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ABSTRACT

Seismic noise attenuation is an important step in seismic data
processing. Most noise attenuation algorithms are based on the
analysis of time-frequency characteristics of the seismic data
and noise. We have aimed to attenuate white noise of seismic
data using the convolutional neural network (CNN). Tradi-
tional CNN-based noise attenuation algorithms need prior infor-
mation (the “clean” seismic data or the noise contained in the
seismic) in the training process. However, it is difficult to
obtain such prior information in practice. We assume that the
white noise contained in the seismic data can be simulated by
a sufficient number of user-generated white noise realizations.

We then attenuate the seismic white noise using the modified
denoising CNN (MDnCNN). The MDnCNN does not need
prior clean seismic data nor pure noise in the training procedure.
To accurately and efficiently learn the features of seismic data
and band-limited noise at different frequency bandwidths, we
first decomposed the seismic data into several intrinsic mode
functions (IMFs) using variational mode decomposition and
then apply our denoising process to the IMFs. We use syn-
thetic and field data examples to illustrate the robustness and
superiority of our method over the traditional methods. The
experiments demonstrate that our method can not only at-
tenuate most of the white noise but it also rejects the migration
artifacts.

INTRODUCTION

Seismic noise attenuation is a key step to enhance the quality of
seismic data. Seismic denoising not only lowers the effects of sub-
jectivity in seismic interpretation but also improves the reliability of
seismic inversion. In recent decades, numerous seismic denoising
approaches have been developed and widely applied in practice.
Methods for seismic denoising can be generally classified into four
categories: The first category is based on building a prediction filter
to remove the noise of seismic data. The commonly used algorithms
within the first category include f-x predictive filtering (Canales,
1984), t-x predictive filtering (Abma and Claerbout, 1995), the for-
ward-backward prediction approach (Wang, 1999), the polynomial
fitting-based approach (Liu et al. 2011), and nonstationary predic-
tive filtering (Liu et al., 2012). The second category projects the
seismic data to a transformed domain and rejects the noise by

applying a band-pass filter to the transformed data. The denoised
seismic data are obtained by projecting the filtered data back to
the time domain. The commonly used algorithms within the second
category include the Fourier transform (Chen and Ma, 2014), cur-
velet transform (Herrmann et al., 2007), seislet transform (Fomel
and Liu, 2010), shearlet transform (Kong and Peng, 2015), Radon
transform (Trad et al., 2002; Xue et al., 2016), wavelet transform
(Donoho and Johnstone, 1994), and dictionary learning-based
sparse transform (Elad and Aharon, 2006). The third category de-
composes the seismic traces into a set of components and then
examines the time or frequency features of each decomposed com-
ponent. Finally, we can obtain the clean seismic traces by rejecting
the components that are regarded as “noise.” The commonly used
algorithms within the third category include empirical mode de-
composition (Huang et al., 1998; Bekara and van der Baan, 2009),
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variational mode decomposition (VMD) (Dragomiretskiy and Zosso,
2014; Li et al., 2017), and singular-value decomposition-based
approaches (Bekara and van der Baan, 2007). Yuan et al. (2018)
propose a novel inversion-based denoising method. The method has
the advantages of preserving 3D spatial edges and low-frequency
signals. The fourth category is based on the rank-reduction recon-
struction of seismic data. The commonly used algorithms within
the fourth category include Cadzow filtering (Trickett, 2008) and
singular spectrum analysis (Vautard et al., 1992; Oropeza and
Sacchi, 2011).
Deep learning is a subset of machine learning that is based

on learning data representation with multiple levels of abstraction
(LeCun et al., 2015). The convolutional neural network (CNN)
(LeCun et al., 1998) is one of the most popular and widely used
deep-learning algorithms. CNN-based algorithms have already
achieved great success in the field of computer vision. CNN is
extremely efficient in learning the features of the images and label-
ing images. Numerous CNN-based algorithms have also been pro-
posed to address the problem of image denoising. Jain and Seung
(2009) successfully apply CNN to image denoising. Burger et al.
(2012) denoise the images using multiple layer perceptron. Other
popular CNN-based image denoising methods include the stacked
sparse denoising autoencoder (Xie et al., 2012) and the trainable
nonlinear reduction diffusion model (Chen et al., 2015). Zhang et al.
(2017) propose denoising CNN (DnCNN) to learn the features of
noise contained in the images. The main disadvantage of current
CNN-based denoising methods is that these methods need clean
data and the corresponding noisy data in the training process.
Unfortunately, it is unfeasible to obtain clean seismic data for train-
ing in practice.
We propose the modified denoising CNN (MDnCNN), which

uses user-generated white noise to simulate the white noise con-
tained in the seismic data. Considering that the white noise con-
tained in the seismic data is band-limited and the noise level is
varying with the frequency bandwidth, we combine the VMD with
the MDnCNN to accurately learn the feature of noise at different
bandwidths. There are four main steps in the proposed workflow.
The first step is to decompose the seismic volume into different in-
trinsic mode functions (IMFs) by using VMD. The second step is to
add user-generated white noise to each decomposed component.
The third step is to build the neural network hierarchy to learn the
feature of additive white noise. The last step is to denoise seismic
data by applying the well-trained network to the original seismic
data. We use synthetic and field data to illustrate the robustness
and superiority of our method over denoising methods such as
f-x deconvolution and MDnCNN.

THEORY

There are many successful applications of image denoising by
using CNN-based algorithms (Xie et al., 2012; Zhang et al.,
2017). The main advantage of CNN-based denoising methods is
that a CNN with multiple hidden layers (deep architecture) can rec-
ognize various features of the input data and classify them into cor-
responding categories.

Objective function

One 3D seismic volume can be reshaped into many 2D seismic
sections in inline and crossline directions. Each seismic section can

be treated as a 2D image. The image needing to be denoised can be
defined as y ¼ xþ n, where y is the noisy image, x is the corre-
sponding clean image, and n is the additive noise. The goal of image
denoising is to build a model to recover the clean image x from the
corresponding noisy image y. According to the objective function,
the image denoising methods using CNN can be classified into two
categories.
The first category is modeling the clean image (Jain and Seung,

2009; Xie et al., 2012) by minimizing the following objective func-
tion JðθÞJðθÞJðθÞ:

JðθÞ ¼ argmin
θ

1

M

XM
i¼1

kxi − RθðyiÞk2; (1)

where fðyi; xiÞgMi¼1 represents the M noisy-clean image pairs, Rθ

denotes the entire CNN with all trainable parameters (convolution
filter and bias) θ, and RθðyiÞ is the predicted clean image by using
the trained CNN Rθ.
The second category is modeling the noise by applying the

residual learning formulation (Zhang et al., 2017):

JðθÞ ¼ argmin
θ

1

M

XM
i¼1

kRθðyiÞ − ðyi − xiÞk2; (2)

where RθðyiÞ is the predicted noise by using the trained
CNN Rθ.
In seismic exploration, x and y can be regarded as the noise-free

and noise-contaminated seismic images, respectively. Equations 1
and 2 require clean and corresponding noisy data in the training
process. Unfortunately, it is unfeasible to obtain purely clean seis-
mic data in practice. However, we assume that the white noise
contained in the seismic data can be simulated by enough user-
generated white noise realizations n 0 (Wu and Huang, 2009). The
seismic image with additive white noise can be expressed as

y 0 ¼ xþ nþ n 0: (3)

The new objective function of MDnCNN is given by

JðθÞ ¼ argmin
θ

1

M

XM
i¼1

kRθðyiÞ − ðy 0
i − yiÞk2

JðθÞ ¼ argmin
θ

1

M

XM
i¼1

kRθðyiÞ − n 0
ik2: (4)

According to the statistical properties of white noise, the distribu-
tion of the original white noise n and the additive white noise n 0 are
given by (Wu and Huang, 2004)

ni ∼ ηðμd; σ2dÞ; n 0
i ∼ ηðμn; σ2nÞ; (5)

where η denotes the normal distribution, μd is the expectation, σd is
the standard deviation of the noise contained in the seismic data, μn
is the expected value, and σn is the standard deviation of the additive
white noise. Equation 6 illustrates that we can simulate the noise
contained in the seismic data if we have sufficient trials. To accu-
rately simulate the noise contained in the seismic data, the noise
level of additive white noise should be close to that of the original
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white noise. We use the peak signal-to-noise ratio (PS/N) method to
compute the signal-to-noise ratio (S/N) for the input seismic data:

S∕N ≈ PS∕N ¼ maxðy2Þ
MSE

; (6)

MSE ¼ 1

M

XM
i

ðyi − ŷÞ2; (7)

where ŷ denotes the mean value of the original seismic data and
MSE is the mean-squared error (Li et al., 2017).
After adding sufficient additive white noise realizations, the ex-

pectation μn and standard deviation σn of certain realizations of
simulated noise should approximately be equal to the expectation
μd and standard deviation σd of noise contained in the seismic data
(Wu and Huang, 2004):

μn ≈ μd; σn ≈ σd: (8)

Then, we obtain

JðθÞ ¼ argmin
θ

1

N
1

M

XM
i¼1

XN
k¼1

kRθðyiÞ − n 0
ikk2

≈ argmin
θ

1

M

XM
i¼1

kRθðyiÞ − nik2; (9)

where N is the number of additive white noise realizations and
n 0
ik represents the ith additive white noise image of the kth ad-

ditive white noise realization. Equation 9 indicates that the pro-
posed method does not require clean seismic data in the training
process.

Architecture

The architecture of the proposed neural network is a sequence of
nonlinear processing layers followed by a sigmoid classifier layer
based on the architecture of MDnCNN (Figure 1). The input of the
network is the original seismic data y and the seismic data with
additive white noise y 0 ¼ yþ n 0. The network contains 17 layers
in total. The first layer contains 64 convolution filters of size 3 × 3

and 64 rectified linear units (ReLUs) activation operators. The ob-
jective of the convolution filter is to generate feature maps of the
input seismic data. The objective of ReLU is to activate the main

Figure 1. The overall architecture of MDnCNN.

Figure 2. One section example of F3-block seismic survey.

Figure 3. Illustration of the test on F3-block using MDnCNN. The
yellow arrows indicate the remaining noise, and the red arrows in-
dicate the rejected visible reflections. (a) The denoised result and
(b) the rejected noise.
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features contained in the feature map. Different from the first layer,
a batch normalization (BN) (Ioffe and Szegedy, 2015) is added be-
tween the convolution filter and ReLU for the following 2–16
layers. BN is a reparameterization used to stabilize the updating
of parameters and improve the learning process. The last layer only
contains 64 convolution filters of size 3 × 3 to reconstruct the out-
put. Then, the built neural network transforms the seismic noise
attenuation procedure into an optimization problem by solving a
sequence of nonlinear functions. A gradient-based optimization al-
gorithm of adaptive moment estimation (Adam) (Kingma and Ba,
2015) is used to minimize the proposed objective function through
iterative updating of the parameters of the network.

VMD-MDnCNN

Figure 2 shows a real seismic section of F3-block in the North
Sea, Netherlands. Figure 3a and 3b shows the denoised result and
the rejected noise by using the MDnCNN. The noise is indicated by
the yellow arrows in Figure 3a, and rejected visible reflections are
indicated by the red arrows in Figure 3b. The main reason for this
phenomenon is that the seismic data are band limited and the S/N is
varying with bandwidth. If we only use the MDnCNN to learn the
feature of original white noise at full bandwidth, the MDnCNN can-
not attenuate all the original white noise and will remove some vis-
ible reflections. To better learn the noise feature, we first decompose
the seismic data into different components and then apply the
MDnCNN to each decomposed component. In this work, we apply
the VMD to decompose the seismic traces. We called this seismic
noise attenuation procedure as VMD-MDnCNN.
VMD is an adaptive and nonrecursive signal decomposition

method (Dragomiretskiy and Zosso, 2014). This method decom-
poses a signal into a series of IMFs. The frequency spectrum of
each IMF is computed around the center frequency ωi, and the spar-
sity of each IMF is constrained by its bandwidth in the frequency

domain. In other words, VMD decomposes the signal into different
IMFs and the frequency spectrum of each component is tuned
around the center frequency ωi. We obtain each IMF by recursively
solving the following optimization problem:

min
fuig;fωig

�X
i

����∂t
��

δðtÞ þ j
πt

�
� uiðtÞ

�
e−jωit

����
2

2

�
;

XL
i

uk ¼ sðtÞ
(10)

where ui and ωi are the modes and their center frequencies, respec-
tively, δðtÞ is a Dirac impulse, sðtÞ is the signal to be decomposed,
the constraint condition is that the summation over all modes should
be the input signal, the term ðδðtÞ þ ðj∕πtÞÞ � uiðtÞ is the Hilbert
transform of ui, and the parameter L is the user-defined decom-
posed number. The denoising objective function JðθÞðjÞ for the
jth decomposed seismic component is given as

JðθÞðjÞ ¼ argmin
θ

1

N
1

M

XM
i¼1

XN
k¼1

kRðjÞ
θ ðyðjÞi Þ − ðy 0ðjÞ

ik − yðjÞi Þk2;

(11)

where yðjÞ and y 0ðjÞ represent the jth decomposed component and
the components with additive white noise, respectively.
Figure 4 shows the proposed denoising workflow using VMD-

MDnCNN. We first decompose the 3D seismic data (reshaped into
2D seismic sections in the inline and crossline directions) into sev-
eral decomposed components and compute the S/N for each com-
ponent. We produce a “noisier” IMF by adding additive white noise
to each decomposed IMF and the residual component. The energy
of the additive white noise is approximately equal to the energy of
the white noise estimated within each decomposed component. We

next learn the feature of white noise by minimiz-
ing the difference between additive noise and
learned white noise from the noisier decomposed
components (equation 11). We produce the
denoised components by subtracting the learnt
noises from the corresponding decomposed com-
ponents. We finally obtain the denoised seismic
data by integrating the ensemble of denoised
components. Figure 5a and 5b shows the
denoised results and rejected noise by using
VMD-MDnCNN. It can be noted that our
method successfully rejects the noise indicated
by the yellow arrows in Figure 3a and preserves
the seismic reflections indicated by the red ar-
rows in Figure 3b.

SYNTHETIC EXAMPLE

To demonstrate the performance of VMD-
MDnCNN, we first test our method using syn-
thetic seismic data (Figure 6a) generated using
the Marmousi model. We use a zero-phase
Ricker wavelet to generate our synthetic seismic
data. The dominant frequency of the Ricker
wavelet is 30 Hz. The synthetic seismic data con-
tain 128 traces, each with 128 time samples atFigure 4. The workflow of VMD-MDnCNN for seismic noise attenuation.
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4 ms time interval. Figure 6b shows the noisy synthetic seismic
data. The additive noise is Gaussian noise and the S/N is two.
To ensure that the additive noise has the same frequency bandwidth
with the seismic data, we applied a band-pass Butterworth filter
(5–10–95–100 Hz) to the Gaussian noise before we add the noise
to the noise-free synthetic seismic data. Figure 7a–7c shows the
denoised seismic data using f-x deconvolution, MDnCNN, and
VMD-MDnCNN, respectively. Figure 8a–8c shows the rejected
noise using f-x deconvolution, MDnCNN, and VMD-MDnCNN,
respectively. VMD-MDnCNN not only rejects the white noise
(the yellow arrows in Figure 7a–7c), but it also preserves the visible
reflections rejected by f-x deconvolution and MDnCNN (the red
arrows in Figure 8a–8c).
The filter length is 12 sample points, and the cutoff frequency

range is 5–100 Hz for the f-x deconvolution. The IMF number
is determined by the performance of denoising and computation
cost. In this work, we found that that there is no obvious difference
between the denoised results for the synthetic and real seismic data

if the IMF number is equal to or greater than two. The computation
cost increases with the increasing of the IMF number. We set the
IMF number as two in our synthetic testing. The moderate band-
width constraint and the tolerance of the convergence criterion
are 100 and 0.01, respectively, for VMD. The preset center frequen-
cies for these two IMFs are 25 and 45 Hz, respectively. The input for
our VMD-MDnCNN is the first decomposed IMF plus additive
noise, the second decomposed IMF plus additive noise, and the
residual component plus additive noise. Figure 9 shows the training
and validation loss varying with optimization epochs. Considering
that the data size used in deep learning is huge, we usually divide
the learning data set into several small subsets (batch). The optimi-
zation procedure is implemented batch by batch, and one epoch
means one optimization iteration of the full batches. We obtain
the training and validation loss by applying the objective function
shown in equation 12 to the training and validation data set, respec-
tively. To overcome the overfitting problem in the training pro-
cedure, the training and validation seismic traces are randomly

Figure 5. Illustration of the test on the F3-block using VMD-
MDnCNN. The yellow arrows indicate the removed noise, and
the red arrows indicate that there are no rejected visible reflections.
(a) The denoised result and (b) the rejected noise.

Figure 6. (a) The noise-free synthetic data of the Marmousi model.
(b) The noisy synthetic data of the Marmousi model, where the yel-
low arrows point out several representative locations of white noise.
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Figure 7. Illustration of the test on synthetic example. Note that the
VMD-MDnCNN successfully rejects the white noise, whereas the
f-x deconvolution and MDnCNN failed to reject the white noise
(the yellow arrows in figures a-c). (a) The denoised result using
f-x deconvolution. (b) The denoised result using MDnCNN.
(c) The denoised result using VMD-MDnCNN.

Figure 8. Rejected noise through different denoising methods on
synthetic example. Note that the VMD-MDnCNN successfully pre-
serves the visible reflections, whereas the f-x deconvolution and
MDnCNN failed to preserve the visible reflections (the red arrows
in figures a-c). (a) The rejected noise using f-x deconvolution.
(b) The rejected noise using MDnCNN. (c) The rejected noise using
VMD-MDnCNN.
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selected during each optimization epoch. The percentage of the
training and validation seismic traces in this paper is 70% and
30%, respectively, for synthetic and real seismic data. A specific
seismic trace may belong to training seismic traces set in the current
optimization epoch but may belong to validation seismic traces set
in the next optimization epoch. Figure 9 illustrates that we obtain
a stable neural network hierarchy after 50 epochs in the training
procedure.
Figure 10 shows the average amplitude spectrum of the original

seismic (black), the denoised result using f-x deconvolution (red),
the denoised result using MDnCNN (blue), and the denoised result
using VMD-MDnCNN (green). The amplitude spectrum of the
denoised result using VMD-MDnCNN has a very good match with
that of original seismic data. Unfortunately, the denoised result
using f-x deconvolution and MDnCNN lost certain middle- and
high-frequency content when compared to that of the original seis-
mic data.

FIELD DATA EXAMPLE

We further apply VMD-MDnCNN to a public domain seismic
survey (Penobscot) to illustrate the effectiveness of our proposed
method. The Penobscot seismic survey was acquired over the Sco-
tian shelf, offshore Canada. The seismic survey contains 601 inlines
and 482 crosslines. The time increment of the seismic survey is
4 ms. We observe the residual noise and possible migration artifacts
indicated by the yellow arrows in Figure 11.
We first generate a large number of band-limited additive white

noise realizations. The bandwidth of the additive white noise is ob-
tained according to the frequency spectrum of the seismic data. We
then use VMD to decompose the original seismic data into two
IMFs and a residual volume. Based on testing of the real data ap-
plication, we found that we can successfully simulate the noise con-
tained in the seismic data if the number of white noise realizations is
greater than 2000. In this work, we choose 2000 as the number of
white noise realizations. The simulated noise is then added to the

Figure 9. Train loss and validation loss varying with different
epochs for synthetic example.

Figure 10. The frequency spectrum of the original data (the black
curve), MDnCNN result (the blue curve), VMD-MDnCNN result
(the green curve), and f-x deconvolution result (the red curve)
for the synthetic test.

Figure 11. One representative inline section example of Penobscot.
The yellow arrows point out several representative migration arti-
facts.

Figure 12. Train loss and validation loss varying with different
epochs for the seismic survey of Penobscot.
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Figure 13. Illustration of the seismic noise attenuation test on the
seismic survey of Penobscot. Note that VMD-MDnCNN success-
fully rejects the migration artifacts, whereas the f-x deconvolution
and MDnCNN failed to reject the migration artifacts (the yellow
arrows in figures a-c). (a) The denoised result using f-x deconvo-
lution. (b) The denoised result using MDnCNN. (c) The denoised
result using VMD-MDnCNN.

Figure 14. Rejected noise through different denoising methods on
the seismic survey of Penobscot. Note that the VMD-MDnCNN
successfully rejects the migration artifacts, whereas the f-x decon-
volution and MDnCNN still preserve the migration artifacts (the red
arrows in figures a-c). (a) The rejected noise using f-x deconvolu-
tion. (b) The rejected noise using MDnCNN. (c) The rejected noise
using VMD-MDnCNN.
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decomposed two IMFs and a residual component. Figure 12 illus-
trates that we obtain a stable neural network after 60 epochs in the
training procedure.
Figure 13a–13c shows the denoised results using f-x deconvo-

lution, MDnCNN, and VMD-MDnCNN, respectively. Figure 14a–
14c shows the difference between the original seismic and denoised
results using f-x deconvolution, MDnCNN, and VMD-MDnCNN,
respectively. VMD-MDnCNN not only rejects the white noise and
migration artifact indicated by the yellow arrows in Figure 13, but
it also preserves the visible reflections rejected by the f-x decon-
volution and MDnCNN indicated by the red arrows in Figure 14.
Figures 15 and 16a–16c show the 3D cube of the original, denoised
using f-x deconvolution, MDnCNN, and VMD-MDnCNN results,
respectively. Figure 17a–17c shows the 3D rejected noise using f-x
deconvolution, MDnCNN, and VMD-MDnCNN, respectively.
VMD-MDnCNN has successfully rejected most of the white noise
and migration artifacts indicated by the yellow arrows in Figure 15.
However, the denoised results using f-x deconvolution and the
MDnCNN still contain white noise and migration artifacts indicated
by the yellow arrows in Figure 16. Figure 17a–17c illustrates that
our proposed method not only attenuates white noise but it also pre-
serves most of the useful seismic amplitude indicated by the red
arrows. In addition, the visible reflections indicated by the red ar-
rows in Figure 17b and 17c illustrate the superiority of VMD-
MDnCNN over MDnCNN.
Again, we further compare the spectrum of the original and

denoised seismic data to show the effectiveness of our method.
Figure 18 shows the amplitude spectrum of the original seismic
(black), the denoised result using f-x deconvolution (red), the
denoised result using MDnCNN (blue), and the denoised result us-
ing VMD-MDnCNN (green). It should be noted that the average
amplitude spectrum of denoised data using VMD-MDnCNN has
a very good match with that of the original seismic data. Unfortu-
nately, the denoised result using f-x deconvolution and MDnCNN
lost certain middle- and high-frequency content when compared to
that of the original seismic data.

Figure 15. The original 3D seismic data of Penobscot. The yellow
arrows point out several representative migration artifacts.

Figure 16. Illustration of the 3D volume denoised result on the seismic
survey of Penobscot. Note that the VMD-MDnCNN successfully rejects
the migration artifacts, whereas the f-x deconvolution and MDnCNN
failed to reject the migration artifacts (the yellow arrows in figures a-c).
(a) The denoised result using f-x deconvolution. (b) The denoised result
using MDnCNN. (c) The denoised result using VMD-MDnCNN.
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CONCLUSION

We propose a novel seismic noise attenuation method (VMD-
MDnCNN) by integrating our MDnCNN with VMD. Current
CNN-based denoising methods either require the label of clean seis-
mic data or the label of noise contained in the seismic data, which is
unfeasible in practice. The applications of our proposed method
demonstrate that the white noise contained in the seismic can be
simulated by a sufficient number of user-generated white noise real-
izations, which do not require clean seismic data. In addition, the
applications demonstrate that the MDnCNN can obtain a more
accurate estimation of the noise feature from the decomposed band-
limited seismic data. The synthetic and real seismic data appli-
cations illustrate that our method is superior to the traditional
denoising method of f-x deconvolution. The applications also dem-
onstrate that our method effectively rejects not only the white noise
but also the migration artifacts contained in the seismic data.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be ob-
tained by contacting the corresponding author.
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