
of trace 380 increased from 0.5945 to 0.9685 for the denoised result.

This synthetic suggests that the proposed method can be used to

efficiently remove noise from seismic data while simultaneously

enhancing the continuity of the reflection events and preserving the

effective discontinuity information and amplitude characteristics in

the seismic section.

Field Data Examples
We further verify the effectiveness of the proposed denoising

approach by applying the DCE model to two substantially

noise-contaminated real seismic sections from Sichuan Basin,

China. Figure 2a is a P-wave seismic section while Figure 3a is the

corresponding converted-wave (P-SV) seismic section. In these two

sections, we can observe that the amplitudes of the reflection events

are weak and not obviously continuous, and they cannot be

identified effectively since they are obscured by strong incoherent

noise.

Fig. 2. (a) Original P-P seismic section and denoised results using the (b) DCE (c) CL and (d) TV 

models.

Fig. 3. (a) Original P-SV seismic section and denoised results using the (b) DCE (c) CL and (d) 

TV models.

After applying our proposed DCE method, we acquire the

denoised results Illustrated in Figures 2b and 3b. In these results,

the continuity of the seismic events is enhanced, the discontinuties

are clearer, and the fault boundaries and displacements are more

distinct. The number of iterations is determined using the empirical

iteration number from the synthetic model.

The results of the classical CL are shown in Figures 2c and 3c,

whereas those of the TV model are depicted in Figures 2d and 3d.

Note that the denoising efficacies of the DCE, CL, and TV

models appear quite similar. However, although the DCE model

removed a significant quantity of random noise, it also preserved

more useful signal, while faults previously masked by noise are more

clearly enhanced, particularly in indicated by the red ellipses.

Similarly, the continuity of the seismic reflections with weak

amplitudes that were masked by incoherent noise is also more

enhanced, as is illustrated by the encircled area in Figure 3b.
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Introduction
Noise attenuation is one of the fundamental topics in

geophysical data processing and is especially crucial for

seismic data interpretation and analysis; consequently, noise

attenuation is the focus of many studies (Cai, 2011; Zhou,

2016). 

Traditionally, seismic noise is separated from signal using

f-k and Radon transforms, time-frequency analysis,

deconvolution, and simple stacking (Zhu, 2015; Li, 2014;

Canales, 1984). Other special domains have also been

introduced for seismic denoising, including the bounded

variation (BV) space with the total variation (TV)

regularization model (Rudin, 1992; Anagaw, 2012). Less

commonly used transforms include wavelet transforms (Gao,

2006), curvelet transforms (Lari, 2014), contourlet transforms

(Do, 2005), and seislet transforms (Chen, 2014). In suitable

domains, most noise suppression techniques eliminate

unwanted noise components by simply setting them to zero

before applying an inverse transform (Done, 1991).

A robust noise reduction method known as edge

preserving smoothing (EPS) was introduced in 2002, based

on the multi-window analysis technique of Kuwahara et al.

The EPS technique has been utilized in exploration

geophysics and has achieved notable success in practice

(Luo, 2002; Marfurt, 2002). In addition to the EPS methods,

several nonquadratic regularization methods have been

developed based upon partial differential equations (PDEs)

with the goal of suppressing noise and preserving sharp

boundaries in geophysical imaging and during seismic

denoising (Sun,2016).

As an alternative to linear filters, Ferahtia et al. (2013)

presented two image-based nonlinear filters - the anisotropic

nonlinear diffusion filter and the trilateral filter, to enhance the

identification of geophysical features and more efficiently

remove random and/or coherent noise.

In seismic data, “apparent discontinuities” that occur when

noise cuts through otherwise continuous reflectors are often

not as strongly defined as real discontinuities that define at

faults and stratigraphic edges. Thus, we proposes a

combined algorithm for the separation of noise and apparent

discontinuities from discontinuities of. Our approach is based

on the method presented by Chambolle and Lions

(Chambolle, 1997), which utilizes the minimization of several

convex functionals of the gradient in a BV space. Similar

approaches have been employed previously in medical

imaging (Lieu, 2008), but have not yet been applied to

seismic denoising. The objective of this paperis to

demonstrate the utility of this adaptive combined energy

method for seismic denoising.

Hui Chen1,2, Ying Hu1,2, and Kurt. J. Marfurt2, 1Chengdu University of Technology; 2University of Oklahoma

Summary
We combine anisotropic and isotropic diffusion models and

establish a combined energy variational model for seismic

denoising. For each inline vertical slice, we use a dynamic

threshold to separate the seismic data into different features in

order to choose a diffusion method based on the local seismic

data characteristics. The method automatically handles both

noise and discontinuities (edges) at different scales. Denoised

results from a synthetic model and from field seismic sections

demonstrate that our proposed model can efficiently suppress

random noise and preserve edges in seismic data.

Synthetic Examples

Table 1 Statistics Regarding the Experiments

Figure 1a shows the noise-free synthetic seismic section, within

which the input data include strata with variable thicknesses,

seismic reflection events with different amplitudes, and faults

with different displacements, which increase from the bottom

toward the top, to test the efficiency of each denoising method.

Figure 1b shows the same seismic section with -3 dB Gaussian

noise where red ellipses show that faults that are masked by the

existence of random noise.

Figure 1c illustrates the results of our DCE model, from

which we can see that the proposed model smooths the

seismic section and preserves the features of the faults well.

We can observe that the stronger discontinuties are preserved

while the continuity of the weaker reflections are enhanced,

thereby substantially improving the quality of the seismic profiles.

Examining the residuals of the three filters in Figures 1d, 1f, and

1h, shows that the DCE model better preserves the fault

discontinuities. In contrast, the results obtained using the

competing CL and TV models reveal that the circled faults are

masked with noise even after denoising the data using those

methods.

The statistics acquired from other synthetic experiments at

other noise levels are shown in Table I, in which we provide the

SNRs, SSIMs, iteration numbers, and computation times for all

the three denoising methods. From the table, we can observe that

using our denoising model, the SNR increases from −3 to

11.3446 dB and the SSIM increases from 0.5791 to 0.9635.

Meanwhile, the SNR and SSIM values obtained using the

classical CL result are 2.9254 and 0.9555, respectively, and the

same respective values obtained from using the TV model are

2.5017 and 0.9111. In addition, we calculated that the SSIM value
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Principles of

Anisotropic diffusion

The anisotropic diffusion equation can be obtained by

minimizing the following energy functional:

(1)

The related partial differential equations can be denoted:

(2)

When such an anisotropic diffusion equation is applied to

remove noise, it generally blurs certain features because of

the inconsistent edge. Consequently, Chambolle and Lions

proposed their anisotropic diffusion method by minimizing the

following hybrid functional:

(3)

The constant β > 0 is the threshold of the magnitude of the

image gradients |∇u|. It separates regions containing more

features from those with fewer features, similar to distin-

guishing between features and noise in image-processing
techniques, and thus plays an important role in this model.

Dynamic combined energy model

To separate noise and false features from edges and real

faults and to subsequently adopt different diffusion methods

to treat this separation accordingly, we introduce a dynamic

energy based on the CL model.

A dynamic threshold βf , which is based upon each value

of seismic data f , is proposed[(4)] to optimally distinguish the

feature regions. Since the difference in the gradient magnitude

is used to distinguish noise from edges, we use the average

value of the gradient magnitude to define the threshold

(4)

where ρ ∈ [0.5 1.5] is an empirically determined diffusion

parameter to adjust the region division according to the
strength of the noise. Then the dynamic CL (DCL) model is:

(5)

To maintain the stability of the seismic energy and the

gradient energy, and are

introduced as constraint parameters to denote the difference

between the result f and the initial data .

With the Lagrangian multiplier method, these constraints

are combined into the DCL model, and an unconstrained

optimization problem is obtained. The consequent DCE model

can be expressed explicitly as follows:

(6)

Minimizing the functional in equation [(6)], anisotropic 

diffusion can be governed by the following evolution equation: 

(7)

Fig. 1. Synthetic seismic section (a) without and (b) with -3 dB random noise. Filtered 

data using the (c) DCE, (e) CL (g) TV models. Rejected noise using the (d) DCE, (f) CL 

(h) TV models.


