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Abstract

Blending of different frequency components of seismic traces is a common way to estimate the relative time
thickness of the formation. Red, blue, and green (RGB) color blending is one of the most popular blending
models in analyzing multiple seismic attributes. Geologists and geophysicist interpreters typically associate
low-frequency components (formations with the largest thickness value) with a red color, medium-frequency
components (formations with a medium thickness value) with a green color, and high-frequency components
(formations with the smallest thickness value) with a blue color for the thickness estimation of thin beds using
frequency components. However, we found that the same result of RGB blending may come from different sets
of three frequency components. As a result, the same blended color may correspond to several different time
thicknesses. It is also very difficult to interpret the corresponding thickness of the blended colors such as white
and yellow. To avoid the ambiguity of time-thickness estimation using RGB blending, we have estimated the
time thickness of the thin beds using all of the frequency components in a user-defined frequency band instead
of only three frequency components. Our workflow begins with the normal seismic spectral decomposition.
Considering that the different reflectivity pairs with a different time thickness have a different amplitude spec-
trum, we then use the self-organizing map to cluster the decomposed amplitude spectra of seismic traces. We
finally assign each cluster with a relative thickness by comparing the clustered results with well logs.

Introduction
Quantitative thickness estimation of a thin-bed using

seismic data is one of the most important tasks in res-
ervoir characterization. The bandwidth of the seismic
data is one of the key factors that determine the seismic
resolution (Ricker, 1953a, 1953b). Widess (1973) con-
cludes that the limit of detectable thickness for a single
bed was λ∕8 and obtains a linear relation between the
reflection amplitude and the thickness of the thin bed.
However, Kallweit and Wood (1982) point out that
Widess’s conclusion was based on visual inspection of
the seismic amplitude and was not analytically correct.
Kallweit and Wood (1982) show that the peak-to-trough
time decreases with the decreasing thickness of the thin
bed and develop a theoretical method to predict the
thickness of the thin bed using frequency and time. Rob-
ertson and Nogami (1984) find that the instantaneous
frequency was a sensitive analytical parameter in inves-
tigating the stratigraphic sequences composed of very

thin layers. Chung and Lawton (1995) study four wedge
models with different types of reflectivity and propose
using the peak frequency to predict the thickness of
thin beds.

Partyka et al. (1999) propose a turning point of thick-
ness estimation methodology, which uses the features
of the decomposed amplitude spectrum of seismic
traces. Partyka et al. (1999) illustrate that the temporal
thickness of thin beds equals the reciprocal of the
period of the notches of the amplitude spectrum. Par-
tyka (2001) illustrates that the amplitude of the seismic
can be used to quantify thickness of the thin bed if the
thickness of the thin bed is below the tuning thickness.
Barnes et al. (2004) implement spectral decomposition
using Gabor and Morlet wavelets and include that both
decomposed spectrum results provide results for the
qualitative interpretation and the thickness estimation.
Zeng and Backus (2005a, 2005b) rotate the phase of the
seismic volume by 90° and track the thin beds on the
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phase-rotated seismic volume. Zeng and Backus (2005a,
2005b) conclude that it is much simpler to characterize
the thin beds on the phase-rotated seismic volumes.
Hall (2006) proposes an approach called cepstral de-
composition to measure the bed thickness. Liu and
Marfurt (2006) show that the peak frequency can give
a reasonably good estimate of thickness if the bed
thickness is less than the tuning thickness when given
adequate well control. Khare and Martinez (2008) dem-
onstrate that amplitude ratios of frequencies can be
used as an indicator of thickness variations. Oyem and
Castagna (2013) test the accuracy of short time window
Fourier transform and constrain least-squares spectral
analysis (CLSSA) spectra in determining the time thick-
nesses of thin beds. Oyem and Castagna (2013) show
that CLSSA yields more accurate layer thickness esti-
mation. Wallet (2016) illustrates that the peak-to-trough
(or trough-to-trough) time corresponds to the approxi-
mate frequency. Wallet (2016) states that it is feasible to
use the spectral decomposition attributes to generate
3D geologic modeling of channels. Zhou and Castagna
(2017) use the principal component of the amplitude
spectrum of seismic to map the thickness of the chan-
nels. Yuan et al. (2017) propose a sparse Bayesian learn-
ing-based time-variant deconvolution method to avoid
the thin-layer artifacts associated with stationary de-
convolution.

Red-green-blue (RGB) blending is one of the most
popular multiple seismic attribute analysis methods.
Balch (1971) proposes to characterize the reservoir
properties by RGB blending the low-, medium-, and
high-frequency components of the amplitude spectrum
of seismic data. Liu (2006) blends peak frequency, peak
amplitude, and coherence attributes using RGB strategy
to highlight the discontinuities and thickness variation
of the reservoir. Guo et al. (2008) propose a multiple
attribute mapping strategy by using 3C and 4C models.
Laake (2015) proposes an RGB processing method
called structure-sharpened continuous RGB (SRGB).
The SRGB method used continuous RGB color to ren-
der multiple data layers at the same time and to provide
a visual environment of geologic features for the inter-
preters. Zeng (2017) estimates the thickness and shale

contents of thin beds by using the results of color-
blended multiple frequencies. Selecting the proper
low-, medium-, and high-frequency components is the
most challenging task in thin-bed characterization using
the RGB blending technologies. Researchers usually
define the “low-”, “medium-,” and “high-”frequency com-
ponents according to their intuitive experience.

To improve the accuracy and stability of the thick-
ness estimation of thin beds, we propose to estimate the
time thickness of the thin beds using all of the frequency
components within a user-defined frequency band. Our
paper begins with reviewing the thickness estimation
approaches. We then use a simple wedge model to illus-
trate the process of thickness estimation of a thin bed
using the peak frequency. We next examine the accu-
racy of RGB blending of three frequency components
in mapping the thickness of thin beds. We finally pro-
pose our workflow to mapping the time thickness of
a thin bed by using all of the frequency components
within a user-defined bandwidth. Our workflow uses
the self-organizing map (SOM) to build the relationship
between the multiple-frequency components and the
time thickness of thin beds. To illustrate the effectiveness
of our method, we first apply our method to a wedged
synthetic model and then to a seismic survey acquired
over the eastern part of the Anadarko Basin, Oklahoma.

Thickness estimation of a thin bed
The methods used to characterize the thickness of a

thin bed can be categorized in the following four catego-
ries: (1) the two-way time difference between the inter-
preter tracked horizons, (2) methods based on the tuning
features of seismic amplitude, (3) methods using a single
frequency component of seismic data, and (4) methods
blending the multiple frequency components of seismic
data. In this paper, we generated a synthetic channel
model to demonstrate the effectiveness of the thickness
estimation methods. Each trace of our model consists of
two opposite but equal reflectivity spikes. The maximum
and minimum two-way time thickness of our channel
is 65 and 0 ms. Figure 1 shows the seismogram of the
synthetic channel model by convolving the reflectivity
model with a 35 Hz Ricker wavelet. There are 129 seismic
traces in our synthetic model, and the time-sampling rate
is 1 ms.

Thickness estimation using the seismic amplitude
The red and blue curves in Figure 1 show the peak

and trough of the seismic events, respectively. The green
curve indicates the seismic trace with the tuning thick-
ness. The black curve in Figure 2 is the time thickness
between the peak (red curve in Figure 1) and trough
(blue curve in Figure 1) of the seismic events. Note that
the time thickness between the peak and trough perturbs
at approximately 10 ms if the time thickness of the chan-
nel is smaller than the tuning thickness. This phenome-
non indicates that the peak-to-trough time thickness is
incapable of resolving the thickness of a thin bed if the
thickness is smaller than the tuning thickness.

Figure 1. Channel model. The top of the channel is at time
100ms. The channel thickness from 1ms on the left and reaches
the thickest at 65 ms.
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Assume that the source wavelet is a Ricker wavelet
(Ricker, 1953a), which can be expressed as

AðtÞ ¼ ½1 − 2ðπf ptÞ2� exp½−ðπf ptÞ2�; (1)

where t is the time and f p is the peak frequency, which
is defined as the frequency with the largest amplitude.
We can set the derivative of the amplitude to zero to get
the tuning thickness (Kallweit and Wood, 1982):

dAðtÞ
dt

¼ 2ðπf pÞ2t½2ðπf ptÞ2 − 3� exp½−ðπf ptÞ2� ¼ 0: (2)

Then, the tuning thickness ht for a Ricker wavelet is
given by

ht ¼
1

2.6 � f p
: (3)

The peak frequency of our wavelet is 35 Hz. Then, the
tuning thickness is 11 ms according to equation 3 in our
model. The red curve in Figure 2 is the amplitude of the
peaks of the seismic reflection. The amplitude reaches a
maximum value if the time thickness of the channel
equals tuning thickness. However, we usually do not
use the amplitude to characterize the time thickness of
the thin bed due to its sensitivity to noise.

Thickness estimation using single-frequency
component of seismic data

Researchers have used the first dominant frequency
of the decomposed amplitude spectrum of seismic data
in mapping the time thickness of the thin bed. In this
paper, we use the S-transform to decompose the seis-
mic traces. The black and red curves in Figure 3 are the
first dominant frequency and corresponding amplitude
of the first dominant frequency, respectively. Figure 3
shows that the tuning thickness is related to the dom-
inant amplitude and dominant frequency. We can use
the amplitude of the first dominant frequency to estimate
the time thickness if the time thickness of the bed is less
than the tuning thickness. We can use the dominant fre-

quency to estimate the time thickness if the time thick-
ness of the bed is greater than the tuning thickness.
We also notice that there is a significant “staircase” phe-
nomenon for the first dominant frequency. The staircase
phenomenon would lower the accuracy of the time-
thickness estimation. Stability is another factor that hin-
ders the wide application of using a single-frequency
component in mapping the time thickness of the thin
bed. The noise contained in the seismic data also affects
the amplitude spectrum of seismic data, which further
affect the distribution of the first dominant frequency.
The artifacts introduced by processing, such as stretch-
ing, may also affect the distribution of the first dominant
frequency.

Thickness estimation using RGB blending of
multiple-frequency components of seismic data

To compensate the disadvantages of mapping the
time thickness of thin bed, researchers combine several
frequency components to characterize the thin bed.
RGB blending is one of the most used strategies used
for displaying multiple-frequency components. RGB
blending is an additive color model using the primary
colors of red, green, and blue to reproduce a broad ar-
ray of colors tuning with human vision perceptions.

The RGB blending basic functions can be written as
(Liu, 2006)

bRðf Þ ¼ 0.5 ·

�
1.0þ cos

�
π

f − f R
k · f Bandwidth

��
; (4a)

bGðf Þ ¼ 0.5 ·

�
1.0þ cos

�
π

f − f G
k · f Bandwidth

��
; (4b)

bBðf Þ ¼ 0.5 ·

�
1.0þ cos

�
π

f − f B
k · f Bandwidth

��
; (4c)

Figure 2. Tuning analysis. The peak-to-trough time is the ap-
parent channel thickness between the peak and trough, and
the amplitude is the amplitude difference between the maxi-
mum (peak) and minimum (trough) value.

Figure 3. The first dominant amplitude versus first dominant
frequency. The dominant amplitude can be used to estimate
the thickness when the bed is below the tuning thickness. The
dominant frequency can be used to estimate the thickness that
is greater than the tuning thickness.
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where bRðf Þ, bGðf Þ, and bBðf Þ are the basic functions of
the red, green, and blue colors in RGB blending and
f R, f G, andf B are the center frequencies for the red,
green, and blue colors basic functions, respectively.
Here, f Bandwidth is the frequency bandwidth of the seis-
mic data andk is a constant that controls the bandwidth
of the cosine function.

We can write these basic functions as a matrix B:

B ¼

2
66664

bRðf 1Þ bGðf 1Þ bBðf 1Þ
bRðf 2Þ bGðf 2Þ bBðf 2Þ

..

. ..
. ..

.

bRðf mÞ bGðf mÞ bBðf mÞ

3
77775: (5)

We use least-squares to match the RGB’s three basic
functions to the decomposed amplitude spectrum of the
seismic data:

C ¼ ½BTBþ εI�−1BT · U; (6)

where vectors C ¼
� cR
cG
cB

�
is the RGB coefficients vec-

tor,U ¼

0
BBB@

uðf 1Þ
uðf 2Þ

..

.

uðf mÞ

1
CCCA is the spectral components vector, I

is an 3 x 3 identity matrix, andεis a small number that
stabilizes the solution.

We first extract the amplitude spectrum of the seis-
mic data along the red horizon shown in Figure 1. We
then RGB blend three frequency components (20, 40,
and 60 Hz) to characterize the thickness of the channel.
Figure 4 shows the RGB blending result. The RGB
blending in assisting the thin-bed characterization has
the following three assumptions. The red color is asso-
ciated with low frequency, which stands for a larger time
thickness. The green color is associated with medium
frequency, which stands for a medium time thickness.
The blue color is associated with high frequency, which
stands for a small time thickness. Note that the RGB
blending result has very good correlation with our time
thickness of the synthetic model. But we do have several

disagreements indicated by the arrows in Figure 4. There
is no definition about the time thickness for the zone rep-
resented by yellow (indicated by the yellow arrow in Fig-
ure 4) and purple colors (indicated by the purple arrow
in Figure 4). The time thickness of the channel indicated
by the green arrow is larger than the time thickness of
the channel indicated by the red arrow. Unfortunately,
this fact conflicts with our assumption of RGB blending
strategy.

Figure 5 illustrates the amplitude variation of certain
frequency component with the time thickness of the
channel. The red, green, and blue curves are the ampli-
tude of 10, 20, and 30 Hz, respectively. Figure 5 indi-
cates the “confused” phenomenon shown in Figure 4.
The amplitude value of 0.4 has a unique corresponding
time thickness (10 ms) for the 10 Hz component. How-
ever, the amplitude value of 0.4 has three corresponding
time thicknesses for the 20 and 30 Hz components. The
nonunique relationship between amplitude value and
time thickness would introduce ambiguity in the follow-
ing RGB blending. As a result, channels with different
time thicknesses may have the same RGB blending color
scheme.

Thickness estimation by clustering the
multiple-frequency components of seismic data

Figure 6 shows the decomposed amplitude spectrum
of several representative seismic traces. Note that the am-
plitude of different seismic traces (different time thick-
ness) have different features. The difference between the
curve shapes of the spectrum is obvious enough to differ-
entiate with each other. Based on this observation, we
propose mapping the time thickness of a thin bed by clus-
tering the decomposed amplitude spectrum of the seis-
mic traces.

In this paper, we choose the SOM (Kohonen, 1982) as
the clustering method. SOM becomes a widely used un-
supervised network, and researchers have successfully
applied SOM tomultiple attribute analysis. Poupon et al.
(1999) perform one of the earliest SOM-based seismic
facies analyses, and they find that the shape variation
of seismic traces is a good indicator of the sand thick-

Figure 4. The RGB blending result. The 20 Hz component is
plotted against red, 40 Hz component is plotted against green,
and the 60 Hz component is plotted against blue. There are some
zones indicated by arrows that conflict with our assumption of
the RGB blending strategy.

Figure 5. Spectral amplitude concerning the time thickness.
The amplitude variation of certain frequency component with
the time thickness of the channel. It indicates the confused
phenomenon shown in Figure 4.
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ness as well as the gas saturation. Strecker and Uden
(2002) cluster poststack seismic attributes into four dif-
ferent Kohonen SOM runs. Strecker and Uden (2002)
find that the clustered result helps the geologic inter-
preters to extract more stratigraphic details. Zhao et al.
(2016) characterize a Miocene deepwater turbidite sys-
tem by applying the SOM to multiple seismic attributes.
Hardisty and Wallet (2017) improve the SOM perform
on multiple seismic attributes analysis by modifying the
input of the Gaussian mixture models. Ha et al. (2017)
apply a SOM classification to multiple seismic attributes
to highlight hydrocarbon-related facies.

The Kohonen SOM network has an input layer and a
competitive layer. The weight vector for each SOM
neuron is wji ¼ ½wj1 wj2 wj3 : : : wjn−1 wjn �,
where i is an SOM neuron in the input layer and j
is an SOM neuron in the competitive layer. These
neurons or prototype vectors (PVs) are arranged in a
regular low-dimensional grid or map (1D, 2D, or 3D).
The input for SOM is a set of attribute vectors
X ¼ ½x1 x2 x3 : : : xn−1 xn �, and each attribute
vector xi contains m attributes. The purpose of SOM
analysis is to classify the attribute vector set into differ-
ent groups. During the process of SOM, the distance
between input vectors and the weight vector will be
calculated, usually using the Euclidean metric:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðXi −WjiÞ2

q
. The “winner” PV is defined as

the best-matching vector that has the minimum distance
to the input (most similar to the input). After the winner
PV and the neighborhood around the winner are up-
dated, the weights for all of the PVs in the neighborhood
will be updated. The winner PV and its neighborhood
have their weights modified to become more likely to
win the competition and become the new cluster center.
The next step is to change the best matching vector and
the neighborhood’s weight vector by taking the winner
as the new center and iteratively updating the winner
PVs to be closer to the input. The iteration will stop until
the neighborhood radius decreases to the minimum dis-

tance between the PVs in the SOM grid space. Finally, we
will assign the SOM result with the gradient color dis-
play. To facility the display (a colorbar that varies mono-
tonically in a certain direction), we use a one-dimension
topology instead of two dimensions for SOM. Figure 7
illustrates a typical decomposed amplitude spectrum.
We arrange the value of the amplitude spectrum into
a vector a ¼ ð a1 a2 a3 : : : an−1 an Þ, and the
vector a is the input for the SOM classification.

Figure 8 shows the clustered results by applying
SOM to the amplitude spectrum of seismic data. The
bandwidth used for the clustering is 10–70 Hz, and there
are 64 clusters in our model. The red color indicates
that the channels have a thick time thickness, and the
blue color indicates that the channels have a thin time
thickness. Note that we do not have ambiguity about
the time thickness indicated by the color.

Field application
The study survey is located in the eastern part of the

Anadarko Basin, Oklahoma (Figure 9). The depth of the
target zone is at an approximate depth of 2680 m (ap-
proximately 8800 ft). The target zone is the Red Fork
Sand of the middle Pennsylvanian and is composed of
clastic facies deposited in a deep-marine (shale/silt) to
shallow-water fluvial-dominated environment. The Red
Fork Sandstone is sandwiched between limestone layers,
with the Pink Limestone on top and the Inola Limestone
on the bottom.

We first apply the S-transform to obtain the time-fre-
quency spectrum of the seismic data. Figure 10 shows

Figure 7. The input for the SOM classification.

Figure 8. The clustered results by applying SOM to the am-
plitude spectrum of seismic data. The red and blue colors
indicate that the channels have a thick time thickness and a
thin time thickness, respectively.

Figure 6. The decomposed amplitude spectrum of the repre-
sentative seismic traces. The legend represents different seis-
mic trace numbers. The amplitude of different seismic traces
(different time thickness represented by different colors) have
different features.
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the peak frequency of the amplitude
spectrum along the top of the Red Fork
Formation. Note that the peak frequency
successfully highlights the channel at
most of the locations, but it fails to out-
line the channel indicated by the purple
arrow. Figure 11 is the RGB-blending im-
age of three frequency components. The
selected three frequency components are
20 (red), 50 (green), and 70 Hz (blue), re-
spectively. Note that the RGB blending
result successfully highlights channels
and channel edges. Figure 12 is the clus-
tered results of multiple frequency com-
ponents using SOM. The minimum and
maximum frequency component are 10

and 70 Hz, respectively. The frequency sampling rate
is approximately 2 Hz, and there are 32 frequency com-
ponents used for clustering. There are 64 clusters in our
clustering mode. Note that the clustered results illustrate
the channel system.

We have 135 wells in our study area (Figure 13). Fig-
ure 14 shows the interpolated thickness of the Red Fork
Formation using the well tops of Red Ford and Pink
Lime. We observed a very good match between the pat-
terns shown in Figures 12 and 14. For example, the lo-
cations pointed out by arrows 1–3 in Figure 14 belong to
the same thickness (a small time thickness), and these
locations are the same clustered results in Figure 12.

Figure 9. The location map of the Anadarko Basin area on a map of Oklahoma.
The study survey is inside the area marked by the red boundary.

Figure 10. The peak frequency of the amplitude spectrum
along the top of the Red Fork Formation.

Figure 11. The RGB blending result of three selected fre-
quency components. The 20 Hz in red, 50 Hz in green, and
70 Hz in blue.

Figure 12. The clustered results of multiple-frequency com-
ponents using SOM.

Figure 13. Well locations in our study area.

Figure 14. The multiattribute display of thickness contour
map and coherence. The contour map is the interpolated thick-
ness of the Red Fork Formation using two well tops (Red Fork
and Pink Lime).

B6 Interpretation / February 2019

D
ow

nl
oa

de
d 

01
/2

7/
19

 to
 1

30
.1

60
.1

24
.4

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



The locations pointed out by arrows 4–7 in Figure 12 are
clustered to the same stage, meanwhile they are the
same thickness in Figure 14. Note that the narrow
branch channel indicated by the black arrow at the
lower right in Figure 12 reveals the change of thickness.
However, we find an ambiguity about the time thick-
ness indicated by Figures 10 and 11. Arrow 1 indicates
a small time thickness in Figure 14, whereas the loca-
tion pointed out by arrow 1 denotes low frequency,
which stands for a larger time thickness in Figure 10.
The locations pointed out by arrows 7 and 8 in Figure 10
indicate a smaller time thickness with a higher fre-
quency, but these two locations indicate a larger time
thickness in Figure 14. There are also several disagree-
ments indicated in Figure 11. Arrows 1, 5, and 9 in
Figure 11 are all indicated by the red color standing for
the same larger time thickness, whereas the channels
pointed out by these three arrows are not supposed to
have the same time thickness in Figure 14.

Arrows 1 and 3 denote the same time thickness in
Figure 14, but Figure 11 shows different colors respond-
ing to different time thicknesses. The location pointed
out by arrows 3 and 6 in Figure 11 are both indicating a
medium time thickness with the green color, whereas
there are smaller time thicknesses and larger time thick-
nesses in Figure 14, respectively. Moreover, the locations
pointed out by arrows 5–7 are larger time thicknesses in
Figure 14, but these locations in Figure 11 are denoted
by different frequencies standing for different time thick-
ness. The locations pointed out by arrows 5, 6, 10, and 11
are the same thickness in Figure 14, and these locations
are also clustered to the same stage in Figure 12. But in
Figure 11, these locations are displayed by different fre-
quency components standing for different time thick-
nesses. In addition, the area in the black circle on the
right is shown in the same color standing for the similar
time thicknesses in Figure 11, whereas the thickness of
this area is diverse in Figure 14.

Conclusion
Quantitative thickness estimation of thin bed is impor-

tant in reservoir characterization. We can use the ampli-
tude and frequency features of seismic data to estimate
the time thickness of the thin bed. In this paper, we have
discussed four methods used to estimate the time thick-
ness of a thin bed with the goal of improving the accu-
racy and stability of the thickness estimation. However,
the amplitude-based and single frequency feature-based
methods are sensitive to noise. The RGB blending can
only combine three frequency components, and it is
very hard to choose the proper frequency components.
We also have ambiguity in the interpretation of some of
the blended colors, such as white and yellow. To use in-
formation contained by all the frequency components,
we cluster themultiple-frequency components of seismic
data by using SOMs. The clustered results are much
closer to the interpolated thickness of the target forma-
tion using the well tops.
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