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Introduction

Lithology is a crucial factor in reservoir characterization. The
cores from wells are considered as the most accurate categori-
cal information. However, cores are always selectively taken in
the favourable depth intervals. Thus, for the remaining depths
the quantitative information of well logging data are needed by
classification models for lithology recognition and prediction[2].
Spatial characteristics of sediments and convolution properties
of well logs data poses challenges in the classification of litholo-
gies. Fortunately, both Bayesian inversion and deep learning
frameworks have developed models to process the inputs as se-
quences while keeping their spatial dependency [1]. In this study
we focus on a kernel-based hidden Markov model (HMM) and
a Gated recurrent unit (GRU) classifier on the same well logs
dataset and compare their results. Also a result from traditional
deep neural network (DNN) without any spatial dependency is
presented.

Field data and notation

In this case study the sedimentary lithologyes are recognized
as medium sandstone (MS), fine sandstone (FS) and siltstone
(SS). The five normalized log curves from three wells are acous-
tic log (AC), density log (DEN), gamma ray (GR), log-deep
resistivity (R4) and spontaneous potential (SP) (Fig.1). Pair-
wise scatterplots of the well logs sorted by lithologies are dis-
played in Fig.2. Large overlaps exist especially between the FS
and the SS. Integrating the categorical information hidden in di-
verse logs with the spatial dependency is a reasonable choice
in the exploration study. The 1D profile along the well path
is discretized to T = {1, . . . , T}. At each t ∈ T, a observa-
tion vector dt = (dt,1, . . . , dt,5) is provided by five well logs
with d = {dt; t = 1, . . . , T}. The corresponding categori-
cal attribute of each depth is assigned one of the three litholo-
gies κt ∈ Ωκ : {MS,FS, SS}. The objective of our study
is to assess the full lithology profile represented by the vector
κ : {κt; t = 1, . . . , T} given the observations d, i.e. [κ|d].

Figure 1: Normalized well logs AC, DEN, GR, R4, SP and the cored profiles
in three wells.

Figure 2: Pairwise scatterplots and histograms of all the well logs sorted by
lithologies.

Methods
The HMM and GRU model supply their solutions to the objec-
tive in different ways.

Kernel-based hidden Markov model
Bayesian inversion is cast in a probabilistic setting and the so-
lution is the posterior model. The posterior model is provide by
Bayes’ rule,

p(κ|d) =
1

p(d)
× p(d|κ)p(κ)

where the likelihood model p(d|κ) defines the procedure of well
logs data collection, the prior model p(κ) represents the geolog-
ical and exploration experience with the interest variable κ, and
p(d) in the equation is a normalizing constant. The prior model
represents our original knowledge about the geological setting
and sediments. A stationary Markov chain with the first-order
Markov property is chosen to guarantee the spatial coupling of
the lithologies. It can be given by,

p(κ) = ps(κ1)
∏
t∈T−1

p(κt|κt−1, . . . , κ1) = ps(κ1)
∏
t∈T−1

p(κt|κt−1)

We assumed that the likelihood models are conditional indepen-
dent with single-site response. Hence p(d|κ) can be expressed
as,

p(d|κ) =
∏
t

p(dt|κ) =
∏
t

p(dt|κt)

Denote the well logs of cores of class κ as dκ = (dκ1 , . . . ,d
κ
nk).

We can use a kernel estimator to estimate it:

p̂k(dt|κt) =
1

nκhnκ

nκ∑
i=1

k(
dt − dκi
hnκ

); κ ∈ Ωκ

where k(τ ); τ ∈ R5 is the kernel function and hnκ is the band
width which defines the smoothness of the density distribution.
The kernel function applied here is Gaussian kernel function [3].
Hence the posterior model is then fully defined. It can be as-
sessed by the Forward-Backward algorithm and be expressed
as,

p(κ|d) =
1

p(d)
×

∏
t∈T

p(dt|κt)× ps(κ1)
∏
t∈T−1

p(κt|κt−1)

= p(κ1|d)
∏
t∈T−1

p(κt|κt−1,d)

The Viterbi algorithm [3] provides the gobal maximum posterior
(MAP) prediction,

κ̂MAP = argmax
κ
{p(κ|d)}

and we also can quantify uncertainty by probability profiles and
generate realizations.

Gated recurrent unit neural networks
In GRU, a memory cell with several gates is used to integrate the
input data at current depth and the information inherited from
deeper depth cells. The memory cells extract and convey the
information in the following way [1],
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where lR = {1, . . . , LR} denotes the current GRU layer num-
ber with a

[0]
t = dt, c̃

[lR]
t denotes an update candidate NlR vec-

tor at depth t, a
[lR]
t is a NlR output vector of the lRth mem-

ory cell layer at depth t, ω[lR]
c , ω[lR]

u and ω[lR]
r are parameter

NlR × (NlR +NlR−1) matrices, b
[lR]
c , b

[lR]
u and b

[lR]
r denote three

bias parameter NlR vectors for corresponding outputs adjust-
ment, iNlR

is a unit NlR vector. The functions ftanh(·) and
fsigmoid(·) are activation functions which improve the nonlin-

ear regression performance. The final outputs of GRU, a
[LR]
t ; at

each layer t ∈ T, is an artificial NLR vector which capture the
spatial information in the well logs. It is processed by an extra
classifier to get the κ̂t. Here we use a DNN model to do the clas-
sification and define the prediction by the depthwise maximum
likelihood:

κ̂GRU : {κ̂t = argmax
κt
{pt(a

[LR]
t |κt)}; t = 1, . . . , T}

Results with discussion
We separately trained a kernel-based HMM, a GRU model with
64-128-64 memory cell layers followed by 32-16-3 general hid-
den layers and a DNN model with the same structure by using
the observations from two training wells. Data from the third
well is used as blind test and assigned to these three models to
get a locationwise MAP of the full profile from the three models.
Furthermore, we calculate the probability profile and generate
realizations from HMM. Fig.3 and 4 display the partially cored
profile and all the inversion results for one of training well and
the blind test well. In the training well (Fig.3), all MS layers are
recognized by GRU and HMM. In the core-plugs missing inter-
val at middle of the well HMM prefers to provide a long stable
FS layer. However, there appear some thin SS layers according
to GRU. At the bottom half of the training well, frequent FS-SS
transitions occur. GRU predictions provide excellent results in
these locations since it have seen these labels before. The HMM
predictions do not capture these transitions since predictions are
smoother than reality. The corresponding realizations, which
are possible outcomes, do however appear with numerous tran-
sitions. In the blind test well (Fig.4), all models fail to predict
the thick SS layers at -2126 to -2130m. In the middle unlabeled
interval, the predictions from GRU and HMM are very similar
to each other. At -2131m, a thin MS layer may occur according
to the HMM, while GRU does not capture this effect. HMM is
actually quite uncertain about the lithology classes in this inter-
val. The simulations also reflect this uncertainty by provideing
different lithologies in different realizations in this segment. At
the bottom of the well, all models predict the MS layer around
-2153m but none of them get the correct thickness.

Figure 3: The comparison of the prediction results in the training well.

Figure 4: The comparison of the prediction results in the blind test well.

Conclusions
The HMM and GRU models provide very similar predictions
on the blind well, they are clearly favorable to the non-spatial
DNN predictions. The HMM model is phrased in a consistent
probabilistic framework, hence it also provide quantifications of
uncertainty as probability profiles and a set of realizations.
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