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Volumetric Self-Organizing Maps for 3D SEISMIC FACIES 

ANALYSIS – PROGRAM som3D  
 

Computation flow chart 
 
This 3D Facies classification analysis is comprised of two separate modules; 
som3d and plot_clusters.  The multiattribute_pca is now internal to the som3d 

program, which preconditions the different input attribute volumes that serve as input to 
som3d.  It calculates the eigenvalues and eigenvectors from input dataset, which will be 
used to project the input data vector into the latent space. The last module - 

plot_cluster assigns colors to the different trained facies into a 2D RGB gradational 
scale and plots the output seismic facies volume (Matos et al., 2009, Roy et al., 2011). 
The som3d program will also output two files of projections on two SOM axes, which 

can be directly crossplotted in crossplot or other modern interpretation packages using 
a 2D RGB colorbar, making visualization more convenient and interactive. If using such 
crossplot for visualization, plot_clusters is not necessary to use. Below is the flowchart 

showing the workflow of 3D seismic facies analysis.  
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Theory 

Self-organizing map (SOM) is closely related to vector quantization methods (Haykin, 1999). Initially we assume that 

the input are represented by J vectors in a N-dimensional vector space Rn, xj= [xj1, xj2, xj3 …. xjN] where N is the number 

of input attributes (or amplitude samples for “waveform” classification) and  j=1,2,…,J is the number of  vectors 

analyzed. The objective of the algorithm is to organize the dataset of input seismic attributes into a geometric structure 

called the SOM. SOM consists of neurons or prototype vectors (PVs) organized by a lower-dimension grid, usually 2D, 

which are representative of the input data that lies in the same N-dimensional space as the input seismic attributes. PVs 

are also termed as SOM units and typically arranged in 2D hexagonal or rectangular structure maps that preserve the 

neighborhood relationship among the PVs. In this manner PVs close to each other are associated with input seismic 

attribute vectors that are similar to each other. The number of these PVs in the 2D map determines the effectiveness and 

generalization of the algorithm. Let’s consider a 2D SOM represented by P prototype vectors mi, mi= [mi1, mi2…. miN], 

where i=1, 2, …, P and N is the dimension of these vectors defined by the number of  input attributes (or samples for 

waveform classification).  

 

During the SOM training process, an input vector is initialized and is compared with all N-dimensional PVs on the 2D 

grid, or latent space. The prototype vector with the best match (the winning PV) will be updated as a part of SOM 

neighborhood training. 

 

Given this background, Kohonen (2001) defines the SOM training algorithm using the following five steps: 

Step 1: Consider an input vector, which is randomly chosen from the set of input vectors. 

Step 2: Compute the Euclidean distance between this vector x and all PVs  𝐦i,i=1, 2,…p. The prototype vector  𝐦b, 

which has the minimum distance to the input vector  x, is defined to be the “winner” or the Best Matching Unit, 𝐦b : 

  ||𝐱 − 𝐦b|| =  MIN{||𝐱 − 𝐦𝐢||}    …………………………………. (1) 

Step 3: Update the “winner” prototype vector and its neighbors. The updating rule for the weight of the ith PV inside 

and outside the neighborhood radius σ(t) is given by   

  𝐦i(t + 1) =  𝐦i(t) +  α(t)hbi(t)[𝐱 − 𝐦𝐢(t)]  if ||𝐫i − 𝐫b||  ≤ σ(t)  (2a) 

        =  𝐦i(t)                                                    if  ||𝐫i − 𝐫b|| > σ(t), (2b) 

where the neighborhood radius defined as σ(t) is predefined for a problem and decreases with each iteration t.    𝐫b  and  

𝐫i are the position vectors of the winner PV  𝐦b and the ith PV  mi respectively. We also define hbi(t) as the 

neighborhood function, α(t) as the exponential learning function and T as the length of training. hbi(t) and 

α(t) decrease with each iteration in the learning process and they are defined as  

                        hbi(t) = e−(||𝐫𝐛−𝐫𝐢||2/2σ2(t) , and …………………………………. (3) 

                        α(t) = α0(
0.005

α0
)t/T .  …………………………………. (4) 
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Step 4: Iterate through each learning step (steps 1-3) until the convergence criterion (which depends on the predefined 

lowest neighborhood radius and the minimum distance between the PVs in the latent space) is reached. 

Step 5: Color-code the trained PVs using 2D or 3D gradational colors (Matos et al. 2009). We will use an HSV model 

with for 2D spaces will be defined as hue, ℋ,  

  ℋ =  tan−1 (
v−1

2⁄

u− 1 2⁄
)       ……………………………………………. (5) 

and saturation, 𝒮, as 

                           𝒮 =  [(u − 1
2⁄ )

2
+  (v − 1

2⁄ )
2
]1/2         …………………………………………………. (6) 

where u and v are the projected components onto the 2D latent space defined by the eigenvectors 𝐯(1)  and 

𝐯(2) . The new sets of PVs are colored using the 2D HSV color palette with equations 5 and 6. 

In traditional Kohonen SOM, the position of an SOM node in the SOM latent space is only based on the 

distance between the corresponding prototype vector (the projection of an SOM node in the input data space) and the 

nearest data vector in the input space. In our implementation, we add a step of adjusting the position of all SOM nodes 

according to their distances from the current winning node (best matching unit) in both input data space and SOM latent 

space. The adjustment rule is (Shao and Yang, 2012): 

𝐩𝑘(𝑡 + 1) = 𝐩𝑘(𝑡) + 𝛼(𝑡) ∙ (1 −
𝛿𝑣𝑘

𝑑𝑣𝑘
) ∙ (𝐩𝑣(𝑡) − 𝐩𝑘(𝑡)), ∀ 𝑘 ≠ 𝑣.      …………………………..(7) 

In Equation 7, 𝐩𝑘(𝑡) is the positon of an SOM node before adjustment; 𝐩𝑘(𝑡 + 1) is the position of an SOM 

node after adjustment; 𝐩𝑣(𝑡) is the position of the current winning node; 𝛿𝑣𝑘  and 𝑑𝑣𝑘  are the distance between an SOM 

node and the current winning node in input data space and SOM latent space, respectively. 𝛼(𝑡) is the learning rate 

which exponentially decays over iterations. 

The input of our SOM3D algorithm consists of several mathematically independent volumetric attributes where the 

number of input attributes determines the mathematical dimensionality of the data. Due to the limitation of our 

visualization software which provides only 256 colors, we have limited our over-defined prototype vectors to a 

maximum of J=256. In this application, we normalize our input data vectors using a Z-score algorithm. Thus our input 

data has a vector assigned to each of the (x, y, z) location in our volume (which are actually the normalized input 

attribute values at that location). We call this new volume the normalized multi-attribute volume and project it onto a 

2D latent space by Principal Component Analysis. The 2D latent space is defined as explained earlier. If there are six 

input attribute volumes, each of the PVs in the 2D latent space is 6-dimensional.  This 2D latent space is sampled 

uniformly by 256 PVs. The PVs are trained in the 2D latent space and their positions updated after each iteration, 

resulting in the new updated position of the PVs. When the updating slows down the training process stops. With an 

increasing number of iterations, the PVs move closer to each other and to the data points within the latent space. The 

HSV colors are assigned to the PVs according to their distance from their center of mass and their azimuth (equations 5 

and 6). Once trained, the distance is computed between each PV, mi′, and the multiattribute data vector, x, at each voxel  
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This Program som3d is launched from the 3D facies classification in the main 

aaspi_util GUI  
 

 
 
 

 

Computing som3d module 
 
Setting the primary parameters is the first step of analysis. Use the browser on the first 
eight lines to choose the input seismic data file (Arrow 1). It is not mandatory to take in 

eight inputs. The number of inputs can vary from two – eight. The input attributes that 
one considers for facies analysis will vary according to the requirements. For identifying 

the depositional facies variation the volumetric attributes such as dip magnitude, 
coherency, GLCM attributes, spectral magnitude, coherent energy can be considered 
as input. For characterizing geo-mechanical variation in shale plays one should 

consider different volumes that helps in identifying the rock physics such as inversion 
volumes, lambda-rho, mu-rho, intercept or gradient AVO volumes, etc. Specify the 
number of input attributes in the field labeled “Number of attributes to use” (Arrow 2).  

This value will be updated automatically when a file is selected. Do not forget to give a 
“Unique Project Name”. A Z-score algorithm is used to normalize the input files. 

using 

                         ||𝐱 − 𝐦𝐛
′ || =  min{||𝐱 − 𝐦i

′||}   …………………………………………. (7) 

where 𝐦b′ is the nearest PV to the input data sample vector 𝐱.  Each voxel is then assigned the color of  𝐦b
′ . In 

this manner, two dissimilar neighboring samples in the seismic volume will be far apart in the latent space and 

have different colors. Conversely, two similar samples in the seismic volume will have nearly the same color. 

Each color represents a seismic facies, most of which are geologic facies, but some which may be seismic 

‘noise’ facies.  
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The maximum number of classes can be any large number (Arrow 3). In using SOM, we 

always start with an over-defined number of classes and allow the algorithm to 
automatically form fewer classes.  Most of the commercial visualization software can 

only display 256 colors thus generally is <= 256. However, with a more uniform 
sampling of the latent space, we generally have more confidence in clustering. Thus in 
this case we take 4096 classes, which later can be represented by a 64 – by – 64 

colorscale. The eigenvectors and the eigenvalues are now calculated internally. They 
serve as the first approximation to the latent space forming the initial set of untrained 
vectors.   The standard deviation value scales the 2D Latent space (Arrow 4). A value of 

3σ makes the latent space represent 97% of the data. Set the initial value of the SOM 
neighborhood radius within which all neighbor prototype vectors are updated (Arrow 5). 
Put the maximum number of iterations (Arrow 6). Select the decimation rate of input 

data used for training (Arrow 7). The operation window options are defined in the 

Operation Window tab shown below. 
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Horizon definition 
 

The horizon definition panel will look the same for almost all AASPI GUIs: 

 

1. Start time (upper boundary) of the analysis window.  

2. End time (lower boundary of the analysis window.  

3. Toggle that allows one to do the analysis between the top and bottom time slices 

described in 1 and 2 above, or alternatively between two imported horizons. If USE 

HORIZON is selected, all horizon related options will be enabled. If the horizons 

extend beyond the window limits defined in 1 and 2, the analysis window will be 

clipped. 

4. Browse button to select the name of the upper (shallower) horizon. 

5. Button that displays the horizon contents (see Figure 1). 

6. Button to convert horizons from Windows to Linux format. If the files are generated 

from Windows based software (e.g. Petrel), they will have the annoying carriage 

return (^M) at the end of each line (Shown in Figure 1). Use these two buttons to 

delete those carriage returns. Note: This function depends on your Linux environment. 

If you do not have the program dos2unix it may not work. In these situations, the files 

may have been automatically converted to Linux and thus be properly read in.  

7. Browse button to select the name of the lower (deeper) horizon. 

8. Button that displays the horizon contents (see Figure 1). 

9. Button to convert horizons from Windows to Linux format. (see 6 above). 

10. Toggle that selects the horizon format. Currently gridded (e.g. EarthVision in Petrel) 

and interpolated (ASCII free format, e.g. SeisX) formats are supported. The gridded 

horizon are nodes of B-splines used in mapping and have no direct correlation to the 

seismic data survey. For example, gridded horizons may be computed simply from 

well tops. The x and y locations are aligned along north and east axes. In contrast 

interpolated horizons have are defined by line_no, cdp_no (crossline_no) and time 

triplets for each trace location. Examples of both format are shown in Figure 1. If 

interpolated is selected, the user needs to manually define each column in the file. 

11. Number of header lines to skip in the interpolated horizon files. 

12. Total number of columns in the interpolated horizon files. 

13. Enter the column number containing the line_no (inline_no) of the interpolated data 

triplet. 

14. Enter the column number containing the cdp_no (crossline_no) of the interpolated 

data triplet. 

15. Enter the column number containing the time or depth value of the interpolated data 

triplet. 

16. Znull value (indicate missing picks) in the horizon files. 

17. Toggle to choose between positive down and negative down for the horizon files (e.g. 

Petrel uses negative down). 

18. Choose the vertical units used to define the horizon files (either s, ms, kft, ft, km, or 

m). 
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Figure 1. (left) A gridded horizon file (EarthVision format). (right) An interpolated 
horizon file with five columns (ASCII free format). 

 
 

Plotting (1): plot_clusters module (old) 
 

The 2nd step is to color the trained 3D seismic dataset and highlight the variation in 
seismic facies. Different facies are represented by different colors. The SOM3D Viewer 
is the next tab. The outputs from SOM3D serve as input to this module (Arrow 1 and 2). 

This module helps QC the facies volume after each training. This also generates a suite 
of color files, which can be taken as input in visualization software like Petrel. 
 

 
 

Step 2(1): This step creates 

the various color-files and 

colors the projected trained 

vectors and the 3D trained 

dataset. The cluster file 

(cluster3d*) and the 

projection file (project3d*) 

are taken as input. The 

Minimum lightness and the 

maximum lightness values 

help in changing the 

minimum and maximum 

saturation value of the 2D 

gradational colorbar. The 

*.alut file generated by this 

module can be imported 

into Petrel (shown in the 

later section) for 3D 
visualization.  
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Above is the output generated from the SOM3D facies clustering module with 4096 

initial classes. Note that clusters start forming for iteration 4 and the overdefined 4096 
classes are actually represented by 4-5 colors. The volumes used in this analysis are 
the dip magnitude, sobel edge detecting filter, GLCM entropy and GLCM dissimilarity. 

Thus this selection will represent both structural and depositional features together in 
the seismic facies volume. Note that the dark bule component in the seismic facies 
volumes are the stuctural features representing high dip or faults or fractures. The 

depositional facies are in light or dark green and red. This seismic facies represents a 
timeslice within the Mississippian Lime. Thus this seismic facies volume when tied to 
well information can represent the rock types in the survey. The input volumes should 

be selected knowing the requirements of the outputs. For example the facies volume 
generated by using the inversion, lambda-rho and mu-rho volumes will represent more 
variation in the rock types based on the porosity and clay content. 
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Executing this module will generate the following outputs as shown below. The following 
dataset from a Mississippian lime is shown as an example. Below are the list of files that 
are created at the end. The som_waveform* is the  final clustered file which should be 

made .segy for interpretating the results in any vizualization software, the 
som_project*ascii file is the initial set of projections with the untrained prototype vectors. 

It forms a elliptical grid of projection points. The project3d* and cluster3d* are the 

clusterd SEP files after each iteration and are used to create separate colobars after 
each iteration with the plot_cluster program. The p_vector* are the ascii files with the 

projection of the trained clusters prototype vectors. The plot_cluster program generates 
the *sep and the *alut and other colorbars. Different colorbar sets are created for each 

iterartions. 
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In visualization software like Petrel only a max of 256 colors can be imported. Thus 

below a second example of SOM3D is shown with a different set of attributes and with a 
lesser number of initial classes (256). 
 

 
 

Prototype vectors projected against the first two eigenvectors for iteration 1 and 2. 
 

 
 
Output generated from the facies clustering module with a lessser number of classes 
256. The above figure shows a representative  time slice of the Oswego level at 

iteration 1 and 2. Different colors indicated by the arrows indicates different depositional 
seismc facies. Arrows indicate a channel facies which becomes more prominent after 
the second iteration. 

 

 

 
 
 

Iteration 1 Iteration 2 
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Plotting (2): crossplot module 
 

The user can also use crossplot module in the aaspi_util to crossplot two generated 
SOM axes, generating the same classification volume as the last iteration volume 
generated in the plot_clusters module. The crossplot module can be found under 
Display tools in the aaspi_util GUI: 

 

 
 

The crossplot GUI is shown below: 
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SOM axes 1 and 2 are taken as inputs for x and y axes in the crossplot. And to ensure a 
smooth color transition, 4096 colors are used for the 2D colorbar to be generated (64 by 

64 colors). The result is shown below (from a different survey in Canterbury basin, New 
Zealand): 
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Visualization of the volumetric clustered outputs volumes in Petrel (old) 

 
The following tutorial shows the important steps of exporting the final trained dataset 
and the corresponding colorfiles into Petrel and making volume probes for better 
interpretation. The .segy and the .alut files (highlighted in yellow arrows above section) 

are loaded into Petrel. This new colorbar should be used for visualizing the clustered 
volume. 
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Before visualizing the volumes in Petrel the following changes in the settings should be 

done : 
 

 
 
For better visualization there should be no interpolation between adjacent voxels and it 
should be turned off (highlighted in the blue box). Make sure the max and min range of 

the dataset corresponding to the ranges shown in the histogram in the settings panel. 
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Above is an example visualization of the 3D clustering output in Petrel. The inline and 
crosslines are co-rendered with the seismic amplitude for better interpretation of the 

results. 
 

 
 

Step 3: Creating surface probe in 

Petrel: Right click on any 

horizon and – Insert 

horizon/surface probe for the 

required horizon. In the probe 

settings do not click on Seismic 

value interpolation. Click on the 

opacity tab to see the histogram 

of the input dataset. 
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The above figure shows the histogram of the input dataset. One can play with the 
transparency to create different geobodies.  
 

 
 
Above is an example of a surface probe of the 3D seismic facies volume in Petrel. The 
various lithological variations and discontinuities can be observed in the figure. 
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Example of a surface probe of the 3D seismic facies volume co-rendered with a 
coherency volume to map the channel boundaries better interpretation. 
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Visualization by corssplotting two SOM axes in Petrel 
 

In the previous section, we described how to visualize the AASPI generated SOM facies 
volume in Petrel. However, as discussed in the earlier sections, most commercial 
interpretation software can only display a finite number of colors if using a discrete 

colorbar. To overcome this issue, instead of generate a SOM facies volume with its 
corresponding colorbar in AASPI, we can crossplot (corender) the two SOM axes 
directly in an interpretation package. In this way, we are able to generate a facies 

volume with much more smooth transition in color, and we also use Petrel as an 
example to show this trick. 
 

We import the two SOM axes into Petrel, and use the volumetric corendering probes to 
corender these two volumes. In this case, we use horizon probe as we want to display 
the facies along a horizon of interest. As shown in the screenshots below, we select the 

two SOM axes as the input volumes, and make the horizon probe aligned along the top 
of the horizon (in order to actually see facies on that horizon). 
 

    
 
In order to fake a 2D colorbar, we then need to change the colorbars of the two SOM 

axis volumes as follows, and make the max and min value of the colorbar to best fit the 
data range: 
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In this way, we are actually faking a 2D colorbar like this: 

 

 
 

And if we see the horizon probe from top (display in a 2D window in Petrel),  the 
crossplotting (corendering) result will be look like this: 
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In this image we are also corendering Sobel filter similarity to highlight the edges. To do 

so we extracted the Sobel filter similarity along the horizon that we used in the horizon 
probe, and display in the same window with the horizon probe, using an opacity curve 
shown in the figure. The case study in which we generated the facies map above can 

be found in Zhao et al. (2016). 
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Geobodies extraction on the facies volume in Petrel (old) 
 

The following is a simple workflow to show the geobodies extraction in Petrel. The 
example is taken from a deep water Gulf of Mexico dataset (Roy et al, 2011, GCSSEPM 
2011 talk).  The figure below shows the horizon probe extracted around one of the 

horizons of interest. We apply transparency to the colorbar to highlight the continuous 
high amplitude seismic facies, which are interpreted as basin floor deposits in the 
survey (the blue colored seismic facies). The last figure shows the output after running 

automatic geobody extraction in Petrel. These geobodies gives a more quantitative 
estimation of the seismic facies. 
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