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Abstract

Introduction

Case	study	1:	Fort	Worth	Basin	Survey

Theory

Automated seismic facies classification is gradually becoming
more common as part of workflows in the E&P industry, and has
seen improved success since early work by Coléou. et al. (2003).
Several algorithms have been developed to automate seismic facies
classification, most of which are based on some form of machine
learning. Machine learning can be either unsupervised or supervised.
Unsupervised learning, e.g. k-means clustering, principal component
analysis (PCA), and self-organizing maps (SOM) require little
interpreter input other than the selection of appropriate attributes.
Although all major facies in the volume are classified, the algorithm
gives no indication of the identity of any given facies. In contrast,
supervised classification such as multilevel feed forward neural
networks, support vector machines, and random forest decision trees
assign each voxel to facies defined by the interpreter using a
“training” subset of the data. Well log and core data provide not only
the training but also validation data used to quality control the
prediction. We apply a random forest algorithm which is an ensemble
of deicision trees, trained via a “bagged” (or “boosted”) method. The
random forest or ensemble methods indicate which trees are
considered “strong” learners and “weak” learners prior to combining
them.
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In this study, we use a random forest learning algorithm to predict
seismic lithofacies aided by wireline logs and stratigraphical
interpretation. The random forest algorithm is a tree-based classifier
that is an alternative to neural-network and support vector machine
based algorithms. The first goal of this study is to evaluate the ability
of a random forest learning algorithm in classifying seismic facies, The
second goal is to determine the sensitivity of this classification to each
of the input attributes. This sensitivity analysis will not only help
choose the most attribute attributes but will also reduce the amount
of computations needed. We are able to differentiate limestone and
shale facies in a Fort Worth Basin survey and salt, MTC, and conformal
sediment facies in a Gulf of Mexico survey.

• Aim	of	the	study:
ØDescriminate seismic	carbonate	
and	shale	facies	aided	by	well	
log	data	training

• Training	/	validation	set			-
Ø Input:	data	points	in	3D	volumes	
adjacent	to	well	log	(	6	inverted	
seismic	physical	properties)

ØOutput	:	seismic	facies interpreted	
from	6	well	logs	

Input	attribute	example:	P-
wave	impedance	(ZP)	

Single decision tree and random forests
Classification and regression tree (CART) is a machine leaning

technique. Breiman et al.’s (1984) CART algorithm splits each internal
node in the tree using the “Gini” impurity 𝑖 τ 	given by
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where k is the number of classes, and p(θ | τ) is the probability of
class θ at node t .
Prediction for N trees can be made by averaging the prediction of
individual trees:
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Feature importance
Selecting appropriate features is important in machine learning

algorithms. Some features are more important to classification, while
others may be redundant. Reduction of dimension based on feature
selection can speed up the learning process, as well as improve
prediction accuracy. To evaluate feature importance, Breiman et al.
(2001, 2002) defined Gini importance based on the Gini impurity as

𝐺𝑖𝑛𝑖	𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒	𝑖= 𝜃 = ∑ ∑ ∆𝑖, 𝜏, TC4 ,

where,	∆𝑖(𝜏) is	the	node	purity	gain	define	as
∆𝑖 𝜏 = 𝑖 𝜏 −	𝑝F𝑖 𝜏F −	𝑝G𝑖(𝜏G).

•5	fold	cross-validation	with	training	data
Ø Random	forest	model

Ø Average	accuracy:	0.9187

• Training	input	data

• Predicted	seismic	facies in	comparison	to	unsupervised	
learning	algorithm	(Nearest	neighbors)

•Nearest	neighbors	is	non-parametric,	unsupervised classification	
by	finding	the	most	similar	data	points	in	the	training	data

(Left)	Vertical	composite	line	AA’	connecting	multiple	wells	and	a	representative	time	slice	
through	the	seismic	amplitude	volume.	(Right)	Map	of	seismic	survey	and	location	of	wells	
used	intraining.	

Lithofaces interpreted	
from	six	well	logs

Statistical	analysis	of	Input	
training	data

Number	of	trees	
versus	error	rate	

Feature	importance	 A	tree	diagram	generated	from	a	
single	tree	model	

Nearest	neighbors	clustering	
(unsupervised)

A	representative	vertical	slice	through	
predicted	using	random	forest

Forestburg Lime	

Categories	of	seismic	attributes	applied	to	facies classification
Amplitude	
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Case	study	2:	Gulf	of	Mexico	Survey	

•20 seismic attributes in five categories

•Aim	of	the	study:
ØPredict	seismic	lithofacies	(Salt		
diapirs,	Mass	transport	complexes	
(MTC),	conformal	reflectors)	using	
multiple	seismic	attributes.

ØWhich	seismic	attribute	are	more	
important	and	effective	in	predict	
these	three	facies	?	

•Dataset:	
20	Seismic	attributes	(amplitude,	
geometry,	texture,	..)		generated	
from	3D	seismic	acquired	in	the	
Gulf	of	Mexico	survey	
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Conclusions

•A comparison of computation time
(RF model with n_estmators = 100, depth = 50)
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• In	the	Fort	Worth	Basin	survey,	two,	thin	layers	are	well	defined	in	
predicted	lithofacies	which	correlated	with	a	lime	layer	in	the	
Upper	Barnett	Shale	and	the	Forestburg	Lime	that	separates	the	
Upper	and	Lower	Barnett	Shale	seen	in	the	well	log.

• In	the	Gulf	of	Mexico	survey,	amplitude	and	texture	attributes	are	
powerful	attributes	that	are	able	to	differentiate	salt,	MTC	and	
conformal	reflector	facies.	

•Misclassification	occurs	around	fault	areas	where	variance	are	high	
as	that	of	MTC.

• For	a	given	quality	of	classification,	appropriate	attribute	selection	
can	significantly	reduce	the	computation	time.	
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Number of	
attributes

Number	of	
processes

Time	elapsed for
training	(s)

Time elapsed	for	prediction	of	3D	volume	(s)
(780	Mbytes)

20 1 11.15	s 1.67E-5 /	samples	x	(475	x	551	x	751)	samples	
=		3276	s

10 1 8.53	s 1.51E-5 /	samples	x	(475	x	551	x	751)	samples	
=		2967	s
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Seismic	amplitude	pattern	and		attribute	anomalies	of	each	environment
Conformal	reflectors Salt Mass	transport	complexes

Continuous
High	coherence

Moderate	values	of	GLCM	entropy

High	variance
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Chaotic
Discontinuous
Hummocky

Low	coherence	and	high	energy
Irregular	bed	thickness

(Modified	from	Roy	et	al.		(2013)

• Seismic characteristics of the target lithofacies

Time	slice	through	seismic	amplitude	
(top)	and	variance	attribute	(bottom)	

Attribute	selection	
using	prediction	model	
(Wrappermethod)

Forward	selection
Prediction	model:	RF
• Total	energy	
• Chaos
• Abberancy magnitude
• Instantaneous	frequency
• Dip	azimuth
• Variance
• Structural	curvedness
• peak	frequency
• Abberancy azimuth
• Most-positive	curvature
à Ten	attribute	results avg.	
accuracy	of 0.931324

Amplitude	
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Feature	importance	based	on	Gini	
impurity	decrease.	As	expected,	phase	
and	azimuth	have	little	to	do	with	facies.	 Correlation	between	

attributes

Representative	time	slices	through	amplitude	
and	predicted	facies

Representative	vertical	slices	through	
amplitude	and	predicted	facies
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•Prediction of lithofacies with ten attributes selected

• 5	fold	cross-validation	with	20	attributes	yields	
accuracy	:	0.92789

Conformal	
reflectors

• Training	/validation	set	
Salt,	MTC	and	conformal	reflectors	are	interpreted	and	cropped	
using	polygon
à 30,000	data	points	are	randomly	sampled
Ø Input:	30,000	data	points	in	3D	volumes			(20	seismic	attributes	in	
five	categories)
Ø Output	:	seismic	facies from	stratigraphical interpretation	
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