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Summary     

In this study, we show an example of first-hand 

interpretation of a turbidite system in Canterbury Basin, 

offshore New Zealand without involving any traditional 

structural interpretation. By choosing the right seismic 

attributes, features in a turbidite system can be identified 

automatically by pattern recognition techniques, which is 

particularly valuable to accelerate the interpretation process 

and provide guidance when working on a new resource play 

where previous study and data are limited.  

Introduction 

Traditionally, skilled interpreters delineated seismic facies 

on a suite of 2D lines by visually examining seismic 

waveforms, frequency, amplitude, phase, and geometric 

configurations.  Facies would then be posted on a map and 

hand contoured to generate a seismic facies map. With the 

introduction of 3D seismic data and volumetric attributes, 

such analysis is both more quantitative and more automated. 

Nevertheless, the size of 3D seismic data volumes and the 

number of seismic attributes have increased to the extent that 

very few interpreters examine every seismic line and time 

slice. 

To address this growing volume of seismic data, several 

alternative algorithms have been proposed and successfully 

applied to computer-assisted seismic facies classification, 

including k-means, self-organizing mapping, generative 

topographic mapping, support vector machines, Gaussian 

mixture models, and artificial neural networks.  Although 

well documented in the literature, the terminology and 

complexity of these algorithms may bewilder the average 

seismic interpreter, and few papers apply these competing 

methods to same data volume.  

In this study, we apply one unsupervised and one supervised 

classification techniques to a single 3D seismic data volume 

acquired in the Canterbury Basin, New Zealand, where the 

objective is to differentiate deposition features in a turbidite 

system. Not surprisingly, the most important parameter in 

this analysis is the choice of the correct input attributes, 

which in turn depends on careful pattern recognition by the 

interpreter. By incorporating both unsupervised and 

supervised learning techniques using the same input seismic 

attributes, we provide a first-hand interpretation of the 

turbidite system while illustrating the merits and demerits of 

each technique, which may be used as a reference for 

selecting the suitable classification techniques. 

Geologic Setting 

We perform the classification on the Waka-3D seismic 

survey acquired over the Canterbury Basin, offshore New 

Zealand, generously made public by the New Zealand 

Petroleum and Minerals. Readers can request this data set 

through their website for research purposes. Figure 1 shows 

the location of this survey, where the red rectangle 

corresponds to time slices shown in subsequent figures. The 

study area lies on the transition zone of continental slope and 

rise, with abundance of paleocanyons and turbidite deposits 

of Cretaceous and Tertiary ages. These sediments are 

deposited in a single, tectonically driven transgressive – 

regressive cycle (Uruski, 2010). Being a very recent and 

underexplored prospect, publically available comprehensive 

studies of the Canterbury Basin are somewhat limited. The 

modern seafloor canyons shown in Figure 1 are good 

analogs of the deeper paleocanyons illuminated by the 3D 

seismic amplitude and attribute data. 

Figure 1: A map showing the location of the 3D seismic 

survey acquired over the Canterbury Basin, offshore New 

Zealand. The black rectangle denotes the limits of the Waka-

3D survey, while the smaller red rectangle denotes the part 

of the survey shown in subsequent figures. Colors represent 

the relative depth of the current seafloor, warm being 

shallower and cold being deeper. Current seafloor canyons 

are delineated in this map, which are good analogs for the 

paleocanyons in Cretaceous and Tertiary ages. (Modified 

from Mitchell and Neil, 2012) 

Attribute selection 
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The number of attributes should be as small as possible to 

discriminate the facies of interest. While it may be fairly 

easy to represent three attributes with a deformed 2D 

manifold, increasing the dimensionality results in increased 

deformation, such that our manifold may fold on itself or 

may not accurately represent the increased data variability. 

Because the survey is new to us two authors, we have tested 

numerous attributes that we think may highlight different 

facies in the turbidite system. Among these attributes, we 

find the shape index to be good for visual classification but 

dominates the unsupervised classifications with valley and 

ridge features across the survey.  After such analysis we 

chose four attributes that are mathematically independent 

but should be coupled through the underlying geology: peak 

magnitude, peak frequency, GLCM homogeneity, and 

curvedness, as the input to our classifiers. 

Figure 2 shows a time slice at t=1.88 s through the seismic 

amplitude volume on which we identify channels (black 

arrows), high amplitude deposits (yellow arrows), and slope 

fans (red arrows). Figure 3a shows an equivalent time slice 

through peak spectral frequency co-rendered with peak 

spectral magnitude that emphasizes the relative thickness 

and reflectivity of the turbidite system and surrounding slope 

fan sediments into which it was incised. The edges of the 

channels are delineated by Sobel filter similarity. We show 

equivalent time slices through (Figure 3b) GLCM 

homogeneity, and (Figure 3c) co-rendered shape index and 

curvedness. In Figure 4 we show a representative vertical 

slice at line AA’ in Figure 2 cutting through the channels 

through (Figure 4a) seismic amplitude, (Figure 4b) seismic 

amplitude co-rendered with peak spectral magnitude/peak 

spectral frequency, (Figure 4c) seismic amplitude co-

rendered with GLCM homogeneity, and (Figure 4d) seismic 

amplitude co-rendered shape index and curvedness.  Block 

arrows indicate several of the key facies. We note a time 

slice t=1.88 s where one can identify some of the incised 

valleys (black arrows). 

 
Figure 2. Time slice at t=1.88 s through the seismic 

amplitude volume. Black arrows indicate potential channel/ 

canyon features. The yellow arrow indicates a high 

amplitude feature. Red arrows indicate relatively low energy, 

gently dipping area. AA’ denotes a cross section shown in 

Figure 4. 

  
(a)                                                            (b)                                                                (c) 

Figure 3. a) Time slice at t=1.88 s through peak spectral frequency co-rendered with peak spectral magnitude that emphasizes the 

relative thickness and reflectivity of the turbidite system and surrounding slope fan sediments into which it was incised. The two 

attributes are computed using a continuous wavelet transform algorithm. The edges of the channels are delineated by Sobel filter 

similarity. b) Time slice at t=1.88 s through the GLCM homogeneity attribute co-rendered with Sobel filter similarity. Bright colors 

highlights areas with potential fan sand deposits. c) Time slice at t=1.88 s through the co-rendered shape index, curvedness, and 

Sobel filter similarity. The shape index to be good for visual classification but dominates the unsupervised classifications with 

valley and ridge features across the survey. 
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Application 

We perform generative topographic mapping (GTM) 

(Bishop et al., 1998) and proximal support vector machine 

(PSVM) (Fung and Mangasarian, 2001, 2005) 

classifications using the four seismic attributes that have 

been previously discussed. GTM is a nonlinear projection 

technique that provides a probabilistic representation of the 

data-vectors in a corresponding lower dimensional latent 

space, which in a geophysics sense means generating a 

continuous facies map from multiple seismic attribute inputs. 

PSVM is a supervised classification technique which can be 

used to recover the latent relation between seismic attribute 

inputs and a target property (facies, rock properties, or 

engineering parameters). 

First we apply GTM to the four selected attributes. We 

compute two “orthogonal” projections of data onto the 

manifold and thence onto the two dimensions of the latent 

space. Rather than define explicit clusters, we project mean 

posterior probability distribution onto the 2D latent space 

and then cross-plot onto the 2D space where different 

clusters can be later defined. We also map the latent space 

against a 2D color bar (Figure 5a). In this slice, we have 

channels delineated by purple colors (black arrows), point 

bar and crevasse splays in pinkish colors (yellow arrows), 

and slope fans in lime colors (red arrows). We can also 

identify some thin, braided channels at the south end of the 

survey (blue arrow). We use similarity to separate the incised 

valleys from the slope fans. However, the geological 

meaning of the orange colored facies is somehow vague. 

This is the nature of unsupervised learning techniques that 

the clusters represent topological differences in the input 

data vectors, which are not necessarily the facies differences 

we wish to delineate. We can ameliorate this shortcoming by 

adding a posteriori supervision to the GTM manifold. The 

simplest way to add supervision is to compute the average 

attribute vectors about a given seismic facies and map it to 

the GTM crossplot. Then, the interpreter can manually 

define clusters on the 2D histogram by constructing one or 

more polygons (Figure 5b), where we cluster the data into 

four facies: channel thalwegs (blue), high-energy point bar 

and crevasse splay deposits (yellow), slope fans (green), and 

“everything else” (red). A more quantitative methodology is 

to mathematically project these average clusters onto the 

manifold, and then cross multiply the probability 

distribution of the control vectors against the probability 

distribution function of each data vector, thereby forming the 

Bhattacharya distance (Roy et al., 2013, 2014). Such 

measures then provide a probability ranging between 0 and 

100% as to whether the data vector at any voxel is like the 

data vectors about well control (Roy et al., 2013, 2014) or 

like the average data vector within a facies picked by the 

interpreter. 

The posterior supervision added to GTM is the critical prior 

supervision necessary for supervised classification such as 

PSVM. In this study we use the same four attributes as input 

for both unsupervised and supervised learning techniques. 

Our supervision consists of picked seed points for the three 

main facies previously delineated using the unsupervised 

classification results, which are channel thalwegs, point bar 

and crevasse splay deposits, and slope fans, plus one more 

facies of channel flanks. The seed points are shown in Figure 

6a. We then compute averages of the four input attributes 

within a 7 trace X 7 trace X 24 ms  window about each seed 

point to generate a training table which consists of four-

dimensional of input attributes and one dimensional  targets 

(the labeled facies). We cluster our four-dimensional input 

data using PSVM. The training and cross-validation 

performance is 92% training correctness and 85% cross-

validation correctness. Figure 6b shows the PSVM 

classification result at time t = 1.88 s.  Generally the PSVM 

map follows the same pattern as we have seen on the 

posteriori supervised GTM map, but because of the nature of 

supervised classification, the PSVM map does not provide 

the smooth transition as we would expect in the GTM map. 

PSVM picks out the main slope fans (black arrows), but 

missed some crevasse splays that are previously visible in 

the GTM map (yellow arrow). We also see a great amount 

of facies variation within the incised valleys, which is 

reasonable because of the multiple course changes of a 

paleochannel that results in multiple channel thalwegs. 

Finally, we note some red lines following NW-SE direction 

(red arrows) which correspond to acquisition footprint. 

Conclusion 

In this study we used both supervised and unsupervised 

classification techniques assisted by seismic attributes to 

perform a first-hand interpretation in a turbidite system.  We 

demonstrate that unsupervised classification products can be 

used to construct not only an initial estimate of the number 

of classes, but also a validation tool to determine if separate 

clusters have been incorrectly lumped together. We advise 

computing unsupervised GTM prior to picking seed points 

for subsequent supervised learning, to clarify the topological 

differences mapped by our choice of attributes.  Such 

mapping will greatly improve the picking confidence, 

because the seed points are now confirmed by both human 

experience and mathematical statistics. 
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Figure 4. Cross sections along line AA’ (location shown in Figure 2). a) Seismic amplitude. b) Seismic amplitude co-rendered 

with peak spectral magnitude and peak spectral frequency. c) Seismic amplitude co-rendered with GLCM homogeneity. d) Seismic 

amplitude co-rendered with shape index and curvedness. Black arrows indicate incised channel and canyon features. The yellow 

arrow indicates at a high amplitude reflector. Red arrows indicate relatively low amplitude, gently dipping areas. 

 

 
 

 

Figure 5. a) Time slice at t=1.88 s through 

crossplotting GTM projection 1 and 2 using 

a 2D colorbar. Black arrows indicate 

channel-like features. Yellow arrows indicate 

possible overbank deposits. Red arrows 

indicate possible slope fan deposits. The blue 

arrow indicates a braided channel system. 

The colors indicates the location of the mean 

probability each data vector represented by 

the Gaussians on the deformed 2D manifold 

then projected onto a 2D latent space. b) 

Same time slice but manually picking GTM 

clusters. Four facies are defined on the 

posterior probability distribution, with blue 

being channels /canyons, green being slope 

fan deposits, yellow being overbank deposits, 

and red being “everything else”. 

Figure 6. a) Time slice at t=1.88 s through 

co-rendered peak spectral frequency, peak 

spectral magnitude, and Sobel filter 

similarity volumes. Seed points (training 

data) are shown with colors for the picked 

four facies, blue being channel thalwegs, 

yellow being point bar and crevasse splays, 

red being channel flanks, and green being 

slope fans. Attributes at these seed points are 

used as training data in supervised 

classification. b) Same time slice through 

PSVM classification result. Black arrows 

indicate more correctly classified slope fans. 

Yellow arrow indicates crevasse splays. Red 

arrows show the misclassifications due to 

possible acquisition footprint. 
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