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1.Summary 4. QC & Application

A) Post-Stack Inversion QC B) Neural Network Training And Validation C) Bayes’ Theorem, PDF’s And Confusion Matrix

Extensive dolomitization is prevalent in platform and periplatform carbonates in the Lower- middle Permian (Wichita-

Clearfork) strata in the Midland and greater Permian basin (Mazullo, 1994). Early works (Saller et al., 1998, Mazullo et ) Cormalations: 90% o 10 —111[Ill1] I T
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Lower-Middle Permian dolomites in the Midland Basin, but they had been mostly conducted using well logs , cores and | & p(f‘sg) = 3 |
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Aim of this study is to use Supervised Bayesian Classification and Probabilistic Neural Networks (PNN) to create estima- = ) 0.040 | % '
tion of the most probable distribution of dolomite and calcite, and combine this lithology information with porosity to illumi- T "1 _
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Results tie with the regional Reflux Dolomitization model, in which the porosity is increasing from shelf to slope, while dol- 2 | w0 < o4
omitization is decreasing. This work also suggest that diagenesis in the Leonardian strata and corresponding reservoir 2] Predicted Lithology
quality can be mapped in seismic scale, by quantitative seismic interpretation and supervised classification methods 2 5} 0.0 N Dolomite | Limestons | Shale |
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w— Original Log Figure 7: Simplified Bayesian Theory for lithology classification (top left). Lithol-

Seiodo ogy Determination by cross-plotting ZP vs NPHI logs and calculation of Probabil-
————r—— 1 —— Figure 6: Selection of optimum number of attributes (top) and validation re- ity Density Functions (PDF) for each lithology type (bottom left). Resulting lithol-
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Figure 1: Geologic provinces of Figure 2: Schematic cross—section showing the generalized stratigraphy of Figure 3: Conceptual model of reflux dolo-
Greater Permian basin. (Modified af- the Midland Basin (Modified after Saller et al., 2011). This study was fo- mitization. Note that porosity increases basin
ter The University of Texas at Austin, cused on the Lower Permian Clearfork interval (White dashed box). Note ward because of dolomite cementation proxi-

Bureau of Economic Geology, that Shelfis Mainly dolomite while slope is Limestone. mal to the brine source ( Xiao et al., 2015 af-
2008). ter Saller and Henderson, 1998).
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cnsty  Sonle Acoustic Seismic Amplitude \od : Distribution Functions from | CroStY Seismic Figure 8:Dolomite Probability extracted on the Middle Clearfork in- Figure 9: Predicted lithology extracted from the Middle Clearfork In-  Figure 10: Predicted porosity extracted on the Middle Clearfork interval.
Logs logs Impedance Log Crossplots To Determine A Logs Amplitude _ _ ot ) 1 : . - 1 _ _ :
Logs = X Priori Proportions Of Lithology A Set of Training Points terval. Note the decreasing dolomite probability from shelf to slope.  terval. Platform is dolomitized, while shelf and slope are remain cal- Porosity increases from shelf to slope. Well #2 is a blind well which was
citic not in the Neural-Network Training.
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Figure 11: Arbitrary line (A-A’) showing predicted Lithology co-rendered with seismic amplitude. Note Figure 12: Arbitrary line (A-A’) showing predicted porosity co-rendered with seismic amplitude. Porosi-
that platform top is dolomite, while slope is limestone. ty is increasing from shelf to slope.
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