

Abstract

Selecting appropriate attributes is a crucial part of the seismic facies classification workflow for reducing computational cost and reasonable model building. For supervised learning, the best attribute subset can be built by selecting input attributes that identify and differentiate the output classes and avoiding redundant attributes that are similar to each other. In this study, multiple attributes are tested to classify salt diapirs, mass transport deposits (MTDs) and the conformal reflector "background" for a 3D seismic marine survey acquired on the northern Gulf of Mexico shelf. We analyze attribute-to-attribute correlation and the correlation between the input attributes to the output classes to maximize relevance and minimize redundancy in attribute selection. We find that amplitude and texture attribute families are able to differentiate salt and MTDs. Multivariate analysis using filter, wrapper and embedded algorithms rank the attributes by importance, indicating the best attribute subset for a specific classification. We show that attribute selection algorithms for supervised learning can not only reduce computational cost but also enhance the performance of the classification.

Case study: GOM survey

 Attribute selection to differentiate salt, MTDs, and conformal reflectors

Seismic attribute families and 20 attributes

Attribute families	Seismic attributes						
Amplitude	RMS amplitude, total energy, relative						
Instantaneous	Instantaneous envelope, instantaneous						
Geometric	Variance, dip magnitude, dip azimuth,						
attributes	curvature, curvedness, aberrancy magnitude, aberrancy azimuth						
Texture	Chaos, GLCM entropy, GLCM						
attributes	homogeneity						
Spectral attributes	Peak magnitude, peak frequency, peak phase						

ATTRIBUTE SELECTION IN SEISMIC FACIES CLASSIFICATION: APPLICATION TO A GULF OF MEXICO 3D SEISMIC SURVEY

Yuji Kim^{*1}, Robert Hardisty¹, and Kurt J. Marfurt¹ ¹University of Oklahoma, OK, USA

Results

•	Attribute-to-attribute correlation analysis						
	Attribute – attribute correlation analysis						

Correlation measure	Attributes highly correlated with the other attrib	es highly correlated with the other attributes (corr. coeff. > 0.5)					
Mutual information	RMS amp. – Total energy (0.9) GLCM entropy – GLCM homogeneity (0.85) Inst. envelope - Peak magnitude (0.74) RMS amp Inst. envelope (0.72) Total energy - Inst. envelope (0.71) RMS amp. – Peak magnitude (0.69) Total energy - Peak magnitude (0.68) Variance - GLCM homogeneity (0.55) Relative Acoustic impedance - Inst. phase (0.55) Variance - GLCM entropy (0.50)						

Filtor	Reli	efF	Peak_Phase	Peak_Freq	Total_Energy	Rel_Ac_Imp	Inst_Env	Inst_Freq	Inst_Phase	Variance	Dip_Mag	Dip_Azim
Filler	FC	BF	Peak_Freq	Peak_Phase	RMS_Amp	Total_Energy	Rel_Ac_Imp	Inst_Env	Inst_Freq	Inst_Phase	Variance	Dip_Mag
Wrapper	SFS	NN	Total_Energy	Chaos	Abberancy_ Mag	Inst_Freq	Variance	Dip_Azim	Dip_Mag	Abberancy_ Azim	Peak_Freq	K1_Curv
	SBS	NN	Total_Energy	Variance	Dip_Mag	Inst_Freq	Abberancy_ Mag	Dip_Azim	Abberancy_ Azim	Chaos	Peak_Freq	K1_Curv
Embedded	R	F	Total_Energy	Peak_mag	Chaos	RMS_Amp	Abberancy_ Mag	GLCM_h	GLCM_ Entropy	Inst_Env	Variance	Inst_Freq

Relationships between a single input attribute and the three desired output

Input attribute vs output class correlation: Mutual information (MI)

