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Proximal Support Vector Machine Classification on 
Well Logs 
 

 
Overview 
 

Support vector machine (SVM) is a recent supervised machine learning technique that 
is widely used in text detection, image recognition and protein classification. In 
exploration geophysics, it can be used in seismic facies classification, petrophysics 

parameter estimation, and correlation of seismic attributes with engineering data. 
Proximal support vector machine (PSVM) is a variant of SVM, which has comparable 
classification performance to standard SVM but at considerable computational savings 

(Fung and Mangasarian, 2001, 2005; Mangasarian and Wild, 2006) that is critical when 
handling large 3D seismic surveys. This documentation provides an overview of the 
arithmetic of PSVM and step-by-step instruction on an AASPI implementation of PSVM 

for well log data – psvm_welllogs. 
 
Comparing to the most popular artificial neural network (ANN) algorithms that are 

available in many commercial software, SVM and its variants benefit from the fact that 
they are based on convex optimization which is free of local minima (Shawe-Tayler and 
Cristianini, 2004), therefore provide a constant and robust classifier once training 

samples and model parameters are determined. Such classifier can then generate 
stable, reproducible classification result (Bennett and Campbell, 2000).  Also, SVM has 
fewer parameters to pick than ANNs and the number of kernel functions is automatically 

selected, which makes it easier to reach the optimal model (Bennett and Campbell, 
2000). Some researchers have compared the capability of SVM with ANN in pressure-
wave velocity prediction in mining geophysics (Verma et al., 2014) and other non-

geophysics disciplines (Wong and Hsu, 2005; Balabin and Lomakina, 2011) and found 
SVM is superior in most cases. 
 

Theory of PSVM 
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𝐱′𝛚 − 𝛾 {
> 0,                       𝐱 ∈ 𝐴+;
= 0, 𝐱 ∈ 𝐴 + 𝑜𝑟 𝐴−;
< 0,                        𝐱 ∈ 𝐴−,

                                                                         (1) 
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(𝛚′𝛚 + 𝛾2),                                                                              (2) 

Because SVMs are originally developed to solve binary classification problems, the arithmetic we show here is the steps to 

generate a binary PSVM classifier. Strategy of extending binary PSVM to a multiclass classifier is in later part of this 

chapter.  

 

Similarly to SVM, a PSVM decision condition is defined as (Figure 1): 

where 𝐱 ∈ 𝑅𝒏 is a 𝑛 dimensional vector data point to be classified, 𝛚 ∈ 𝑅𝒏 implicitly defines the normal of the decision-

boundary, 𝛾 ∈ 𝑅  defines the location of the decision-boundary, and “𝐴 +” and “𝐴 −” are two classes of the binary 

classification. PSVM solves an optimization problem and takes the form of (Fung and Mangasarian, 2001): 

subject to 
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(𝛚′𝛚 + 𝛾2) − 𝐮′(𝐃(𝐀𝛚 − 𝐞𝛾) + 𝐲 − 𝐞).                                           (4) 
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𝐱′𝐀′𝐃𝐮 − 𝛾 {
> 0,                       𝐱 ∈ 𝐴+;
= 0, 𝐱 ∈ 𝐴 + 𝑜𝑟 𝐴−;
< 0,                        𝐱 ∈ 𝐴−,

                                                                               (7) 

 
Figure 1. (a) Scratch of a two-class PSVM in 2-D space. Class “A+” and “A-” are approximated by two parallel lines that 

being pushed as far apart as possible. The decision boundary then sits right at the middle of these two lines. In this case, 

maximizing the margin is equivalent to minimizing (𝐖𝑇𝐖 + 𝛾2)1 2⁄ . (b) Two-class PSVM in 3D space. In this case the 
decision boundary becomes a plane. 

 

 

    𝐃(𝐀𝛚 − 𝐞𝛾) + 𝐲 = 𝐞.                                                                              (3) 

In this optimization problem, 𝐲 ∈ 𝑅𝑚 is the error variable; 𝐀 ∈ 𝑅𝑚×𝑛 is a sample matrix composed of 𝑚 samples, which 

can be divided into two classes, 𝐴 + and 𝐴 −; 𝐃 ∈ 𝑅𝑚×𝑚 is a diagonal matrix of labels with a diagonal composed of “+1” 

for 𝐴 + and “−1” for 𝐴 −; 𝜈 is a non-negative parameter; and 𝐞 ∈ 𝑅𝑚  is a column vector of ones. This optimization 

problem can be solved by using a Lagrangian multiplier 𝐮 ∈ 𝑅𝑚: 

By setting the gradients of 𝐿 to zero, we obtain expressions for 𝛚, 𝛾 and 𝐲 explicitly in the knowns and 𝐮, where 𝐮 can 

further be represented by 𝐀, 𝐃 and 𝜈. Then by changing 𝛚 in equations 2 and 3 using its dual equivalent 𝛚 = 𝐀′𝐃𝐮, we can 

arrive at (Fung and Mangasarian, 2001): 

subject to   

𝐃(𝐀𝐀′𝐃𝐮 − 𝐞𝛾) + 𝐲 = 𝐞.                                                                                 (6) 

 

Equations 5 and 6 provide a more desirable version of the optimization problem since one can now insert kernel methods to 

solve nonlinear classification problems made possible by the term 𝐀𝐀′ in Equation 6. Utilizing the Lagrangian multiplier 

again (this time we denote the multiplier as 𝐯), we can minimize the new optimization problem against 𝐮, 𝛾, 𝐲 and 𝐯. By 

setting the gradients of these four variables to zero, we can express 𝐮, 𝛾 and 𝐲 explicitly by 𝐯 and other knowns, where 𝐯 is 

solely a dependent on the data matrices. Then for 𝐱 ∈ 𝑅1×𝑛 we write the decision conditions as 

with 

𝐮 = 𝐃𝐊′𝐃 (
𝐈

𝜈
+ 𝐆𝐆′)

−1
𝐞,                                                                                  (8) 

𝛾 = 𝑒′𝐷 (
𝐈

𝜈
+ 𝐆𝐆′)

−1
𝐞,                                                                                      (9) 
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𝐊(𝐱′, 𝐀′)𝐃𝐮 − 𝛾 {
> 0,                       𝐱 ∈ 𝐴+;
= 0, 𝐱 ∈ 𝐴 + 𝑜𝑟 𝐴−;
< 0,                        𝐱 ∈ 𝐴−.

                                                                      (12) 

and 

𝐆 = 𝐃[𝐊 −𝐞].                                                                                         (10) 

Instead of 𝐀, we have 𝐊 in equations 8 and 10, which is a Gaussian kernel function of 𝐀 and 𝐀′ that has the form: 

𝐊(𝐀, 𝐀′)𝑖𝑗 = exp (−𝜎‖𝐀′
𝑖∙ − 𝐀′

𝑗∙‖
2

) , 𝑖, 𝑗 ∈ [1, 𝑚],                                                         (11) 

where 𝜎 is a scalar parameter. Finally, by replacing 𝐱′𝐀′ by its corresponding kernel expression, the decision condition can 

be written as:  

and 

𝐊(𝐱′, 𝐀′)𝑖𝑗 = exp(−𝜎‖𝐱 − 𝐀′
𝑖∙‖

2) , 𝑖 ∈ [1, 𝑚].                                                             (13) 

 

The formulations above represent a nonlinear PSVM classifier. 

 

To extend this binary classifier to handle multiclass classification problems, some strategies have been developed by 

researchers, which generally lie into three categories: “one-versus-all”, “one-versus-one” and “all together”. The former 

two strategies, as one can tell from the names, build several binary classifiers individually (𝑛(𝑛 − 1)/2 for “one-versus-

one” and 𝑛  for “one-versus-all”, where 𝑛  is the number of class), then use these classifiers to conclude the final 

classification decision. While “all together” will solve multiclass problems in one step. Experiments conducted by some 

researchers indicate a superiority of “one-versus-one” methods on large problems for practical use (Hsu and Lin, 2002). 

There are two popular particular algorithms for “one-versus-one” strategies, namely “Max Wins” (Kreßel, 1999) and 

directed acyclic graph (DAG) (Platt et al., 2000). Both algorithms can give comparable results while surpassing the “one-

versus-all” method in accuracy and computational efficiency. In our implementation, an approach similar to DAG is 

adopted and is described below. 

 

 
Figure 2. Workflow of assigning a class to an unknown sample using a classification factor based scheme. 



Well Analysis: Program psvm_welllogs 
 

Attribute-Assisted Seismic Processing and Interpretation                                                          Page 5  
 

 
 
Computation flow chart 
 
The program psvm_welllogs has three running modes: testing, predicting, and 

cross-validation. “Testing” reads in a training file and a testing file both with known 
labels (both in ASCII format, will describe in details in the later parts of this 
documentation), and output testing correctness, correlation coefficient, and a file 

containing the testing label outputs. “Predicting” reads in a training file with known 
labels and a testing file without labels (to be predicted), and output a file containing the 
predicted label outputs. “Cross-validation” is another method of testing, which reads in 

only a training file with labels, then randomly selects a user defined size from this file for 
testing, and uses the remaining portion as training. Times of iterations can be assigned 
for cross-validation, and the training and testing samples are selected randomly for 

each iteration. The output file of “cross-validation” consists a probability distribution 
after all iterations. Flow chart is shown in Figure 3. 
 

 
Figure 3. Flow chart of program psvm_welllogsconsists of three running modes. 
 

 
 

Our approach uses a classification factor table to assign classes to unknown samples. A classification factor of an unknown 

sample point for a certain pilot class “A” is the normalized distance to the binary decision  boundary between “A” and the 

other class used when generating this binary decision boundary. An example of a classification factor table is shown in 

Figure 2, and based on this table, the unknown sample point belongs to class “D”. 
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Step-by-step instruction on program PSVM Well Log Analysis 
 
This Program psvm_welllogs is launched from the Formation Attributes in the main 

aaspi_util GUI (Figure 4). 
 

 
Figure 4. How to launch program psvm_welllogs. 
 

The interface of psvm_welllogs is shown below. We will go through all the options in 
detail. 
 

         
Figure 5. Interface of PSVM Well Log Analysis. 
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Button 1 and 4: Browse input training and testing files. Testing file turns gray when 
Button 12 is in “cross-validation”, in which only training file is used. 

               Note: currently the program can only handle simple ASCII format files, so 
please generate a .txt or .dat file in the following format (Figure 6) from your well log 
files (.las). The format is: from left to right, each column is an input dimension (e.g. one 

well log or other types of data), then is a column of label (positive integer numbers). All 
other columns after “label” are ignored. You can have arbitrary number of header lines, 
which will be skipped during importing the files. Also remember to put the same 

property in the same column in both training and testing files. 
 

 
Figure 6. An example of a supported file format. 

 
Button 2 and 5: View the training and testing file contents (Figure 7). 
Button 3 and 6: If the files are generated from Windows based software (e.g. Petrel), 

they will have the annoying carriage return (^M) at the end of each line (Shown in Figure 
7). Use these two buttons to delete those carriage returns if you prefer to (result shown 
in Figure 8).  

               Note: This function depends on your Linux environment therefore may not 
always works. However it will not affect reading in the files. 
Blank 7 and 8: Project name and suffix. You can put the parameters as suffix. 

Blank 9: Number of header lines to skip when importing files. Currently this value is 
used for both training and testing files so please keep these two files in the same format. 
Blank 10: Number of input dimensions, i.e. number of columns before “label”. 

Blank 11: Number of classes within the data. 
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                 Note: Classes that do not appear in the training file cannot be predicted. 
Button 12: Program running mode selection. Please refer to the Computation flow 

chart chapter for details. 
Blank 13 and 14: PSVM classifier parameters (must be positive real numbers). 
Generally, Blank 13 controls how tight the classifier fits the training data, which will  

scarify the ability of generalization. Blank 14 is the standard deviation of a Gaussian 
function used in kernel mapping. The classifier’s performance is more sensitive to 
Blank 14 based on our study. 

Blank 15: Amount of samples out of the training file that are actually used for training. 
More training samples will have more computation cost, and sometimes not using all the 
available training samples may provide a more generalized classifier. 

Blank 16 and 17: Defines how many samples out of the training file will be randomly 
selected and used for testing in cross-validation, and the number of cross-validation 
cycles a user wants to run. For each cross-validation cycle, a new testing group will be 

randomly selected. 
Button 18: Run the program. 
 

 
Figure 7. An example of viewing a well file content. Carriage returns are visible as “^M”.  
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Figure 8. An example of a well file after deleting carriage returns. 
 

 
Here we see an application using the program psvm_welllogs to predict brittleness 
index (BI) from four well log derived rock properties. 

 
Figure 9. Parameter settings for BI prediction. 
 

As shown in Figure 9, we prepared a training file (shown in Figures 7 and 8) and a 
testing file from one study well, and use the parameters listed in the panel. The input 
logs are P-impedance, S-impedance, Lambda/ Mho, and Young’s Modulus/ Poisson’s 

Ratio, where the target properties is brittleness which is digitalized in to 10 classes, 1 
being the least brittle and 10 being the most. After clicking the Execute button, users 
are able to view the running progress (Figure 10). 
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Figure 10. Running progress window. 

Once finished, the correlation coefficient of the classification is given on the screen and 
a file containing testing result is generated (Figure 11). Users can plot the file in excel 
for QC. If the result is satisfactory, users can move to predicting mode and take a file 

need to be predicted as the testing file. The output file just contain one column of 
predicted labels, so it needs to be merged or imported to the corresponding well log file 
and further displayed in commercial software. Here we show a testing result on the 

previously used well displayed in Petrel (Figure 12). Roughly 30% of the samples are 
used for training. 
 

 
Figure 11. Completion of the program in testing mode. 
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Figure 12. BI prediction on a well using four well log derived properties. The Gamma 
Ray log is plotted as a lithology reference. Good correlation can be identified between 

original and predicted BI logs. 
 
In cross-validation mode (Figure 13), only a training file is used, and testing samples 

are randomly selected from the training file. In this example, for every one out of the ten 
cycles, 50% of the samples are used for testing, and the remaining portion are used for 
training. Once finished, it will generated a probability distribution file as shown in Figure 

14. 
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Figure 13. Cross-validation mode parameter setting. 
 

 
Figure 14. Probability distribution file generated by cross-validation mode (it happens 
to be solid class 1 for these samples). 
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