture stages
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8. Total perforations,

9. Total perforation cluster,

10. Total perforation length,

11. Contour permeability

12. Average treating rate

13. Average proppant concentration,
14. Thickness of the formation, and
15. Porosity,

describing a D=15-dimensional data space. Each of these 15 parameters are
hypothesized to affect the EUR of each well:

Each of the 15 input components are normalized using a z-score algorithm to remove
the impact of measurement units and to precondition the data to be better
represented by our Gaussian probability density functions. Applying the GTM
technique to these data results in posterior probabilities (responsibility) in a 2D latent
space that can be mapped to form a mode- or mean-distribution map of each input
data vector in the output latent space. These projected points are then colored by the
scaled estimated ultimate recovery (EUR) values.

Well Locations for the Haynesville shale survey

. - 2 High
Survey Well Locations with Calorcoded with EUR
e e ... EURs

15 horizontal well parameters (D=15)

137 Training wells (Training data)
(N=137)

Train Dataset (137-by-15)

3

LessEUR:maybe | ¢
due to geclogical
variation

8 Validation wells (Test data)

Test Dataset (8-by-15)

Mixed EUR : may

LessEUR : may be
be due to drilling due to geological
issues variation

Low
EURs

Figure 4: Spatial distribution of the pilot holes of 145 wells drilled in a Haynesville
shale play of an area roughly 1000 km?. Colors correlate to EUR with blues indicating
low EUR, cyan and yellow intermediate EUR, and red high EUR. 137 wells will be
used to train and eight wells will be used to validate the GTM. Note high- and low-
EUR wells are not spatially separated.
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Figure 5. The mean posterior distribution map of the “responsibilities” of the data in
the 2D Latent space. Here the data-vectors are projected onto the mean locations
calculated from their posterior probability values at the grid points. (a) Initial
distribution of the posterior mean projections of the data in the latent space. (b) Final
distribution of the posterior mean projections of the data in the latent space after 100
iterations. The plot is color-coded by the scaled EUR values. Note the separation
between the good (red) and the bad (blue) EUR values in (b).
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Figure 6. The mode posterior distribution map or the “responsibility” of the data in the
2D latent space. The data-vectors are projected onto the most likely grid points (grid
points with the highest value of Rp). (a) Initial distribution of the posterior mode

8



Volumetric Classification: Program gtm3d

projections of the data in the latent space. (b) Final distribution of the posterior mode
projections of the data in the latent space after 100 iterations. The plot is color-coded
from low to high EUR values. Note the latent space shows a more orderly separation
between the good, moderate and the bad EURs for the final iteration.

The mean or the mode of the posterior probability (responsibility) distribution map of
every data-vector is plotted in the 2D latent space before and after convergence
shown in Figures 5 and 6. Figure 5 depicts the distribution of the mean posterior
probabilities for all the data vectors in the latent space. The mode values represent
the most probable index location (location of the grid points in the latent space)
having the maximum posterior probability values for all of the data-vectors. The color-
coding varies from the high (red) to low (blue) EUR values. Both the mean and the
mode projections show better clustering or separation in the final iteration. Analysis of
the components according to their importance still needs to be done.
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AASPI implementation

In the AASPI software, the GUI for GTM can be invoked by typing
aaspi_gtm3d &

or from the main aaspi_util window by selecting the Volumetric Attributes drop down
menu:

N aaspi_util GUI - Post Stack Utilities (Release Date: Novemnber 10, 2013) - O x
JJ File  Volumetric Attributes Spectral Attributes  Formation Attributes |Vo\umetric Classification Image Processing Help
Analytic Tools  Display Tools  Other Utilities  Set AASPI Default Paramet  Pca3d
kmeans3d
SEGY to AASP] AASPI to SEGY AASPI to SEGY som3d ]

format conversion
(single file)

format conversion
(multiple files)

format conversion

AASPI QC le Prestack Utilities
m3d K

SV I
SEGY to AASPI - Convert Poststack seismic volumes from SEGY to AASPI fe deﬂn| 3_D gener_ative to;laographic mapping classification

SEGY Header Utility SEGY Header Utility |

2D SEG-Y Line rather than 3D Survey 7 T

SEGY format input file name ;
("‘.segy,"‘.sgy,"‘p.SEGY,*.SGY}: I Browse [ View EBCDIC Header

AASPI binary file datapath [fouhomes/zhao7520/SEP data/

Note :

Since we are using a 2D manifold in N-dimensional space that is mapped to a 2D
latent space, programs gtm3d and som3d require three or more input attribute
volumes. Each attribute volume needs to be the same size. In the current version of
software the time window (start time and end time) needs to be smaller (at least one
sample) than the time window of input data.

The following GUI will pop up:

10
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X aaspi_gtm3d GUI (Release Date: August 14, 2015)

|| Eile Plot_Training_lterations GTM_Plot_Projections Help

30 Generative Topographic Mapping (GTM]
Probabilistic 3D Seismic Facies Analysis

Input atribute 1(* H): |."nuhamEs."zhac\'."52&."Mississ.lppi.l'GUI_test_-':Iip_magnilude_lum_fl]l_hl'lissl H Brnwsel
Input atribute 2(* H): [fauhomes/zhao? 520/Mississippi/GUI_test/Sobel_filter_similarity_MissiH Brnwsn_-l
Input atribute 3(* H): |.l'ou homesfzhao7520MississippiiGUI_test/glom_homogeneity_awvg_Missi H Browse 1

Input atribute 4(% H): |."ou|'|0meb.l'zhao?52[)."Mi5bissippi.l'GUI_l‘_eﬂ,n'glc|11_Er1tr0py_a vg_Missi H Browse

Input atribute S(* H): | Browse

Input atribute 6(* H): | Browse

Input atribute 7(*H): | A Browse
Input atribute Bi* H): | f

*Unique Project Name |r4i551 Suffix: (GUI_test

Parameters for GTM I Operation Window | Extended |

HHHH

Browse

Number of input attribute volumes
Number of samples in 20D latent Space :

Number of basis functions (= samples in 20 latent Space) :

Relative width of basis functions :

Weight regularization factor :

Number of data training iterations :

CDP decimation in training
Line decimation in training :
Wertical sample decimation in training :

Output training mean projections for QC?

Supervision [Optional)
I" cConstruct manifold from well or user-defined area? Supervision I
™ Project attribute data onto manifold computed from control data

Supervision file type: | Make ASCIl Supervision File

Mask (contaiming interpreter defined facies) filename (* H): |

ASCIl farmat supervision filename (* txt): | Browse

Browse|

Total number of supervision masks or wells used : o

Reset I

(c) 2008-2015 AASP| - The University of Oklahoma Execute gtm3d

As with SOM, the input consists of a suite of (1) seismic attribute volumes (3 or more
volumes) that the interpreter has chosen to differentiate different seismic facies, rock
types, lithologies, or other clusters. For example, a mass transport complex may be
characterized by relatively low coherence, strongly converging reflectors, and high
entropy (measured by the GLCM algorithm). Surrounding marine shales may be
characterized by moderate coherence, low reflector convergence (i.e. parallel
reflectors) and low GLCM entropy. Next, (2) enter the number of input volumes
represents the dimensionality of the dataset (automatically updated). Then (3) select

11
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the number of grid points to span the 2D latent space, K, (GTM Theory equation 2).
These points are mapped to the data-space. Then (4) select the number of non-linear
basis functions, J, — (GTM Theory equation 1) that form a regular array of Gaussian
functions. A linear combination of these basis functions is used to map the points in
the latent space to the data space. Both the latent space samples and the basis
functions should be squared integers value, (e.g. (256...400...625...900 etc.....).
They can be automatically selected from some pre-defined values in dropdown
menu. Care should be taken so that the number of basis functions (J) should be less
than the number of grid points in the 2D latent space (K). Next, (5) Enter the width of
the basis functions relative to the distance between two neighboring basis function
centers.. This width is used to define the standard deviation of the non-linear basis
functions, which is constant for a GTM model. If s=2 the basis functions will have
widths (std. dev) equals to two times the distance between two neighboring basis
function centers. Initially the code runs a multiattribute PCA to initialize the starting
values of W and B (see GTM Theory). Next, (6) enter the regularization factor, «a,
(GTM Theory equation 4) used to stabilize the linear equation for solving the new W.
This prevents any division by zero. Next, (7), enter the number of iterations to run
GTM. To minimize run times, only a fraction of the input dataset is used for training.
Therefore (8) enter the factor to decimate the dataset, which will be used for training.
For example the values 5, 5, 5 mean every 5" data-vector in a trace, inline, and
crossline is used for training, such that we train on every 1 out of 125 samples from
the input data. Finally, (9) choose if to output the mean projections for all training
steps for QC purpose.

Parameters for GTM  Operation Window l Extended ]

Start Time in s: Jo.a 10

Start Time in s: e 11

Use horizons as limits? |USE TIME| Click to change te Use Horizon |

Input upper horizon filename: | Browsel

(Choose Horizon Type Below:) View horizon ﬂlel Convert DOS to Unix|
Input lower horizon filename: | Browsel

(Choose Horizon Type Below:) View horizon ﬁlel Convert DOS to Unix|
Choose horizon type: Ig-ri:lded leg. Earthvision)j

Number of header lines to skip: I(}

Total number of columns: |5

Column number of line_no: |1

Column number of cdp_ne: Iz

Column number of |5

time or depth picks:

znull value (indicates missing pick): |-999999

Vertical axis of picked surface? : | Vertical Units of ’ms—_[

r Picked Horizons:

In the Operation Window tab, similar to som3d, one can choose between defining
the window using constant time or two horizons. Enter the (10) start time and the (11)
end time of the data for GTM seismic facies classification. Here, we suggest the user

12
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to take a one sample less than the actual size of the data, e.g. if the input data is
0.000s t01.000s and the sampling rate is 4ms (0.004s). Then take the start time =
0.004s and end time <0.996s. We recommend limiting GTM to the target area since it
is computationally intensive, and a horizon-based window is better for analyzing in a
relatively constant deposition environment. Below is how to define an operation
window using horizons. The panel shown is from som3d, and the gtm3d has an

identical operation window panel.

som3d clustering

som3d viewer I

Start Time (s) in s: 11

Start Time (s) in s: 15

Use horizons as limits?

|USE TIME] Click to change to Use Horizon |

1
2

{3

Input upper horizon filename: |

(Choose Horizon Type Below:)

srowse| {14

Input lower horizon filename:

(Choose Horizon Type Below:)

5 |_'§View horizon file| Convert DOS to Unix| 6

Browse

7
8 |—>\.ﬁew harizo ﬁlel Convert DOS to Unix| 9

Choose horizon type:

|aridded (e.g. Earthvision) =

10
11

12

13

14

Number of header lines to skip: |o
Total number of columns: |5
Column number of line_no: |1
Column number of cdp_no: Iz
Column number of |5

time or depth picks:

znull value (indicates missing pick): I.gggggg

Vertical axis of picked surface?

Fastive [

=

15
16

Vertical Units of |ms -|

Picked Horizons:

18

¢—

| i (—— fitl ] | X horizon file content —l
# Type: scattered data™M A 1|1 1 2043410 510781 1230.705°M -
2 Version: 6°M 12 2043520 510781 1244 7826°M
# Description: No deseription™M 1 3 2043630 510781 1243.203°M
# Format; free "M 1 1 2043740 510781 12420635°M
2 Field: 1 x°M 1 5 2043850 510781 1244.5078°M
#Field: 2 y*M I 1 6 2043960 510781 1246.4026"M
# Field: 3 z milliseconds "M | 1 7 2042070 510781 1243.0315°M
# Field: 4 column™M 1 @ 2044180 510781 1245.9817°M
# Field: 5 raw™M 1§ 2044200 510781 1248.2197°M
e e ctarguarh L 11 2044510 slo7el 1238 4037
# Units: meters ™~

d: M 1 12 2044620 510781 1238 7538°M
F ] fi | 1 13 2044730 510781 1237 3645°M
» 'b"fig":azt:’gd?:'z%dyu 1 14 2044880 510781 1237 B659~M
# Grid_space: 1473000.000000,1496500,000000,4939675.000000,4965950.000000 M } }2 ;g:‘;:gg 2{3;21 3;3 g:l:n:
# Scatered data: Not_available™M 1 17 2045170 510781 1238.9034"M
# 2 field: z*M ¥
# vertical_faults: Not_avaiable~M i ig gg::g:g :g;:i i:;::gswm
# History: No history "M -
22 unis: miliseroada M 1 20 2045500 510781 1238.6917°M
1485475 000000 4939712 500000 1851 985962 500 4~M 1o 70:5_510 Slo78L ”35-25“_ M
1485500000000 4039712 500000 1851 385841 501 4°M 1 33 2dsaac si0781 1237 7430~
1485475.000000 4939725000000 1852.000244 500 5°M 1A e el araaaaen
1485500 000000 4939725 000000 1851 571655 501 5°M 1 3 binest sioral a3y aaae
1485450 000000 4939737 500000 1851 743408 399 6~M e
1485475 000000 4939737 500000 1851 771729 500 6~M D aamEl maae
1485500 000000 4939737 500000 1851 674194 501 6~M A
1485425 000000 4939750 000000 1851 443237 498 7°M HEE e e
1485450 000000 4939750 000000 1851 378784 499 7~M L e Alame e
1485475 000000 4935750 000000 1851 413452 500 7°M T e e e
1485500 000000 4939750 000000 1851 851196 501 7*M 1 33 2046870 510781 1239 03B7°M
1485525 000000 4939750 000000 1852 091064 502 7*M 1 33 2046830 510781 1239.9282°M
1485400 000000 4936762 500000 1851 414063 497 8*M 1 34 2047080 510781 1239 6946~M
1485425 000000 4939762 500000 1851 286255 498 8™ 1 3% 3047150 S10781 1230 4826-M
1485450 000000 4935762 500000 1851 405273 499 8°M 1 36 2047260 510781 1239 3917°M
1485475.000000 4939762 500000 1851 379028 500 8~M g -

. 5 . 1 37 2047370 510781 1230 3479°M
l-isSS(_)D 000000 '19}9?(}_2 500000 1851 9]?_23!2 501 SHH 1 38 2047480 510781 1239.2074"M
1485525 000000 4936762 500000 1853 580200 502 8~M 1 39 2047500 210781 1749 0051°M
1485375 000000 4938775000000 1850.712646 496 9~M 1 30 2047700 510781 12388276°M
1485400000000 4938775000000 1851 130981 497 9~M 1 41 2047810 210781 1238 7441°M
1485425 000000 4939775 000000 1851 510254 498 9~M 1 &z Zneagn 10751 1 -
imadan NAANAN 4818774 ANAANG 1041 A3aT71 405 G =l 1 42 2047920 510781 L ™ =
Close
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Figure 1. (left) A gridded horizon file (EarthVision format). (right) An interpolated
horizon file with five columns (ASCII free format).
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Horizon definition
The horizon definition panel will look the same for almost all AASPI GUIs:

1. Start time (upper boundary) of the analysis window.

2. End time (lower boundary of the analysis window.

3. Toggle that allows one to do the analysis between the top and bottom time slices

described in 1 and 2 above, or alternatively between two imported horizons. If

USE HORIZON is selected, all horizon related options will be enabled. If the

horizons extend beyond the window limits defined in 1 and 2, the analysis

window will be clipped.

Browse button to select the name of the upper (shallower) horizon.

Button that displays the horizon contents (see Figure 1).

Button to convert horizons from Windows to Linux format. If the files are

generated from Windows based software (e.g. Petrel), they will have the

annoying carriage return (“M) at the end of each line (Shown in Figure 1). Use
these two buttons to delete those carriage returns. Note: This function depends
on your Linux environment. If you do not have the program dos2unix it may not
work. In these situations, the files may have been automatically converted to

Linux and thus be properly read in.

Browse button to select the name of the lower (deeper) horizon.

Button that displays the horizon contents (see Figure 1).

Button to convert horizons from Windows to Linux format. (see 6 above).

0 Toggle that selects the horizon format. Currently gridded (e.g. EarthVision in
Petrel) and interpolated (ASCII free format, e.g. SeisX) formats are supported. The
gridded horizon are nodes of B-splines used in mapping and have no direct
correlation to the seismic data survey. For example, gridded horizons may be
computed simply from well tops. The x and y locations are aligned along north
and east axes. In contrast interpolated horizons have are defined by line no,
cdp_no (crossline_no) and time triplets for each trace location. Examples of both
format are shown in Figure 1. If interpolated is selected, the user needs to
manually define each column in the file.

11.Number of header lines to skip in the interpolated horizon files.

12.Total number of columns in the interpolated horizon files.

13.Enter the column number containing the line_no (inline_no) of the interpolated

data triplet.

14.Enter the column number containing the cdp_no (crossline_no) of the interpolated

data triplet.

15.Enter the column number containing the time or depth value of the interpolated

data triplet.

16.Znull value (indicate missing picks) in the horizon files.

17.Toggle to choose between positive down and negative down for the horizon files

(e.g. Petrel uses negative down).
18.Choose the vertical units used to define the horizon files (either s, ms, kft, ft, km,
or m).

o T

20 @
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After providing all these parameters click “Execute GTM”.
If the verbose option is chosen, the output to your xterm will look like the following
image:

Start the training for , iteration t = 39

Initialize calculation matrix fro U = (FI_T*G*Fl + stable_factor*l)
Bimension of (FI_T*G*FI + (stable_factor)*l) matrix

rous 257 columns

Calculate (FI_T**RESP*D) matrix

Dinension of (FI_T**RESP*D) matrix 57

G;c;leskg Decsp, sywetric positive definite mateix (FI_ T'G'FI + (stable_factor)
-

Cholesky decsp successfully done info= 0

Solve for W(new) from the matrix equation - Least square solution
(FI_T*G*FI + (stable_factor)*I) U(neu) (FI_T**RESP*D)

Least sq soln done info=

reu W matrix calculated

Distance Matrix Formed

n_train, beta_sum

1557 627.5516
The neu beta value calculated: beta = 9,924283
calculate the responsibility matrix for training

file
mean_train_proj_39

open on unit 24
brite the mean projection of the responsibility on the latent space in ASCII fi
le
Start the training for , iteration t = 40

Initialize calculation matrix fro M = (FI_T*G*FI + stable_factor*])
Dimlon of (FI_T*G*F1 + (stable_factor)*l) matrix

257 columns 257
Calculate (FI_T**RESP*D) matrix
Dimension of (FI_T**RESP*D) matrix 57
l‘);;leskg Decsp, suwmetric positive definite matrix (FI_ T’G'FI + (stable_factor)
-
Cholesky decmp successfully done info= 0

Solve for W(new) from the matrix equation = Least square solution
(FI_T*G*F1 + (stable_factor)*]) ll(nev) = (FI_T**RESP*D)
Least sq soln done info=
new W matrix calculated
Distance Matrix Formed
n_train, beta_sum
1557 619.7287
The new beta value calculated: beta =  10,04956
calculate the responsibility matrix for tratning
File
mean_train_proj_40

open on unit 24
Erite the mean projection of the responsibility on the latent space in RSCII fi
le
Final value of beta = 10,04356

The GTM Model calculated for the training dataset
Apply the GTH Model on the full dataset

Step 1: Calculate the distance matrix, responsibility matrix for all the data
Step 2: Calulate the posterior mean projections of the responsibilities in the
2D Latent Space

calculate posterior mean projections: first_line,jline, last_line 1 70 402
calculate posterior mean projections: first_line,jline, last_line 1 75 402
calculate posterior mean projections: first_line,jline, last_line 1 80 402
calculate posterior mean projections: first_line,jline, last_line 1 &5 402
calculate posterior mean projections: first_line.jline, last_line 1 ) 402
calculate posterior mean projections: first_line.jline, last_line 1 S 402
calculate posterior mean projections: first_line.jline, last_line 1 100 402
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The number of iterations in the above example was set to be 40, such that the
iteration will stop after 40 iterations (green arrow 1). The GTM training step ends
(green arrow 2) and the results applied to the complete dataset (green arrow 3) to
create two attributes that provide the cluster locations (projection of the mean
posterior probability of the data-vectors) along the two axes in the latent space to be
used in subsequent cross plotting.

After the GTM classification has completed (shown by the green arrow 2 in the
terminal window), one can QC the mean distribution of the posterior probability
(responsibility) projections of the training data on the 2D latent space by clicking on
‘GTM QC Train Utility” (Presently this utility uses gnuplot). Gnuplot needs to be
installed to view this utility. Otherwise the ASCII files generated can be viewed in any
other graph utility manually. After clicking this flowing two gnuplot windows will pop

up.

{>< aaspi_gtm3d GUI (Release Date: August 14, 2015) — O X

JJ File | Plot_Training_lterations GTM_Plot_Projections Help
GTM QC Train Utility |8
Probabilistic 3D Seismic Facies nalysis

Input atribute 1{* H): I,fouhomes,fzhao]"SEDIMissi55ippifGUl_testfdip_magnitude_lum_filt_Missi.H Browsel

Input atribute 2(% H): [inihamecizhanTE20Micciceinni/3l Il tactiSnhel filter cimilarity Micci 4 anw:nl

A suite of plots to QC GTM convergence. The initial projection onto a 2D PC plane is
shown in cyan. Subsequent iterations are of the mean distribution of the posterior
probability (responsibilities) projections of the training data onto the 2D latent space are
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shown in red. Note the projections of x,, onto my is nearly identical in the last two
iterations (30 and 35), indicating convergence.

Comparision Posterior Mean Projection between iterarion 1 and Final Iteration 40

1 T T T T T T T T T
o* W o ¥ "mean_tr‘a;n_pr‘o,j_i“ using 2:% #+
L B Wy - 2 o * "méan_"irain_qyoxgao*&:s?:rs 2:3 R
* >
0.9F ", - +:;u£§ + o, ‘f !§§ix * . % i % % ¥enx X % ]
L * :‘ - + o W % - ;g
e * 3

2D latent Space

0 0,1 0,2 0.3 0.4 0.5 0,6 0,7 0,8 0.9 1
2D latent Space

The comparative plot of the posterior probability mean projections of the training data

after iteration 1 (in red) and after iteration 40 (in blue). The initial projection is computed

by projecting each data vector against the first two principal components.
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-ru-ru-r-- 1 roy5699 roy5693 66K Sep 25 11 36 mean_train_proj_31

-ru-ru-r-- 1 roy5699 roy5693 66K Sep 25 11:36 mean_train_proj_33

-ru-ru-r-- 1 roy5699 roy5693 66K Sep 25 11:36 mean_train_proj_34

-ru-ru-r-= 1 roy5639 roy5699 66K Sep 25 11:36 mean_train_proj_36

-ru-ru-r-= 1 roy5693 roy56939 66K Sep 25 11:36 mean_train_proj_35

-ru-ru-r-- 1 roy5699 roy5693 66K Sep 25 11:36 mean_train_proj_37

=ru-ru-r-= 1 roy5693 roy5693 66K Sep 25 11:36 mean_train_proj_38

~ru-ru-r-= 1 roy5699 roy5693 66K Sep 25 11:36 mean_train_proj_39

-ru-ru-r-- 1 roy5699 roy5699 66K Sep 25 11:36 mean_train_proj_40

—ru-ru-r-- 1 roy5693 roy5693 868 Sep 25 11:43 gnuplot_plot.tmp

-ru-ru-r-- 1 roy5699 roy5693 340 Sep 25 11:43 gnuplot_plotf,.tmp

-ru-ru-r-— 1 roy5633 roy5633 22K Sep 25 11:43 GTM_Comparision_Initial_Final_Mississippi_0.png

-ru-ru-r-- 1 roy5699 roy5699 120K Sep 25 12:08 gtm_Mississippi_O.out

-ru-ru-r-= 1 roy5699 roy5699 131K Sep 25 12:08 aaspi_gtm_pf.out

-ru-ru-r-= 1 roy5693 roy5693 359 Sep 26 22:41 legend_crossplot_projl_proj2.H

-ru-ru-r-- 1 roy56993 roy5693 3,0K Sep 26 22:41 crossplot_projl_proj2,He@

~ru=ru-r-= 1 roy5699 roy5699 365 Sep 26 22:42 histogram_crossplot_projl_proj2.H . S S
~ru-ru-r-- 1 roy5693 roy5693 6,9K Sep 26 22:42 crossplot. prOJl proj2.H gtm_ax!s1_|atent_space_pr01.ectfon_M!ss!_GUI_test.H
-ru-ru-r-= 1 roy5699 roy5693 363 Sep 26 22:44 a3 , X /v gtm_axis2_latent_space_projection_Missi_GUI_test.H
-ruru-r-= 1 roy5699 roy5699 6,4K Sep 27 10:2

-ru-ru-r-— 1 roy5699 roy%6399 7,5K Sep 27 11:0

-ru-ru-r-- 1 roy5693 roy5633 7,6K Sep 27 11:0

e 1 1od2203 rocesd 16K e 37 11303 e plepeeess | crossplot_ 6TM _axis 1 vs GTM_axis 2 0-255.* |
~ru-ru-r=- 1 roy5699 roy5693 487 Sep 27 11:04 cross) lot.parns

-ru-ru-r-- 1 roy5699 roy5693 51 Sep 27 11:

-ru-ru-r-- 1 roy5699 roy5693 0 Sep 27 11:04] crossplot _| LatenSpacel vs LatenSpaceZ 0-255, aasplcolor
~ru-ru-r-- 1 roy5699 roy5699 8,3K Sep 27 11:04] crossplot_LatenSpacel_vs_LatenSpace2_0-255,sep
~ru-ru-r-= 1 roy56399 roy5699 4,2K Sep 27 11:04] crossplot_LatenSpacel_vs_LatenSpace2_0-255,pal
~ru-ru-r-- 1 roy5639 royS639 9,7K Sep 27 11:04] crossplot_LatenSpacel_vs_LatenSpace2_0-255, landmark
-ru-ru-r-— 1 roy5699 roy5699 7,.6K Sep 27 11:04] crossplot_LatenSpacel_vs_LatenSpace2_0-255, iesx
—ru-ru-r—— 1 roy5699 roy5693 11K Sep 27 11:04f crossplot_LatenSpacel_vs_LatenSpace2_0-255,gpc
-ru-ru-r-— 1 roy5639 roy5699 5,0K Sep 27 11:04) crossplot_LatenSpacel_vs_LatenSpace2_0-255,geomodel ing
-ruru-r== 1 roy5699 roy5699 8,2K Sep 27 11:04] crossplot_LatenSpacel_vs_LatenSpace2_0-255,color

-ruru-r=- 1 roy5699 roy5693 14K Sep 27 11:
=ru-ru-r-- 1 roy5699 roy5699 5,5K Sep 27 11:
~ru-ru-r-- 1 roy5699 roy5693 383 Sep 27 11:04 Tegend_Lrossplot_| 15S1SS1pplan,

I!-ru-m—r-- 1 roy5693 royS693 383 Sep 27 11:04 histogram_Crossplot_ GTH _Mississippian H

crossplot_LatenSpacel_vs_LatenSpace2_0-255,c12
crossplot_LatenSpacel_vs_LatenSpace2_0-265,alut

~ru-ro-r—= 1 roy5699 roy5699 3,0K Sep 27 11:04 Crossplot_GTM_Mississippian, HE@
~ru-ru-r-- 1 roy5699 roy5699 8,2K Sep 27 11:04 Crossplot_GTHM_Mississippian,H
“Purur- 1 roy5699 v:oy§899 1,6K Sep 27 11:04 crossplot_17_15,out

The above terminal window shows the output created by the GTM program. The
mean distributions of the posterior probability projections of the training data on the
2D latent space are saved in ASCII files and are given by (green arrow 1). They are
plotted by the gnuplot utility as shown earlier. The mean distribution of the posterior
probability (responsibility) projections of the entire data volume onto the 2D latent
space are saved as two separate AASPI-format *.H files given by (green arrow 2,
names have been changed in the latest release) -
gtm_axis1_latent_space_projection_${project_name}_ ${sufffix} and gtm_
axis2_latent_space_projection_${project name} ${sufffix}). @These two mean
projection volumes can be colored by the crossplot, hsplot and the hliplot utility, which
will generate the crossplot file and the sep colorbar and the Petrel colorbar (green
arrow 3, names have also been changed in the latest release).

The crossplot, hsplot and the hlplot utility GUI can be invoked by clicking on the
“‘GTM Plot Menu” (yellow arrow) as shown in the GUI. Here the example is shown
using the crossplot utility.
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i || Eile Plot_Training_tteration

! X asspi_gtm3d GUI (Release Date: August 14, 2015) - a X

5 | GTM_Plot_Projections Help |

Probabilistic 3D Seismic Facies

Input atribute 2(*_H): Ifouhornt

Input atribute 3(* H): I{ounoml

3D Generative Topographic Mapj

' hiplot
Input atribute 1(* H): I{ouhomesr 2 £sippi/GUI_test/dip_magnitude_lum_filt_MissiH Browsel

A1 hsplot :

P AASPI - program crossplot (Release Date: July 16, 2015) - [m) X
Eile

Help
Input atribute 4(* H): |f°'-'h°"" crossplot - bins and crossplots two input attributes against a 2D hue and saturation color table.
» . The output crossplot data volume ranges in values from 0 to max_color-1
nput atribute 5(*.H): | which maps one-ta-one against its color table.
IESX, Landmark. Voxelgeo, geomodeling, Kingdom, and SEP format color tables are
generated which can be loaded into commercial workstation software applications.
: Input Attribute Plotted Against the X-Axis of the 2D Color Bar
Input x-axis attribute file name (* H): |520Maka3d.l’gtm3d test/gtm_axis1_latent_space_projection_Missi_GUI_test H Brcwsel
Title of the x-axis attribute: |G‘I‘M axis 1 Re scan Attr
Mirimum attribute value |D—
(lower values will be clipped): <:I 3
Maximum attribute value I].
(higher values will be clipped):
Input Attribute Plotted Against the Y-Axis of the 2D Color Bar
Input y-axis attribute file name (*H): |1?52‘0.n'wak33\1.’gtm3d _test/gtm_axis2_latent_space_projection_Missi_GUI_test Bruwsel
Title of the y-axis attribute: |G1‘M axis 2 Re scan Attr
Minimum attribute value |u
(lower values will be clipped): <: 6
Maximum attribute value I].
{higher values will be clipped):
Maximum number of calors 256 <: 7
(256 for petrel, geoviz, geomodeling, seisworks)
(230 for Kingdem Suite)
2D Color Map Size: No. of x-axis color bins: | * No. of y-axis color bins: I
{n_x_bins *n_y_bins <= max_colors) 7 i 15 8
Clockwise rotation of 2D color bar) 0
(Default = 0.0 with Blue up at 0 deg,
Red at 120 deg and Green at 240 deg):
Plot title: fM axis 1 vs_GTM axis 2 Missi_GUI_test <: 9
Crossplot output file (* H): |r_rossplot_GTM_axis_l_vs_GTM_a)-:is_Z_Missi_GUI_test H <:| 10
.lc} 2008-2015 AASPI - The University of Oklahoma Emecutel

In the crossplot
(responsibilities)
volumes should

GUI the two mean distribution of the posterior probability projections
are plotted along (1) the x and (4) the y axes. The range of the two
always be between 0 and 1(arrows 3 and 6). Press the “Scan” button

(arrows 2 and 5) to find the amplitude range in the volumes. (7) Enter the maximum
number of colors used for visualization. Remember that several of the major
commercial workstation software packages limit you to 256 colors. Enter (9) the plot
title and (10) the output crossplot file name more details on the crossplot workflow

can be found in
shown below.

the program crossplot documentation. The output is generated as
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2D color bar Posterior Probability Plot in Latent Space
(Panel=1) (Panel=1)
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Upper left figure shows a 2D color bar and upper right figure shows a 2D histogram
mapped to the 2D GTM latent space. Note the clustering in the histogram into several
“arms”. Bottom figure shows a time slice through the classified data volume at the
Mississippi Lime level. White zones indicate dead no-permit areas which give rise to
the anomalous histogram location in pink.

The mean of the posterior probability in the latent space is plotted as a 2D histogram
plot. The 2D colorbar is used to color seismic data-vectors according to their spatial
position in the 2D latent space. This crossplot volume generated from GTM
clustering and its corresponding colorbar can be imported into commercial
interpretation software for more sophisticated visualization and better integration with
well data. Simply convert the volumes
gtm_axis1l latent_space_projection_${project name} ${sufffix} and
gtm_axisl latent_space_projection_${project name} ${sufffix}) as exported to segy
format using the AASPI to SEGY (single file) utility as shown below:

21



Volumetric Classification: Program gtm3d

E)( aaspi_util GUI - Post Stack Utilities (Release Date: July 16, 2015) - ] *

File  Volumetric Attributes Horizon-based Classification Volumetric Classification Image Processing Display Tools Other Utilities  Set AASI Help 1

AASPI to SEGY AASPI to SEGY

format comvarson| OTak Conersion. forma conuerston | AASPIQC lttng | AASPIWark1ows | preeck s
AAMSPI to SEGY format conversion - Convert a single AASPI-format attribute file to SEGY format
*AASPI input file name (*.H). [520/waka3d/gtm3d test/gtm_axis2_latent space projection Missi_GUI testH Browse
SEGY format output file name (*.segy): | /segy/gtm_axis2_latent_space_projection_Missi_GUI_test segy
Vblock: (10000
Verbose: I
Output dead and padded traces?: ¥
Byte loc. of X-Coord [73 |4 byte int 7]
Byte loc. of Y-Coord: [77 |4 byte int »|
Byte loc. of line (inline) no : |5 ‘4 byte |ntj
Byte loc. of cdp (xline) no.: |21 ‘4 byte intj

[o 4 byte int =]
Execute

Supervision:

For a better analysis of the how likely one type of facies occurs we need to input some
model wavelets from picked within the survey or areas of interest. Such analysis is
performed by calculating the Bhattacharyya distance (Bhattacharyya, 1943) between
the averaged responsibility pdf of supervision data in a particular facies and a data
sample. In this way the similarity between this data sample and the particular facies is
measured. This is done by clicking the “supervision” button (Arrow 1B). After which a
few buttons becomes active. Currently two different types of supervision files are
supported, being AASPI .H format mask files or ASCIl format text file. More details
about these two file types will be given in the later part of this section. The .H mask file
is generated using utility aaspi_plot, and the ASCII text file is generated using utility
aaspi_make_training_clusters. Use the button 2B to switch between these two types
of supervision file. If ASCII file type is selected, the user can use button 3B to invoke
aaspi_make_training_clusters and generate a supervision file. For how to use
aaspi_make_training_clusters, please refer to the documentation of utility
aaspi_make_training_clusters.

An AASPI .H format mask file is a 3D volume of facies labels and shares the same
geometry as input seismic (attribute) volumes. Each sample point is assigned an integer
number representing a facies, and the program gtm3d will pair the input seismic
attribute with such facies label at the same spatial location to form a supervision dataset.
An ASCII format text supervision file is a list of supervision vectors. If N is the total
number of columns in that file, then the first N-1 columns are input attributes (one
attribute a column), and column N is the facies label. In this way, each row of this file
represents an N dimensional data vector, which consists of N-1 attributes and 1 facies
label.
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Then the corresponding supervision file should be provided using one of the Browses
(4B), and fill in the number of facies (masks) at 5B. The reset button (6B) can be used
to start over unsupervised GTM analysis.

Supervision (Optional)
I¥ Construct manifold from well or user-defined area? | Supervision | <:| 1B

el
¥ Project attribute data onto manifold computed from control data ?'L
Supervision file type: |USE AASPI MASK FILE| Click to change to ASCII file | Make ASCII Supervision File K: 3B
Mask (containing interpreter defined facies) filename (* H): ] Browsel <:| 4B
ASCIl format supervision filename (*.txt): I Browsel
Total number of supervision masks or wells used : 0 <:| 5B
Reset <::I 6B
{c) 2008-2015 AASPI - The University of Oklahoma Execute gtm3d l
Most likely occurrence of Facies Type-1 Probability
Of Overlap

1.0

:
8
Line no.
Most likely occurrence of Facies Type-2 Probability
Time (s)=0.55 (Panel=11) ot Quertap
s
o
8
Line no.
The above two figures show the most likely occurrence of facies Type 1 and Type 2.
The output files are names as

gtm_bhattacharyya_distance_mask_n_${project_name} ${suffix}, where n is the
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facies label index. The magenta color highlights regions with the highest probability
(90-100 %) of occurrence of the facies similar to the facies around an input well. The
blue regions have very low likely that the facies is similar to the facies around the
input well. And the black regions have no similarity to the facies type around the input
well.

Creation of volume probes in Petrel using the latent space projections onto
eigenvectors 1 and 2

The generated GTM projections can be then imported to any commercial seismic
data interpretation packages for better visualization. In this document we use Petrel
as an example for illustration purpose. The
gtm_axisl latent _space_projection_${project name} ${sufffix} and
gtm_axis2_latent space_projection _${project name} ${suffix} files are converted
into .segy and are imported into Petrel. Generate a volume probe with these two
volumes around the selected horizon as shown below. Crossplot utility which is
common in most of the commercial software can be used to crossplot these two
volumes and then the clusters on the latent space can be picked manually and
colored which then can be simultaneously visualized in the seismic volume.

& Settings for "Horizon probe 1’ 50|
€ Info | Style '.'ol..rrﬁ@ Horizons | Extraction gtm_axis1 latent_space_projection_Missi_GUI_test.H

f’:"’c’l"J'b‘:"“‘ gtm_axis2 latent space_ projection_Missi_GUI test.H

-‘.>: @ GTM_proj1_Tutonial_1 [Realized] 1
2nd cuby
= (9 GTM_proj2_Tutorial_1 [Realized] 1 <::| d
3rd cube

=)

a

Cosendening
Made

|CROSSPLOT: Color: Color table 1. Opacity: Crossplot selection -
Threshold

Geobody masking
Geobody

=]
Mode
Drsable/MNone >

Figure above shows the crossplotting tool as it appears in Petrel. Note the file names
have changed in the recent release and are shown in the gray box.
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% Settings for 'Horizon probe 1’

&% Info | Style | Volumes DDECiT‘!<:|Extraction

Mutti-volume control: Histogram @ Crossplot

Selection
@ Opacity

B

Color

GTM_proj2_Tutorial_1 [Realized] 1

GTM_proj1_Tutorial_1 [Realized] 1

Figure 11. The pdfs on the latent space as it appears on Petrel’s crossplot tool.

In Petrel’s “Opacity” tab click on Crossplot to generate a 2D histogram of the two
volumes as shown above. Also click on density as marked with the green arrow. The
resulting image shows the mean distribution of the posterior probability
(responsibility) projections of the volume probe selected on the 2D latent space. The
“high-density” of the histogram appear in the crossplot as bright colors (light red,
yellow, green, blue, and violet). Once visualized, the interpreter draws polygons
around hypothesized clusters which are then plotted using Petrel’s volume probe
tool.
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E Settings for 'Horizon probe1' \E
|6 Info | Style | Wolumes | Opacity | Horizons | Extraction
Mutti-volume control: (7 Histogram @ Crossplot
Selection
@ Opacity
l.oi .
~— () Color
-
E [
)
4 N BO
— Toals
5 A
3 >
F o] »
_
gI 03 + 'I View
E g ' ) Points
o 0.2 @ Density
0.1
A e S B
02 04 0.6 08 1.0
GTM_proj1_Tutorial_1 [Realized] 1

Figure 12. Interpreter-generated polygons displayed on top of the 2D historgram
shown in the previous image. In this manner, the interpreter can select clusters of
interest and see how they relate to well control or classic interpretation (e.g. salt
bodies, mass transport complexes, gas-charged fans) in the 3D volume.

Pressing “Ctrl” key to select multiple polygons on the cross-plot. In the Figure 12 we
have select six polygons representing most of the data distribution. Figure 13 shows

a horizon slice along the top Mississippi Lime through the interpreter-generated
clusters.

Figure 13. Interpreter generated clusters. Image logs indicate that the blue colors
correspond to tight lime and tight chert while red and green correspond to porous
tripolite and fractured chert.
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Example 2: Veracruz Basin, Southern Mexico

The following example comes from a carbonate wash play in the Veracruz Basin,
Mexico, described by Roy et al. (2014).

a) 2D Histogram for the EOC-30 zone ‘Llser-deﬁnedciustemfnrtheEOG-.‘.iOzane
w - (c) Regional Geologic Model
08 - k
3 R
E v
e { .
E L3 .
3 ]
-
E 04
- {
02 -
“.- - .
....... -
02 03 04 0S5 06 07 08 09 10 02 03 04 05 06 07 08 0% 10
Latent Space Axis1 Latent Space Axis1
b) 2D Histogram for the EOC-10 zone 10 A User—definedclusters for the EOC-10zone
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=
¢ A
b 04
E
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................. - (Courtesy of PEMEX E&P)
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Figure 14. The 2D cross- plot of the mean posterior distribution map of the
‘responsibilities” of the data onto the 2D Latent space for the reservoir units EOC-30
and EOC-10. The cross plot is generated by cross plotting to GTM projection volumes.
(a) The projection of the mean “responsibilities” of EOC-30 unit. The 2D histogram is on
the right and the scatter crossplot is on the left. Seven clusters are visible on the latent
pace corresponding to the high-density points. These clusters are delineated by
polygons with different colors and in the subsequent figure will help to visualize the
different classes in the seismic data. (b) The projection of the mean “responsibilities” of
EOC-10 unit. The mineralogy content and porosity distribution for the EOC-10 and the
EOC-30 reservoir units being similar the clusters for both of these reservoir units lie on
the same location in the 2D latent space. They are also color-coded similarly since both
reservoir units have similar rock type. (c) Regional conceptual sedimentary model (Roy,
2013).
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Figure 14. Generating the seismic facies volume (geobodies) from GTM clustering
within the reservoir units EOC-10 and EOC-30, considering the input seismic volumes -
lambda-rho (Ap) vs. mu-rho (up) and P-wave impedance (Zp) vs. Vp to Vs ratio (Vp/Vs).
Different polygons around classes signify rock types for reservoir units (a) EOC-10 and
(b) EOC-30. Seven different facies class have been identified from the clusters in the
latent space and are delineated by polygons of different colors. (c) The horizon probe
generated for the EOC -10 and the EOC-30 reservoir units after the unsupervised GTM
analysis. The white arrows highlight the faults. The most abundant facies are the orange
facies (Roy, 2013).

Example 3: Barnett Shale

This example comes from a paper by Roy (2013), applying GTM to the Barnett Shale
play.

The inputs to our GTM algorithm are different seismic inversion volumes (P-
impedance, lambda-rho, mu-rho) which help in understanding the highly
heterogeneous nature of the Barnett shale. For the above attribute generations the
seismic data between the Marble faults horizon and the Viola limestone is
considered. The impedance volumes better reflect a heterogeneous shale reservoir
based rock type.
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Figure 15. The mean posterior distribution map of “responsibilities” of the training
data in 2d latent space. Here, the first graph shows initial projection, on the two
projection axis. Here, you can see that the separation in the data increases and data
is getting clustered.

The mean posterior distribution map of the “responsibilities” of the data in the 2D latent
space
i
& 09
-z‘ 1 ‘.
g 08 — T :
c
s 07
0& P
= 06
5 J
E ” -4
g 1 . Class selection from the
g 04 ~3 1 GTM crossplot
z ]
8§ 91
'U J
R
= 01 s -
§ ] A
S 00 e e e
o 01 02 03 04 05 06 07 08
projection of data-vector on latent axis 1

29



Volumetric Classification: Program gtm3d

(C) Scales of brittle-ductile
couplets
1* order 2" order 3" order

Nt

2D histogram A (b) User defined Clusters

(@ a

Latent space Axis 2

0 0 I gy 5 SO

Slattet
@ al(2011)

Figure 5.13. Well-probes for Well A generated by cross-plotting the two GTM projection
volumes. (a) The 2D histogram generated from the cross-plot of the two GTM projection
volumes. (b) Eight user-defined polygons drawn around the clusters seen in (a). (c)
Brittle-ductile couplets proposed by Slatt et al, (2011). (d) Well-probe data colored by
the clusters selected in (b). The Upper Barnett, the Lower Barnett exhibit a different
cluster composition and are in turn different from the intervening Forestburg Limestone
(in gray). (e) The microseismic events from this well are plotted along with the well-
probe. Note the microseismic events are more localized in the red and light green facies
and misses the brown facies, thus the red and light green facies 125 are interpreted as
brittle and brown facies to be ductile. The results are consistent with the 2nd order
brittle-ductile couplets proposed by Slatt et al, (2011).
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Figure 16. Four different zones within the Barnett Shale selected using a gamma ray
log from a well within the survey. The corresponding 2D histograms of the mean
posterior probability projections for (b) the Upper Barnett (zone B), (c) the top of the
Lower Barnett (zone C), (d) the middle of the Lower Barnett (zone D) and (e) the
bottom of the Lower Barnett Shale (zone E) are shown.
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Figure 17: 2d histogram of zone D defined above and below by stratal slices
corresponding to the well log picks in Figure 5.15a. (b) User defined polygons are
created and are colored consistent with the well-probes in Figures 5.13 and 5.14. (c¢)
The facies volume probe of middle section of the Lower Barnett Shale zone D
visualized along with the well-probes with the colors selected according to the
clusters in (b). Note that this zone has least similarity to the Upper Barnett Shale.
With more of the microseismic events concentrated in the pink, light green and red
facies as seen in the well-probes, and the dominance of siliceous non-calcareous
shale lithofacies (Singh, 2008), this zone 3 is interpreted as brittle with results
consistent with Perez (2013).
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Figure 18. 2d histogram of zone E defined above and below by stratal slices
corresponding to the well log picks in Figure 5.15a. (b) User defined polygons are
created and are colored consistent with the well-probes in Figures 5.13 and 5.14. (c¢)
The facies volume probe of bottom section of the Lower Barnett Shale zone E
visualized along with the well-probes with the colors selected according to the
clusters in (b). This zone corresponds to the hot gamma ray zone (Pollastro et al.,
2007). Six clusters are also identified from the mean posterior probability projections
(in the top inset) are polygons are drawn and are colored consistent with the well-
probes. With very few of the microseismic events in the brown colored facies we
interpret from (Singh, 2008 and Perez 2013) the brown colored rock to be ductile and
high in TOC content. The pink, light green and red facies are the regions with brittle
shale.
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