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Summary 

 

Ideally, accurate seismic attenuation estimation is 

extremely useful for reservoir characterization, subtle 

geological structure identification, and seismic signal 

compensation. However, seismic attenuation not only 

distorts their amplitudes but also disperses seismic waves, 

which gives rise to a number of issues and renders the 

accurate attenuation estimation impossible. As the 

measurement of attenuation, the absolute value of quality 

factor Q does not interest us in seismic interpretation, and 

the relative value is more important. Instead of struggling 

to characterize the accurate Q value, we propose a package 

of seismic spectrum characterization based attenuation 

attributes to evaluate apparent attenuation effects. The 

proposed attributes assume the seismic wave is propagating 

through the earth as a Richer wavelet.  Based on this, the 

attributes’ validities are proved analytically in this paper 

(Part 1: Methodology). Using field data results (presented 

in the following paper, see Part 2), it is shown that the 

proposed seismic attenuation attributes are effective and 

robust for seismic interpretation compared to previous Q 

estimation results. 

 

Introduction 

 

Like a time-variant low-pass filter, seismic attenuation 

typically causes the amplitudes of the higher-frequency 

components to decay more rapidly than those of the lower 

frequencies (Raikes and White, 1984). Conventionally, 

energy dissipation properties are described by quality (Q) 

factors attributed to the materials. However, despite their 

common name and intuitively expected similarity, the Q 

values encountered in different contexts are not the same 

(Zhu, 2014; Morozov and Ahmadi, 2015).  This apparent 

attenuation consists of anelastic losses from absorption and 

elastic losses due to scattering, which results in a seismic 

wavelet that is more stretched and exponentially smaller in 

amplitude in time, or depth, with the peak frequency of the 

data reducing (Reine et al., 2012).  

 

Previous attenuation estimation methods usually just 

measure the apparent attenuation without classifying its 

types (Quan and Harris 1997; Zhang and Ulrych 2002; Li et 

al, 2015). Since the apparent attenuation is a combination 

of all kinds of seismic attenuation, it is inapproporiate to 

still call it “Q estimation”, which should be specific to 

certain kinds. 

 

 

 

As seismic interpreters, we are usually not interested in the 

absolute Q value, but really care about the relative 

attenuation effects between a position and its surroundings. 

We propose a package of seismic attenuation attributes 

based on Ricker wavelet spectrum assumption. In this 

paper, all of the attributes are proved to be related to 

apparent attenuation analytically. A synthetic example is 

also presented, while some field data examples are in the 

following paper (Part 2: Application). Formula derivations 

and application verifications persuade us that the proposed 

attributes very promising for seismic attenuation 

interpretation. 

 

Apparent Attenuation on Spectrum 

 

When a seismic wave propagates in a viscoelastic medium 

in a constant linear frequency attenuation model, the 

apparent Q arises by considering a traveling wave whose 

spectral amplitude exponentially reduces with traveltime as 

(Aki and Richards, 2002) 
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where,  S  is the source wavelet spectrum,  is the travel 

time,  and  ,A   is the received signal spectrum including 

all geometric spreading, source, and receiver effects. Here, 

it clearly shows that the apparent Q is not related to certain 

specific rock properties. It is just a symbol for apparent 

attenuation in frequency domain. Hence, adopting seismic 

attributes to characterize this effect is not inapproriate. 

 

The Ricker Wavelet and Its Frequencies 

 

We assume the seismic signal is propagating as a Ricker 

wavelet, which is suitable for empirical situations. Wang 

(2015) discussed frequencies of the Ricker wavelet, which 

inspired some of the following derivations. 

 

The Fourier transform of the Ricker wavelet can be 

expressed as  
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where is the angular frequency and m is the dominant 

frequency (the most energetic frequency, also in radians per 

second). This is an amplitude spectrum, so it is real and 

nonnegative. 
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We can set the derivative of the amplitude spectrum to zero 

to get the corresponding peak frequency
p : 
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This leads to p m  . 

 

Combining Equation (1) and (2), we can obtain the peak 

frequency after attenuation: 
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This leads to 
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Note that when attenuation is stronger (
1Q
is larger), the 

peak frequency value is smaller. 

 

The peak of the Ricker wavelet amplitude spectrum is 
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In the following work, we adopt the normalized Ricker 

wavelet amplitude spectra.  It is obtained by dividing the 

spectra with its maximum value to unity (Hermana et al. 

(2013) also adopted this way in attenuation based 

hydrocarbon prediction). The normalized Ricker wavelet 

amplitude spectrum is formulated as: 
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Seismic Attenuation Attributes 

 

Our objective is to propose attributes to measure the 

spectral changes caused by attenuation. We assume the 

decrease in peak frequency is the main change, and after 

attenuation the seismic spectrum is still a Ricker wavelet 

spectrum. Set the reference spectrum without attenuation to 

0( )R 
 with peak frequency 0m . The received attenuated 

spectrum is 1( )R  with peak frequency 1m . According to 

Equation (5), 1m  should be smaller than 0m , and the 

difference between reference and received peak frequencies 

shows the attenuation strength: larger difference, stronger 

attenuation. 

High Order Statics  

 

As is known, the amplitude spectrum of the Ricker wavelet 

is the Gaussian distribution multiplied by a factor 2  , and 

thus is asymmetric and “unGaussian” in the frequency 

domain. So we can use skewness and kurtosis to measure 

the spectra’s shapes: 
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Note the lower peak frequency, the larger skewness, and 

larger kurtosis. So, we can measure their changes to 

estimate the relative attenuation. 

 

Spectral Bandwidth 

 

The frequency bandwidth is defined by the frequency 

components spreading at some proportion of the spectrum 

peak (maximum value). Here, we set the frequency band to 

be measured at  1   of the peak, which is 1 in the 

normalized spectrum, so we get: 
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which leads to the inverse exponential equation 
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with an analytical solution expressed in terms of the 

Lambert W function: 
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Figure 1: Lambert W function, modified from Wang (2015). 

 

The solution of an inverse exponential equation 

 exp =z z x  is  =Wz x , where W(x) is the Lambert W 

function, displayed in Figure 1. Then the frequency band 
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The spectral bandwidth is  
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The variable  is fixed in each situation, so the bandwidth 

in frequency domain is only related to the peak frequency. 

Thus, after attenuation, the peak frequency will be lower, 

and the spectral bandwidth will be narrower. 

 

Spectral Slopes 

 

We compute the expressions of spectral slope averages of 

low frequencies (from 
m

 to
m

 , 1  ) and high 

frequencies (from 
m

 to
m

 , 1  ), respectively. 
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Both of the slopes have a format of Lambert function in 

Figure 1, so we can estimate their values. The peak 

frequency and low frequency slope have an inverse 

relationship.  A decrease in peak frequency will indicate an 

increase in low frequency slope. The low frequency slope is 

always positive and the high frequency slopes is always 

negative. The decrease in peak frequency causes the high 

frequency slope to become more negative but with a larger 

absolute value. 

 

Energy Reduction 

 

Let’s compute the energy difference between normalized 

reference and received spectra on the whole band, from 0 to 

infinity: 

 

2 2 2 2

2 2 2 20
0 0 1 1

0 1

exp 1 exp 1

1

4

all

m m m m

m m

ER d

e

   


   

  

     
       

     

 


. (17) 

This formula shows that spectral energy will decay after 

attenuation even they are both normalized, and the stronger 

attenuation, the larger energy reduction. 
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Actually, in Equation (18) we can also just compare the 

spectral energies of higher frequency components, (e.g. 

Mitchell et al. (1996) proposed a similar energy absorption 

analysis (EAA) attribute.), starting from their crossover 

frequency c
 . As 1m is smaller, c

 is smaller, and the 

differences at frequencies larger than previous c
 will be 

larger, so the energy in higher frequencies will reduce 

more, when the attenuation is stronger. 

 

Synthetic Example 

 

In order to test our proposed attributes, we apply them in a 

synthetic example. (Field data application can be found in 

the following paper: Part 2-Application.) Figure 2 shows 

the normalized spectra of reference and attenuated signal. 

Note that when attenuation (1/Q) is stronger, the peak 

frequency is smaller, and more high frequency energy 

attenuated. Figure 3 displays results of attenuation 

attributes associated with different Q values. Because we 

just want to know the relative attenuation relationship, all 

values are shown in the normalized way. It is clear that 

every attributes has a good correspondence with the 

attenuation factor. 

 
Figure 2: Reference wavelet spectrum and attenuated spectra with 
different Q values. 

 
Figure 3: Normalized values of seismic attenuation attributes. 

Note that the attenuated wavelets are not exactly Ricker 

wavelets anymore. But the proposed seismic attenuation 

attributes are still effective to characterize attenuation 

effects, as shown in Figure 3.  

 

What’s more, in order to suppress noises, we usually just 

analyze the effective-band (shown in Equation (10)) of the 

spectrum, and when noise is stronger, the coefficient is 

larger. Within the effective bands, the actual seismic 

spectra shows properties described in our derivations. 

Hence, our approximation is sound and all the proofs are 

meaningful. 

 

Conclusions 

 

We propose a package of seismic attenuation attributes 

based on spectral shape changes to characterize apparent 

seismic attenuation. When the seismic attenuation becomes 

stronger, the energy reductions in full bands and high 

frequencies will be larger, the spectral bandwidth will be 

narrower, skewness and kurtosis will be larger, and the 

spectral slopes will also have the corresponding changes. 

All these changes are associated with seismic attenuation 

non-linearly, but they are promising indicators for relative 

attenuation changes which are useful for seismic 

interpreters. The synthetic example proves the relationship 

between the seismic attributes we propose and the 

attenuation effects.  Field data applications are included in 

the following paper: Part 2 – Application. 
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