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The objective of our study is to use data from every scale for reservoir characterization and eventually reservoir G-A G-B G-E -F The Woodford shale seismic characteristics in the study area make this formation amenable to semi-automated interpretation using seismic
simulation. The current area of study is Woodford Shale in Oklahoma. Due to enormous pay zone and thus oil and gas e P L QOGS (Lo 00D T T TG e [ WX LR T O O] Lo 0 LG VT S Selsm|c mterpretatlon and We” COntrO| attributes as an input to machine learning algorithms and promises to be a very effective way to accelerate the interpretation from a more
reserves, the Woodford Shale is the center of attraction for major oil operators in Oklahoma currently. e DD::; ?ﬁﬁf'ﬁ?ﬂ’ P;F_Nl:'::: Az j_RM_Pl:ﬂL j_RT::::; i Woodford Shale Top homogeneous background (Woodford shale top is a seismic through [negative amplitudes], and Woodford shale base is a bright Seismic reflector
L i Ty CER R i) il Bl - NW i G [Figure 8, Figure 11]). Because seismic attributes are quantitative measurements of both amplitude and geometry, a key component to machine
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have used seismic inversion derived impedance volumes to populate these properties in the geo-cellular model area to i e e | G e Hul et . . . . . . . . . . . .
btain b : hi | h ias. To obtain th TC’ h g i cad I | .wmuwu.m... s ate” el Jaw interpreters in applying SOM and similar algorithms to seismic data is the attribute selection. The 3D seismic attributes that were input for the SOM
obtain better stratigraphic control on these properties. To obtain the type curves (TC’s), we have used unsupervise ’ ALAL KXS0T S »-;u«;;.‘, e i ‘”f;w»ww are RMS amplitude, dip azimuth of the seismic traces, P-Impedance, Most Positive Curvature, Most Negative curvature and Peak Frequency. Similar
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machine learning methodologies such as Self Organizing maps (SOM) and Generative Topographic Mapping (GTM) to .. {1 B JLA T — L i colors correspond to similar rock facies as seen on Figures 13, Figure 14 and Figure 19. The SOM output was used for the Woodford Shale seismic
cluster the reservoir properties together. | e Wi i window to laterall h i ies by coll d co-krigi
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simulate the Stimulated Rock Volume (SRV) as a function of stress and eventually production. : -: e il %W VoL 2013; Snyder, 2016; Zhao et al., 2016; Qi et al., 2016) respectively. According to Infante-Paez (2018), in seismic interpretation, self-organizing maps
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Our results show, the integration from seismic to production scale provides excellent control on the reservoir Hy TIWDFD oW T g 3";.3': sl | e coded map (Figure 19), with similar colors representing clusters that a human interpreter can visualize as similar facies (Zhao et al., 2016).
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characterization and bolsters confidence on the static model. Out of all clustering techniques, SOM works best in our case iy A L X704 il
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Figure 1. Geological map of Oklahoma showing the location of the Oklahoman basins. -
Study area in northwestern Oklahoma. Modified after Oklahoma Geological Survey, 2015. -
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