Preparing the Soil in which to Plant a Seismic Facies Analysis Decision Tree
Murphy Cassel

Abstract

With the advances made by Amazon and Google, many
geoscientists (and perhaps more so, geoscience
management) believe that machine learning will both greatly
accelerate and quantify the seismic interpretation process.
Since seismic facies analysis is based on pattern recognition,
attributes that quantitively measure components of these
patterns, will form the basis of future machine learning
solutions, the simplest of which is a simple decision tree, or
“wizard”. Machine learning requires training. The first step in
developing a machine-learning based interpretation workflow
is to quantify which combination of attributes best
characterize a given seismic facies. To this end, | will start by
compiling a simple web-based database, or attribute
“menagerie”.
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Figure 1: Amtmann et al. (2013) at Joanneum Research Leoben have constructed a data
base of attributes provided by multiple technology suppliers, but have not yet started to
define which attribute might be “best” for a specific objective.

Motivation

The most common question we encounter within the AASPI
group from both our industry sponsors and from our newer
students is “Which attribute is best to delineate such and
such?”. Until now, such feature-specific recommendations
have been documented by our team and other interpreters in
the form of published papers and oral presentations. The
“best-attribute” data base involves a tedious Google-search of
the literature! In 2017, it is time to do better.
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Methodology

The first step to creating this major database is a large scale investigation into all seismic attributes and how and when they are utilized in data
sets as seen in Figure 2 with the Facies expression table and in Figure 1. This involves going back through archives of papers to create a general
list of attributes and examples of these attributes using a dataset with the best geologic setting for the attribute. Once a general list is created

the next step is to create an interactive webpage where t
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Figure 2: (a) Seismic facies in column 1, followed by a traditional description of their appearance on seismic amplitude data in column 2, and the corresponding attribute quantification in column 3. (b) A horizon slice through one of the attribute
volumes - dip magnitude. (c) A horizon slice through a self-organizing map that successfully breaks out different facies, although without extra user input, are “unlabeled” as to which facies is which. (After Zhao et al., 2017).
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Recent Examples

Tao Zhao conducted an attribute classification of a turbidite system
imaged by a survey in the Canterbury Basin, New Zealand. He
started with a traditional description of geologic facies, followed by
their expression by seismic amplitude and seismic attributes (Figure
2a). He then computed these attributes (e.g. Figure 2b) and
analyzed them using an SOM facies classification algorithm (Figure
—— 2c). In general, SOM provides an unsupervised classification.
Volcanic However, using Jane Zhang's stratigraphy expertise, he was able to
apply labels to the different colored facies.

Lennon Infante used a similar workflow to classify volcanoclastic
facies imaged by a survey in the Taranaki Basin, New Zealand. Again,
he first defined the alternative facies in terms of seismic amplitudes
and amplitude patterns. He then used selected attributes that

guantitatively measure these patterns. For example, dip magnitude
delineates the Kora Seamount and major faults (Figure 3a).
Reflector convergence quantified sequence stratigraphic changes,
while GLCM textures quantified reflector continuity or roughness.
Five of these attributes were analyzed using SOM, resulting in the
image of pyroclastic flows and lava flows as well as sediment facies
seen in Figure 3b.

Figure 3: (a) Horizon slices through the volumetric dip magnitude volume showing lateral variation in source
rock, turbidite, and volcanic facies. (b) Horizon slice through the SOM facies volume computed showing
pyroclastic flows, lava flows, and sediments. (After Infante et al., 2017).
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Jie Qi tackled as somewhat different problem — differentiating salt from mass transport complexes (MTCs) in a Gulf of Mexico survey /* b(:,,_\dd,y B — — IS
dominated by conformal sand and shale sediments. Like Zhao et al. (2017) and Infante and Marfurt (2017), Qi et al. (2016) first constructed a 500 '*/ ‘I;;}-'e;j-f-:? — —— | o

table defining the seismic facies seen in the survey, then their amplitude expression, followed by their attribute quantification. These attributes
were subsequently smoothed and blocked using a Kuwahara filter and analyzed using a generative topological mapping (GTM) algorithm.
Figure 4a shows a vertical slice seismic amplitude. Figure 4b shows the same slice after classification without Kuwahara filtering while Figure 4c
shows it with Kuwahara filtering. Then end product is a geobody extraction (Figure 4d).
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Figure 4: Vertical slices from a Gulf of Mexico survey through (a) seismic
amplitude, and GTM classification (b) before and (c) after Kuwahara
filtering. (d) The final facies classification volume. (After Qi et al., 2016).
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Digging the Hole for the Decision Tree

Some seismic facies are easy, while others are more difficult to analyze using a computer. The easiest facies are those that exhibit a distinguishing voxel-by-voxel expression that
differs from their neighboring facies. For example, a karst collapse may exhibit lower peak frequency, greater entropy, more negative curvature, and lower coherence than the
limestone facies within which it occurs. Mass transport complexes are somewhat more difficult, but by increasing the spatial scale (smoothing and blocking) using Kuwahara
filtering, it will appear to be less conformal, higher entropy and less coherent than the surrounding sediments, but higher amplitude and more coherent than the neighboring salt.
Faults often exhibit low coherence, high aberrancy, high amplitude curvature, and higher entropy than their neighboring unfaulted facies. More difficult facies such as channels
and progradations need to be put into a sequence stratigraphic framework and often exhibit multiple, spatially separated “architectural elements” each of which has its own

attribute expression (onlap, offlap, downlap, high dip,...) but form part of larger unit.
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