
	
Abstract	

With	 the	 advances	 made	 by	 Amazon	 and	 Google,	 many	
geoscien7sts	 (and	 perhaps	 more	 so,	 geoscience	
management)	believe	that	machine	learning	will	both	greatly	
accelerate	 and	 quan7fy	 the	 seismic	 interpreta7on	 process.	
Since	seismic	 facies	analysis	 is	based	on	paBern	recogni7on,	
aBributes	 that	 quan77vely	 measure	 components	 of	 these	
paBerns,	 will	 form	 the	 basis	 of	 future	 machine	 learning	
solu7ons,	 the	simplest	of	which	 is	a	 simple	decision	 tree,	or	
“wizard”.	Machine	learning	requires	training.	The	first	step	in	
developing	a	machine-learning	based	interpreta7on	workflow	
is	 to	 quan7fy	 which	 combina7on	 of	 aBributes	 best	
characterize	a	given	seismic	facies.	To	this	end,	I	will	start	by	
compiling	 a	 simple	 web-based	 database,	 or	 aBribute	
“menagerie”.	
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Methodology		
The	first	step	to	crea7ng	this	major	database	is	a	large	scale	inves7ga7on	into	all	seismic	aBributes	and	how	and	when	they	are	u7lized	in	data	
sets	as	seen	in	Figure	2	with	the	Facies	expression	table	and	in	Figure	1.	This	involves	going	back	through	archives	of	papers	to	create	a	general	
list	of	aBributes	and	examples	of	these	aBributes	using	a	dataset	with	the	best	geologic	seQng	for	the	aBribute.	Once	a	general	list	is	created	
the	next	step	is	to	create	an	interac7ve	webpage	where	the	user	can	search	for	their	geomorphology	or	facies	and	see	the	aBribute	they	can	use	
as	 a	 tool	 to	 interpret	 the	 geology.	 The	 references	will	 be	 displayed	 as	 well	 so	 that	 the	 user	 can	 go	 to	 the	 link	 and	 follow	 the	 publica7ons	
guidelines	 for	 the	 aBribute.	 Eventually	 the	 program	will	 develop	 into	 a	 determinis7c	 facies	 program	where	 the	 user	 can	 input	 data	 and	 the	
program	can	develop	an	aBribute	map	of	the	facies	within	the	data	set.		

Recent	Examples	
Tao	Zhao	conducted	an	aBribute	classifica7on	of	a	turbidite	system	
imaged	 by	 a	 survey	 in	 the	 Canterbury	 Basin,	 New	 Zealand.	 He	
started	with	a	tradi7onal	descrip7on	of	geologic	facies,	followed	by	
their	expression	by	seismic	amplitude	and	seismic	aBributes	(Figure	
2a).	 He	 then	 computed	 these	 aBributes	 (e.g.	 Figure	 2b)	 and	
analyzed	 them	using	an	SOM	facies	classifica7on	algorithm	 (Figure	
2c).	 In	 general,	 SOM	 provides	 an	 unsupervised	 classifica7on.	
However,	using	Jane	Zhang’s	stra7graphy	exper7se,	he	was	able	to	
apply	labels	to	the	different	colored	facies.		
	
Lennon	 Infante	 used	 a	 similar	 workflow	 to	 classify	 volcanoclas7c	
facies	imaged	by	a	survey	in	the	Taranaki	Basin,	New	Zealand.	Again,	
he	first	defined	the	alterna7ve	facies	in	terms	of	seismic	amplitudes	
and	 amplitude	 paBerns.	 He	 then	 used	 selected	 aBributes	 that	
quan7ta7vely	measure	these	paBerns.	For	example,	dip	magnitude	
delineates	 the	 Kora	 Seamount	 and	 major	 faults	 (Figure	 3a).	
Reflector	 convergence	 quan7fied	 sequence	 stra7graphic	 changes,	
while	 GLCM	 textures	 quan7fied	 reflector	 con7nuity	 or	 roughness.	
Five	of	 these	aBributes	were	analyzed	using	 SOM,	 resul7ng	 in	 the	
image	of	pyroclas7c	flows	and	lava	flows	as	well	as	sediment	facies	
seen	in	Figure	3b.		

Conclusion	and	Future	Work			
	The	Spectral	Decomposi7on	aBribute	displays	

the	complex	channel	systems	that	were	
otherwise	hidden	the	data	due	to	compac7on	of	

sedimenta7on.	The	hidden	channels	have	a	
greater	resolu7on	when	the	Spectral	

Decomposi7on	is	done.		Future	work	on	this	will	
be	developing	a	velocity	model	to	determine	
sediment	stra7graphy	within	the	channel	

systems	and	the	u7liza7on	of	the	well	logs	to	
iden7fy	poten7al	drilling	loca7ons.		

Figure	 1:	 Amtmann	 et	 al.	 (2013)	 at	 Joanneum	 Research	 Leoben	 have	 constructed	 a	 data	
base	of	 aBributes	 provided	by	mul7ple	 technology	 suppliers,	 but	 have	not	 yet	 started	 to	
define	which	aBribute	might	be	“best”	for	a	specific	objec7ve.			

MoBvaBon	
The	 most	 common	 ques7on	 we	 encounter	 within	 the	 AASPI	
group	 from	 both	 our	 industry	 sponsors	 and	 from	 our	 newer	
students	 is	 “Which	 aBribute	 is	 best	 to	 delineate	 such	 and	
such?”.	 Un7l	 now,	 such	 feature-specific	 recommenda7ons	
have	been	documented	by	our	team	and	other	interpreters	in	
the	 form	 of	 published	 papers	 and	 oral	 presenta7ons.	 The	
“best-aBribute”	data	base	involves	a	tedious	Google-search	of	
the	literature!	In	2017,	it	is	7me	to	do	beBer.	

Figure	2:	(a)	Seismic	facies	in	column	1,	followed	by	a	tradi7onal		descrip7on	of	their	appearance	on	seismic	amplitude	data	in	column	2,	and	the	corresponding	aBribute	quan7fica7on	in	column	3.	(b)	A	horizon	slice	through	one	of	the	aBribute	
volumes	-	dip	magnitude.	(c)	A	horizon	slice	through	a	self-organizing	map	that	successfully	breaks	out	different	facies,	although	without	extra	user	input,	are	“unlabeled”	as	to	which	facies	is	which.	(Aher	Zhao	et	al.,	2017).	

Figure	3:	(a)	Horizon	slices	through	the	volumetric	dip	magnitude	volume	showing	lateral	varia7on	in	source	
rock,	turbidite,	and	volcanic	facies.	(b)	Horizon	slice	through	the	SOM	facies	volume	computed	showing	
pyroclas7c	flows,	lava	flows,	and	sediments.	(Aher	Infante	et	al.,	2017).			
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Recent	Examples	(conBnued)	

Jie	 Qi	 tackled	 as	 somewhat	 different	 problem	 –	 differen7a7ng	 salt	 from	 mass	 transport	 complexes	 (MTCs)	 in	 a	 Gulf	 of	 Mexico	 survey	
dominated	by	conformal	sand	and	shale	sediments.	 	Like	Zhao	et	al.	(2017)	and	Infante	and	Marfurt	(2017),	Qi	et	al.	(2016)	first	constructed	a	
table	defining	the	seismic	facies	seen	in	the	survey,	then	their	amplitude	expression,	followed	by	their	aBribute	quan7fica7on.	These	aBributes	
were	 subsequently	 smoothed	 and	 blocked	 using	 a	 Kuwahara	 filter	 and	 analyzed	 using	 a	 genera7ve	 topological	mapping	 (GTM)	 algorithm.	
Figure	4a	shows	a	ver7cal	slice	seismic	amplitude.	Figure	4b	shows	the	same	slice	aher	classifica7on	without	Kuwahara	filtering	while	Figure	4c	
shows	it	with	Kuwahara	filtering.	Then	end	product	is	a	geobody	extrac7on	(Figure	4d).	
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Figure	4:	Ver7cal	slices	from	a	Gulf	of	Mexico	survey	through	(a)	seismic	
amplitude,	and	GTM	classifica7on	(b)	before	and	(c)	aher	Kuwahara	
filtering.	(d)	The	final	facies	classifica7on	volume.	(Aher	Qi	et	al.,	2016).				

	
Digging	the	Hole	for	the	Decision	Tree	

	Some	seismic	facies	are	easy,	while	others	are	more	difficult	to	analyze	using	a	computer.	The	easiest	facies	are	those	that	exhibit	a	dis7nguishing	voxel-by-voxel	expression	that	
differs	from	their	neighboring	facies.	For	example,	a	karst	collapse	may	exhibit	 lower	peak	frequency,	greater	entropy,	more	nega7ve	curvature,	and	lower	coherence	than	the	
limestone	 facies	within	which	 it	 occurs.	Mass	 transport	 complexes	 are	 somewhat	more	difficult,	 but	 by	 increasing	 the	 spa7al	 scale	 (smoothing	 and	blocking)	 using	 Kuwahara	
filtering,	it	will	appear	to	be	less	conformal,	higher	entropy	and	less	coherent	than	the	surrounding	sediments,	but	higher	amplitude	and	more	coherent	than	the	neighboring	salt.	
Faults	ohen	exhibit	low	coherence,	high	aberrancy,	high	amplitude	curvature,	and	higher	entropy	than	their	neighboring	unfaulted	facies.	More	difficult	facies	such	as	channels	
and	prograda7ons	need	to	be	put	 into	a	sequence	stra7graphic	 framework	and	ohen	exhibit	mul7ple,	spa7ally	separated	“architectural	elements”	each	of	which	has	 its	 	own	
aBribute	expression	(onlap,	offlap,	downlap,	high	dip,…)	but	form	part	of	larger	unit.	
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