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Abstract 

Wide-azimuth, long-offset seismic surveys are becoming increasingly common in 

unconventional exploration plays, where three the key objectives are to estimate the 

direction of maximum horizontal stress, to predict the intensity and orientation of any 

fractures, and to differentiate brittle from ductile lithology.  

Minimization of NMO and migration stretch, which usually appears at long offset, 

is one of the main issues for long-offset seismic processing. The stretch not only lowers 

the seismic resolution, but also hinders subsequent prestack inversion such as lambda-rho 

(λρ), mu-rho (μρ), and amplitude variation with offset and azimuth (AVAz) analysis of 

the long-offset signal. The first part of this dissertation uses a matching pursuit based 

normal moveout correction (MPNMO) to reduce NMO-stretch effect in long offset data. 

Nonhyperbolic velocity analysis is components for long-offset seismic 

processing. Conventional migration velocity analysis mainly has two limitations. First we 

need to interpolate the velocity and anisotropy parameters along spatial and temporal axes 

between adjacent manually picked locations. Such interpolation can smooth over any 

intermediate velocity and anisotropy anomalies contained in the gathers. Second, 

smoothed RMS velocities can give rise to unacceptable interval velocities using the 

simple Dix equation. I developed an automated nonhyperbolic velocity analysis workflow 

in the second part of this dissertation that uses the conventional analysis as a starting 

estimate.  

The third part of this dissertation illustrates a workflow to preserve the data 

fidelity for far offset seismic gathers. The workflow begins by performing reverse NMO 

on the time migrated gathers using the initial migration velocity. Then I obtain the optimal 



xx 

 

velocity and anellipticity model using a differential evolutionary automatic algorithm. 

Next I apply nonstretch NMO correction to the time migrated gathers using the new 

velocity and anellipticity model resulting in flattened nonstretched prestack gathers. 

Finally, I apply prestack structure oriented smoothing algorithm to further improve the 

signal to noise ratio. In this manner, both stacking power and vertical resolution are 

improved by aligning the data and by avoiding stretch, and removing migration aliasing 

artifacts. 

The fourth part of this dissertation proposed a strategy to evaluate brittleness of 

unconventional resources plays by integrating petrophysics and seismic data analysis. I 

start by computing rock properties and brittleness index (BI) from mineral content logs. 

Then I define a classification pattern between rock properties and BI using proximal 

support vector machine training and testing on the selected benchmark wells. Next I 

perform simultaneous prestack inversion using commercial software on the prestack 

conditioned seismic gathers. Finally, I estimate 3D brittleness evaluation for the target 

reservoirs by applying the recognized classification pattern to the prestack inversion 

volumes. 

The final part of my dissertation focuses on automatic fault surfaces extracting 

using seismic attributes. The extracting procedure is modeled after a biometric algorithm 

to recognize capillary vein patterns in human fingers. First, a coherence or discontinuity 

volume is converted to binary form indicating possible fault locations. This binary 

volume is then skeletonized to produce a suite of fault sticks. Finally, the fault sticks are 

grouped to construct fault surfaces using a classic triangulation method.  The processing 
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in the first two steps is applied time slice by time slice, thereby minimizing the influence 

of staircase artifacts seen in discontinuity volumes. 

.  
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Chapter 1: Non-stretching NMO correction of prestack time-migrated 

gathers using a matching-pursuit algorithm 
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1The University of Oklahoma, ConocoPhillips School of Geology and Geophysics,  

2BGP Inc., China National Petroleum Company, 
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Title: Non-stretching NMO correction of prestack time-migrated gathers using a 

matching-pursuit algorithm 

ABSTRACT 

Wide-azimuth, long-offset surveys are becoming increasingly common in 

unconventional exploration plays, where two key objectives are to estimate azimuthal 

anisotropy to predict the direction of maximum horizontal stress, and to differentiate high 

total organic carbon (TOC) from more “frackable” quartz- and carbonate-rich strata. The 

conventional NMO correction which processes the data sample-by-sample results in the 

well-known decrease of frequency content and amplitude distortion through stretch, 

which both lowers the seismic resolution and hinders lambda-rho - mu-rho (λρ-μρ) and 

amplitude variation with offset and azimuth (AVAz) analysis of the long-offset signal. 

To mitigate the stretch typically associated with far offsets, we use a matching pursuit 

based normal moveout correction (MPNMO) to reduce NMO-stretch effect in long offset 

data. MPNMO corrects the data wavelet-by-wavelet rather than sample-by-sample, 

thereby avoiding stretch. We apply our technique as part of a residual velocity analysis 

workflow to a pre-stack time-migrated data volume acquired over the Northern 

Chicontepec Basin, Mexico. The results show higher resolution both on the pre-stack 

gathers and on the stacked data volume.   
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INTRODUCTION 

 

Normal-moveout (NMO) correction applied to common-midpoint (CMP) gathers 

are one of the most important routine processes applied to seismic data and is a 

prerequisite for CMP stack and many other procedures (Shatilo and Aminzadeh, 2000). 

The objective of the NMO correction is to resample a finite-offset trace in a CMP gather 

to approximate the kinematics of a zero-offset trace. The standard NMO correction causes 

wavelet stretching which lowers the frequency content of the corrected reflection event 

at far offset. This stretching will affect all subsequent processing and inversion. For 

example, unmuted stacked traces exhibit lower frequency content, and therefore have 

lower resolution and hinder the search for subtle traps (Noah, 1996). NMO stretch also 

affects AVO analysis by distorting the AVO gradient (Swan 1988, 1997; Ursin and Ekren, 

1995). 

In flat layers, only the zero-offset traces strictly represent the correct sequence of 

reflection coefficients (reflectivity function); other finite-offset-corrected traces contain 

a distortion of the vertical reflectivity function where wavelets have been stretched or 

even reversed. Buchholtz (1972) was one of the first authors to quantify the artifacts 

introduced by the NMO correction. Dunkin and Levin (1973) studied the effect of stretch 

in frequency domain and concluded that usual NMO correction stretches the wavelet in 

such a way that the spectrum of the NMO-corrected wavelet is a linearly-compressed 

version of the original spectrum. The amount of compression depends on x, the source-

detector separation or “offset” and V(t0), the velocity model at normal incidence two-way 

travel time t0. Barnes (1992) analyzed the correction distortion in instantaneous frequency 

and instantaneous power domain, and found a time-variant frequency distortion caused 
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by the NMO correction. Miller (1992) studied the impact of muting on the frequency 

content of stacked images. Owusu and Spencer (1995) analyzed the VSP moveout stretch 

for a horizontally stratified medium. In Noah’s (1996) examples, even minor changes in 

frequency caused by the NMO correction have a major impact on the interpretation. 

As offset increases we often encounter nonhyperbolic moveout in both isotropic and 

anisotropic media (de Bazelaire, 1988; de Bazelaire and Viallix, 1994; Castle, 1994; 

Bolshykh, 1956; Dix, 1955; Ursin and Stovas, 2006; Alkhalifah, 1997, 1998; Fomel and 

Stovas, 2010). Such long-offset data are critical for extending the accuracy of AVO and 

extracting more rock property information. Dynamic correction of these kinds of wide 

incidence angle gathers using the hyperbolic equation will introduce not only stretch, but 

also large time bias which appear on NMO corrected gathers as “hockey sticks”. 

Unfortunately flattening such hockey sticks still results in NMO stretch. In general, 

severely stretched traces are simply muted out as noise, thus sacrificing the crucial 

information contained in long offset data.  Although estimation of such anisotropy and 

long offset AVO analysis and prestack impedance inversion is our primary objective, in 

this paper we focus on eliminating the limitations on such analysis due to wavelet stretch. 

Rupert and Chun’s (1975)  Block-Move-Sum (BMS) method is perhaps the first 

non-muting solution to address stretch in the NMO correction. The BMS method treats 

data blocks which are moved as a unit with a single dynamic correction, thus eliminating 

trace stretching and reducing trace distortion. The drawback to this method is that it 

introduces wavelet replication and discontinuity between adjacent blocks at far-offset 

traces where the data blocks overlap. Byun and Nelan (1997) applied a time-varying filter 

based on a stretch coefficient analysis to the NMO-corrected traces to reduce the loss of 
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high frequencies. Lichman (2000) presented a Phase Moveout method where he 

substituted the phase spectrum of the minimum-offset-trace for the phase spectra of each 

finite offset trace, thereby avoiding the usual wavelet stretch. Based on the assumption 

that all time samples of a digital reflected wavelet at a particular offset have the same 

normal moveout, Shatilo and Aminzadeh (2000) proposed a Constant Normal Moveout 

correction strategy which applied a constant moveout for a finite time window of a 

seismic trace, protecting the corrected traces from stretching and distortion. The most 

critical factors for successful application of this method are to have an NMO-velocity 

accuracy better than 1% and an accurate estimate of the window length containing the 

reflection event. This technique may also produce some corresponding amplitude 

distortion in the overlapping intervals. Hicks (2001) described a method for removing 

NMO stretch during stack that uses the Parabolic Radon Transform. He also introduced 

a new transform, which is a combination of Radon and Spatial Fourier Transforms, to 

remove stretch from the NMO-corrected CMP gathers. The drawbacks of this approach 

have been discussed by Trickett (2003).  

Brouwer (2002) expanded on the block-move-out technique and suggested an 

alternative approach based on the correction of tapered blocks of seismic data, followed 

by a coherence filter (Bruland and Johansen, 1994) to compensate for the specific artifacts 

thus introduced. Trickett (2003) developed a stretch-free stack process; the method 

replaces the two steps of NMO correction and stacking with a single-step inversion to 

zero offset. The main disadvantage of this procedure is that an NMO-corrected CMP 

gather which is useful for AVO analysis is never formed.  Hunt et al. (2003) created 
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pseudo-NMO-corrected gathers, and then identified numerous new prospects using the 

stretch-free stacking process and AVO analysis.  

Hilterman and Van Schuyver (2003) developed a processing and interpretation 

approach for wide-angle gathers, named Seismic Wide-Angle Processing, to avoid NMO 

stretch for a specified target horizon. This method first pre-stack migrates blocks of 

seismic data in the common-offset domain using event-based traveltime rather than 

sample-based traveltime tables. The travel times are based on a reflection ray-tracing 

model for each offset. The disadvantage is that only the target horizon is truly flat in the 

CMP gathers after the processing. Perroud and Tygel (2004) developed a quasi-static 

NMO shift approach, which can be obtained from the usual dynamic NMO process in a 

manner similar to a block-moveout process, to avoid stretch as much as possible. This 

method first requires performing the usual NMO velocity analysis, which estimates t0 and 

V(t0) for each reflection event. They adjust V(t0) to maintain the local travel time 

parallelism for each user-identified band-limited reflection event. Unfortunately, this 

adjustment increases the NMO stretch effect between the identified reflection events. 

More recently, Masoomzadeh et al. (2010) carefully studied the influence of the data 

block size to the distortion of the signal and noted that smaller block sizes introduce 

stretch while larger block sizes generate image discontinuities at the block boundaries. 

They proposed using iso-moveout curves (lines of equal moveout) in the time-velocity 

panel to achieve multi-block constant moveout for the selected individual events, leading 

to a nonstretch correction for the selected events. Nonstretch stacking is achieved by the 

use of a zigzag velocity function. The main drawbacks are the potential for discontinuities 

at the window boundaries and the need to estimate appropriate block lengths. 
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We introduce a strategy which reduces the NMO stretch at far offsets using a 

matching pursuit wavelet decomposition technology. We start by reviewing the 

conventional NMO correction equation, using cartoons describing the stretch problem 

introduced by the conventional correction. Cartoons illustrate the wavelet replication and 

discontinuity problem that occurs using the block-based correction strategy. Next, we 

present our non-stretch NMO strategy based on matching pursuit. Finally, we apply our 

method to a pre-stack time-migrated volume acquired over the Northern Chicontepec 

Basin, Mexico, and show the improvements on both the corrected gathers and final 

stacked section. 

CONVENTIONAL NMO CORRECTION AND STRETCH 

NMO correction transforms seismic traces with arbitrary offset h into their zero-

offset approximations using the NMO velocity (Shatilo and Aminzadeh, 2000). 

Assuming a layer cake model for the NMO correction, we obtain the well-known 

hyperbolic travel time equation (Dix, 1955) as a function of two-way traveltime at zero-

offset t0, offset x, and NMO velocity V(t0) 
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The conventional correction is implemented on a sample-by-sample basis, using different 

values of NMOt  for different samples having a different value of t0 in the trace. 

Consequently, samples within one wavelet will suffer different amounts of correction, 

thereby causing distortion.  

Figure 1.1 illustrates the distortion of finite-offset seismic traces for a simple case 

of two reflection events, R1 and R2. The time interval at zero offset between the two 

dashed lines is equal to the wavelet duration. Assume we know the correct NMO 

correction velocity through semblance-based velocity analysis. For a given reflection 

event, the stretching is exacerbated with increasing offset. The most severe stretching 

occurs at the intersection of reflection hyperbolae. Beyond such intersection points, the 

standard NMO correction gives rise to local time-reversal of the signal. These reverse 

waveforms are particularly harmful to stacking, to high resolution velocity analysis based 

on flattened events, to AVO analysis, and to noise suppression, as well as other techniques 

that could benefit from the long-offset data information. Furthermore, sample values must 

be interpolated to fill in gaps created by the differential stretch.   

NONSTRETCH NMO CORRECTION 

To avoid stretching for the non-zero offset traces, the moveout correction needs to 

be constant for all samples that belong to the same reflection wavelet. Variations of the 

Block-based Moveout Correction provide a means to approximately achieve this goal. 

The Block-based moveout NMO correction 

The Block-based Moveout correction has two main limitations. First, the block size 

needs to be a function of the time duration of the reflection events. Second the block 

boundaries overlap at farther offset if the correction velocity increases with depth, giving 
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rise to the wavelet repetition and discontinuities at the block boundaries. Figure 1.2 

illustrates the block-based correction procedure. First, the zero offset trace d0(t, x=0) is 

divided into data blocks which may or may not overlap (Figure 1.2a). The block length, 

τ, and the block centers, t0, are the two key factors affecting the accuracy of the correction. 

Rupert and Chun (1975), Shatilo and Aminzadeh (2000) suggested that the block length 

should be the same as the time duration of the wavelet. In the example here, the t0 axis is 

subdivided into adjacent but non-overlapping blocks. The block sizes τ1 and τ2 are set to 

approximate the wavelet duration. Masoomzadeh et al. (2010) modified the NMO 

velocity to better achieve this goal. Since the NMO velocity usually increases with depth, 

the travel time of two successive blocks will be compressed at the long offset, which 

results in overlapping areas for adjacent blocks at far offsets, indicated by the green areas. 

Each data block is corrected as a unit from the top to the bottom of the t0 axis (Figure 

1.2b). The samples located in the overlapping area (green) are used twice during the 

correction resulting in either a repetition or a discontinuity at the block boundaries. The 

degree of repetition worsens with increasing offset. This repetition harms the stack, 

creates artificial stacked reflections, and lowers the seismic resolution.  

The matching pursuit NMO correction 

The NMO-uncorrected traces, d(t), can be regarded as the convolution of the 

seismic wavelet with the reflectivity series and added noise 

 
       tntwtrtd  ,                              

(3)    

where r(t) is reflectivity series, w(t) is wavelet, and n(t) is noise. This classic theory 

suggests that the NMO correction can be implemented on a wavelet-by-wavelet basis, 
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with the moveout applied to the reflection events, r(t), rather than to the data samples, 

d(t). we achieve this goal by using a matching-pursuit wavelet-based decomposition 

algorithm, commonly used in spectral decomposition algorithms (e.g. Liu and Marfurt, 

2005, 2007).  

Our input data consist of pre-stack time migrated seismic cube, d(t, xn), after 

performing reverse NMO correction using the migration velocity function. Our output 

data consist of MPNMO-corrected gathers, dMPNMO(t0, xn), modeled uncorrected gathers, 

dmod(t, xn), and the residual or difference, dres(t, xn), between the original and modeled 

uncorrected gathers. The process begins by selecting the NMO correction trajectory curve 

using either hyperbolic (equation 2) or non-hyperbolic moveout (e.g., Alkhalifah, 1997), 

as appropriate. Then we build a library of analytic Ricker or Morlet wavelets. Before the 

MPNMO correction loops begin, residual data are initialized to the input uncorrected data 

while modeled data and MPNMO-corrected data are initialized to be zero. At each 

decomposition and correction iteration, j, we apply a constant normal-moveout correction 

to the residual uncorrected data and stack the corrected gather to form a residual stacked 

trace. We compute its envelope e(t0) and pick t0
(k) of the K largest envelope peaks that 

exceed 50% of the value of the largest envelope, and at each trace n compute moveout 

times tn
(k) for each offset, xn. For each residual trace n in the current gather, we also 

compute its Hilbert Transform to form an analytic trace and calculate the instantaneous 

frequency, fn
(k) at time locations of tn

(k) and look up a precomputed analytic wavelet, w[t, 

fn
(k)]. Finally, the analytic wavelets are least-squares fit to the analytic residual trace, dn

(j), 

to obtain the amplitude, an[t
(k)]and phase φn[t

(k)] of the analytic wavelet, an[t
(k)] and phase 
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φn[t
(k)] (Liu and Marfurt, 2007). The K scaled wavelets are then subtracted from the 

previous, (j-1)th version of the un-NMO-corrected residual trace  
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and added to the previous version of the MPNMO-corrected and modeled uncorrected 

traces  
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The above process is repeated until the total energy of the residual trace falls below a 

desired threshold (Figure 1.3). At present if crossing events exits in our gathers, we just 

simply add the scaled wavelets to the time t0
(k) which has the largest stacking power. 

In this paper, assume that the MPNMO correction velocity function comes from 

high resolution velocity analysis, such as the method proposed by the Key and Smithson 

(1990). To obtain a good-quality corrected gathers, the error of NMO-velocity should be 

less than 1%, such as that for the method proposed by Shatilo and Aminzadeh (2000). 

Larger errors will place the wavelets at an incorrect time value of t0, which will harm 

subsequent AVO and prestack inversion processes. 

To better illustrate the above MPNMO produce, we apply the workflow shown in 

Figure 1.3 to a synthetic case. The gather is composed of five reflection events. The first 

and second events cross each other while the fourth and fifth events strongly interfere at 
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far offset (Figure 1.4a). The offsets range from 50 to 3000 m at increments of 50 m. A 

Ricker wavelet with a 30 Hz dominant frequency is used to generate the synthetic gathers. 

Figure 1.4b shows the corrected results using conventional NMO algorithm. Notice 

that all the events are stretched to some extent at the farthest offset, especially those events 

located in the blue rectangle. Crossing travel time curves give rise to wavelet repetitions, 

indicated by red circles in Figure 1.4b. In contrast, the MPNMO algorithm preserves 

wavelets during the correction (Figure 1.4c). Events within the green rectangle in Figure 

1.4c have anonymously low energy compared to other offsets for the second reflection. 

This artifact is because MPNMO simply move all matched wavelets at crossing time t 

(labeled with green rectangle in Figure 1.4a) to time t0 of the first reflection (labeled with 

the green circle in Figure 1.4c). MPNMO also favors one event over another in 

decomposition of the interfering fourth and fifth reflection events.   

To quantify the improvement of MPNMO over conventional NMO we compare the 

spectra of the corrected reflection events for five different offsets. For conventional 

NMO, the spectra of the first and second reflectors shifts to lower frequencies side when 

the offset exceeds the crossover point (Figures 1.5a and b). The spectral shift to lower 

frequencies with increasing offset is more continuous for the third but results in severe 

stretching at far offset (Figure 1.5c). The spectra features of the fourth reflection is erratic 

as it interferes with the underlying and (at farther offsets) crossing fifth reflector (Figure 

1.5d). The fifth reflector is stronger, is less contaminated by interference with the forth 

reflector, and suffers from less stretch, such that its spectra shift smoothly to lower and 

lower values with increasing offset (Figure 1.5e).  
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Figure 1.6 shows that the spectra of these five reflection events is much better 

preserved using MPNMO, with the spectra for reflectors 1-3 (Figures 1.6a-c) preserved 

with increasing offset. The spectra of the fourth reflection changes moderately from trace 

to trace, but exhibits a consistent shape which is a measure of tuning. The spectra of the 

later-arriving fifth reflection (Figure 1.6e) are similar to that of those Figure 1.5e 

corrected using conventional NMO. The fifth reflection is not heavily affected by 

stretching. 

A second measure of the fidelity of the correction is to correlate the near-offset trace 

with all other offsets (Figures 1.7). Note that cross-correlation coefficients for the 

MPNMO-corrected reflectors (Figure 1.7b) is much better correlated to the zero-offset 

trace than when using conventional NMO (Figure 1.7a). This waveform consistency is 

critical to robust AVO and prestack inversion results. 

Figure 1.8 illustrates the sensitivity of MPNMO to noise. Figure 1.8a shows the 

result of adding 15% random noise to the synthetic gathers shown in Figure 1.4a. The 

noise is sufficiently strong that it is hard to see the second reflection events. The last three 

traces of the third reflections is also overwhelmed by noise. Figure 1.8b shows that 

MPNMO successfully corrects the noisy gathers without generating obvious artifacts.  

Our final synthetic test is examine the sensitivity of MPNMO to velocity errors. We 

set the velocity for the third event to be 10% too slow, resulting in an overcorrected, but 

relatively non-stretched event (Figure 1.9).  

APPLICATION 

Having calibrated our algorithm on synthetic data, we now apply it to a residual 

velocity analysis work flow to pre-stack time-migrated CMP gathers in the Northern 
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Chicontepec Basin, Mexico. The target tight sand Paleocene-Eocene Chicontepec 

formation lies between t0=0.8 s and t0=1.2 s. Interpretation of the Chicontepec reservoirs 

is hampered by geologic complexity, overlying volcanics, and limited resolution (Sarkar, 

2011). Figure 1.10a shows a representative CMP gather after reverse NMO correction 

which “re-squeezes” the migration stretch. The shallow part of the conventional NMO-

corrected results suffers severe stretch at far offsets. This stretch can notably lower the 

seismic resolution in the stack and is harmful to pre-stack inversion. Usually such 

severely stretched data are muted out (Figure 1.10b) based on a pre-defined muting 

criteria. In this example we allow wavelets to stretch no more than 150%. Next, we apply 

the workflow shown in Figure 1.3 to the same CMP gather shown in Figure 1.10a and 

obtain the MPNMO corrected results (Figure 1.10c), the precomputed wavelet library is 

Morlet wavelet. Note that MPNMO minimizes the stretch that occurs in the shallow far 

offset data when compared to the conventionally NMO-corrected data (Figure 1.9d). 

These corrected far-offset data can be used to improve the stability of AVAz and λρ-μρ 

inversion. 

Figures 1.11a and 1.11b show the amplitude spectra for angle range limited stacked 

traces to corrected traces shown Figure 1.10b and 1.10c. Red, blue and green lines show 

the spectra of near-(0-10o), middle- (10o-20o), and far- (20o-30o) angle range stacked 

traces. Due to the increasing stretch with the increase of incidence angle introduced by 

the conventional NMO correction, the spectral bandwidth (the green line in Figure 1.11a) 

of the middle- and far-angle stacked traces is distorted and narrower than that of the near-

angle stacked traces. In contrast, MPNMO preserves the spectral bandwidth for both 

middle- and far-angle stacks (Figure 1.11b).  
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As we did for the synthetic example, we wish to compare the change in waveform 

as a function of offset or angle. We show the correlation between the near- and mid-angle 

stacks in Figure 1.12a and the near- and far-angle stacks in Figure 1.12b. Note the overall 

higher correlation using MPNMO (the red curves) vs. conventional NMO (the blue 

curves).  

After the moveout correction, we stack the corrected CMP traces such as shown in 

Figures 1.10b and 1.10c to form seismic stacked sections. The traditionally-corrected and 

stacked section (Figure 1.13a) is acceptable for mapping structure but not stratigraphy 

(Sarkar, 2011). The interfering events are not well resolved using the conventional 

correction, such as the pinch-out locate in the red circles in Figures 1.13a and 1.13b.  

Furthermore the reflection events are more continuous by applying MPNMO correction 

to the same data set, for example the events that are labeled with the red rectangle in 

Figures 1.13a and 1.13b. To quantify the improved resolution, we compare the average 

spectrum features (Figure 1.14) of stacked sections (Figures 1.13). Red, and blue lines 

are respective the spectra of stacked section from MPNMO correction (Figure 1.13b) and 

conventional NMO correction (Figure 1.13a). Note that spectra of MPNMO correction 

show higher ratio of high frequency content compared that of conventional NMO 

correction. 

LIMITATIONS   

 Like conventional NMO, MPNMO will generate under- (over-) corrected traces if 

the velocity function is higher (lower) than it should be. Although the cost of MPNMO is 

significantly greater than both conventional NMO and the published nonstretch NMO 

correction algorithms, the cost is significantly less than the prestack time migration 
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algorithm used to generate generates the input gathers. Through parallelization and 

precomputation not only of wavelets, but of moveout functions, the cost becomes 

acceptable. Crossing events can be approximately handled, but results in amplitude 

artifacts that could harm subsequent AVO and prestack inversion workflows. Proper 

partitioning of this energy to the appropriate t0 location may require integrating concepts 

associated with high resolution Radon transforms. 

CONCLUSIONS 

Conventional NMO corrections introduce stretch at offsets that are large relative to 

reflection depth. This stretch lowers the seismic resolution and distorts the seismic 

waveform. Block-based correction algorithms avoid stretch but result in wavelet 

repetition at the block boundary, giving rise to artifacts. Our matching pursuit NMO 

correction is implemented on a wavelet-by-wavelet basis, reducing stretch and avoiding 

wavelet repetition. By minimizing stretch, more far-offset data are available for 

subsequent λρ-μρ and AVAz inversion. The final stacked section has improved band 

width, which is critical for interpreting thin reservoirs.  
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Figure 1.1. Schematic diagrams showing conventional NMO correction for two reflection 

events (R1 and R2) (a) before (b) after NMO correction. Only the zero-offset samples 

maintain the same waveform before and after correction; the degree of stretch increases 

with increasing offset. Shallower events (R1) undergo greater stretch than deeper events 

(R2). The maximum stretch occurs at the crossing point, beyond which the samples’ 

chronological order is reversed. 
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Figure1.2. Cartoons illustrating the implementation and limitation of the block-based 

NMO correction. (a) The zero-offset time is divided into adjacent data blocks of variable 

time duration (τ1 and τ2). The samples within each block have the same amount of 

moveout correction. If the NMO correction velocity increases with depth (or zero-offset 

travel time), the travel time will be compressed with increasing offset, giving rise to 

overlap (indicated by the green area) at the boundary between the two adjacent blocks.  

(b) Two interfering reflection events after block-based nonstretch NMO correction. 

Because of the compression of travel time with depth, the samples indicated by green 

amplitude values located in the overlapping area of adjacent block will be used twice, 

giving rise to wavelet repetition and discontinuities. 
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Figure 1.3. Flowchart showing the nonstretch NMO correction workflow based on the 

matching-pursuit wavelet decomposition technique. Instead of sample-by-sample, the 

correction is implemented on a wavelet-by-wavelet basis. 
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Figure 1.4. (a) A synthetic input gather and corresponding corrected gathers after (b) 

conventional NMO and (c) MPNMO corrections.  
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Figure 1.5. Representative spectra as a function of offset for conventional NMO corrected 

gathers for the (a) first, (b) second, (c) third, (d) fourth, and (e) fifth corrected reflection 

events shown in Figure 1.4b. 
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Figure 1.6. Representative spectra as a function of offset for MPMO corrected gathers for 

the (a) first, (b) second, (c) third, (d) fourth, and (e) fifth corrected reflection events shown 

in Figure 1.4b. 
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Figure 1.7. Cross-correlation coefficients between the zero-offset trace and finite-offset 

corrected using (a) conventional NMO and (b) MPNMO applied to the gather shown 

Figure 1.4a. 
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Figure 1.8. A synthetic gather with random noise (a) before and (b) after MPNMO 

correction. 
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Figure 1.9. Although MPNMO minimizes stretch effects, it does not correct for errors in 

velocity. Here the gather shown in Figure 1.4a is corrected with MPNMO using a velocity 

that was 10% too slow, thereby overcorrecting the data.  
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Figure 1.10. Applying (b) conventional NMO and (c) MPNMO correction to a 

representative pre-stack time migrated gather (a) from the Chicontepec Basin, Mexico 

(CMP no. 1 in Figure 1.13).  
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Figure 1.11. Spectra of near- (red), middle- and far-angle range stacked traces from (a) 

conventional NMO and (b) MPNMO correction. 
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Figure 1.12. Correlation coefficients between (a) the near- and mid-angle stacks and (b) 

the near- and far-angle stacks using conventional NMO (in blue) and MPNMO (in red). 
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Figure 1.13. Stacked sections after (a) conventional NMO correction with 150% muting 

criteria and (b) MPNMO correction algorithm shown in Figure 1.3. The target Paleocene-

Eocene Chicontepec formation lies between t=0.8s and t=1.2s (Sarkar, 2011). Note the 

improved resolution (such as the events marked by the red circle) and continuity (such as 

the event marked by the red rectangle) of the reflection events using MPNMO correction 

method.   



36 

 

 
Figure 1.14. Average amplitude spectra for stacked sections shown in Figure 1.13 

corresponding to the conventional NMO corrected gathers in blue, and MPNMO-

corrected gathers in red.  
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Title: Horizon-based semi-automated nonhyperbolic velocity analysis 

ABSTRACT 

With higher capacity recording systems, long-offset surveys are becoming common 

in seismic exploration plays. Long offsets provide leverage against multiples, have 

greater sensitivity to anisotropy, and are key to accurate inversion for shear impedance 

and density. There are two main issues associate with preserving the data fidelity 

contained in the far offsets 1) nonhyperbolic velocity analysis and 2) mitigating the 

migration/NMO stretch. Current nonhyperbolic velocity analysis workflows first 

estimate moveout velocity Vnmo based on the offset-limited gathers, then pick an effective 

anellipticity ηeff using the full-offset gathers. Unfortunately estimating Vnmo at small 

aperture may be inaccurate, with picking errors in Vnmo introducing errors in the 

subsequent analysis of effective anellipticity. We propose an automated algorithm to 

simultaneously estimate the nonhyperbolic parameters. Instead of directly seeking an 

effective stacking model, the algorithm finds an interval model that gives the most 

powerful stack. The searching procedure for the best interval model is conducted using a 

direct, global optimization algorithm called differential evolutionary (DE). Next we apply 

an anti-stretch workflow to minimize the stretch at far offset after obtaining the optimal 

effective model. The automated velocity analysis and anti-stretch workflow are tested on 

the data volume acquired over the Fort Worth Basin, USA. The results show noticeable 

improvement both on the pre-stack gathers and on the stacked data volume.  
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INTRODUCTION 

 

Velocity analysis applied on common-midpoint (CMP) gathers is usually based on 

computing the coherence of moveout corrected gathers using zero-offset times and a suite 

of trial stacking velocities. Velocity analysis is one of the most important and interpreter-

time consuming tasks in seismic processing. The accuracy of velocity analysis depends 

on 1) the resolution of velocity spectra, 2) The accuracy of the selected equation in 

approximating the kinematic behaviors of the reflection events, and 3) the skill and 

experience of data processor. 

Semblance is perhaps the most commonly used coherency measurements for 

velocity spectra (Taner and Koehler, 1996; Neidell and Taner, 1971). Swan (2001) is one 

of the first researchers to develop high resolution velocity spectra algorithm that accounts 

for amplitude variations with offset. Larner and Celis (2007) improved both the resolution 

and reliability of velocity spectra by just using selected subsets of crosscorrelation rather 

than all possible ones in the gathers. To minimize the effect of AVO phenomenon that 

exists in prestack gathers, Fomel (2009) proposed a generalized “AB semblance” that is 

particularly attractive for velocity analysis of class II AVO anomalies where the polarity 

of the reflections changes. To further improve the resolution of semblance-based velocity 

spectra, Luo and Hale (2010) introduce a weighting function that slightly increases the 

cost of calculation but are still comparable to that of conventional semblance. Biondi and 

Kostov (1989) introduced high-resolution velocity spectra by using an eigenstructure 

method rather than semblance. Key and Smithson (1990) also used eigenstructure 

analysis, which is based on covariance measurement of NMO-corrected traces, to get 

higher velocity spectrum and locate the reflection events. Kirlin (1992) deduced the 
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relationship between semblance and eigenstructure velocity estimators. The 

eigenstructure-based estimators have higher resolution but greater computation cost. 

Sacchi (1998) further improved the resolution of velocity spectra by integrating a 

bootstrap method in the covariance computation. Unfortunately his computational cost is 

also very expensive.  

The approximated kinematic behaviors of the moveout correction for P-wave 

reflection traveltime is defined by either hyperbolic (Dix, 1955) or nonhyperbolic 

equations (Thomsen, 1986; Alkhalifah and Tsvankin, 1995; Alkhalifah, 1997). The 

hyperbolic traveltime approximation equation is based on the assumption of 

homogeneous isotropic or elliptically anisotropic layer-cake model and need to be 

restricted to small aperture (the offset-to-depth ratio 2ℎ 𝑧⁄ ≤ 1.0). As offset increases we 

often encounter nonhyperbolic moveout in both isotropic (Bolshykh, 1956, Taner and 

Koehler, 1969; de Bazelaire, 1988) and anisotropic media (Alkhalifah, 1997; Fomel and 

Stovas, 2010; Alkhalifah, 2011). Ignoring the anisotropy in prestack migration will fail 

to properly correct for the moveout of dipping reflectors and injects errors for the 

reflectors. The most common nonhyperbolic equations are fourth-order approximations 

expressed using three parameters 1) the two-way zero-offset travel time t0, 2) the short-

spread NMO velocity Vnmo, and 3) effective anellipticity ηeff. The effective anellipticity 

combines the effects of long offset ray bending (the “Snell” effect) as well as intrinsic 

anisotropy. Alkhalifah (1997) introduced what is now the most commonly used two-step 

approach for nonhyperbolic velocity analysis, where one first estimates the NMO velocity 

on offset-limited truncated gather using hyperbolic NMO correction, followed by 

estimation of effective anellipticity using the full-offset gathers. Unfortunately, small 



45 

 

aperture NMO velocity analysis may be inaccurate. Picking errors in Vnmo introduce errors 

into the subsequent analysis of effective anellipticity. 

Conventional velocity analysis (CVA) requires manually picking the peaks of the 

semblance panel. Such picking is tedious, and a great deal of effort has been invested in 

attempting to accelerate this process. CVA also requires a great deal of skill and 

experience. There is no guarantee that the picked RMS velocity represents the true earth 

model with erroneous picks (for example of multiple reflections) leading to infeasible 

interval velocities. Toldi (1989) proposed one of the first velocity analysis algorithms that 

avoids manual picking. Instead of directly searching the RMS velocity, his algorithm 

examines suite of possible interval velocity models, calculates the corresponding RMS 

velocity using Dix equation, and then estimates the corresponding stacking power. The 

final product is an interval velocity model that when converted to a moveout curve 

corresponds to the most powerful stacking. His least-squares optimization algorithm is 

parameterized by layers of equal time thickness without explicitly considering the 

location of reflection events. Building on the concept of measuring the degree of 

reflections flattening using an l1-norm in the τ-p domain, Calderón-Macías et al. (1998) 

performed automatic velocity analysis to recover the interval velocity model. Van der 

Baan and Kendall (2002) also inverted the model in the τ-p domain, and concluded that 

there exists a family of kinematically equivalent models that exhibit identical moveout 

curves. Siliqi et al. (2003) obtained dense model parameters by simultaneously picking 

velocity and anellipticity. Abbad et al. (2009) proposed two-step automatic 

nonhyperbolic velocity analysis using a normalized bootstrapped differential semblance 

(BDS). They first performed hyperbolic velocity analysis on truncated small-offset data 
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at coarse space to identify events, and then implemented dense nonhyperbolic velocity 

analysis about the identified events. The BDS estimator has higher resolution than 

differential semblance (DS), but can significantly increase the computation cost. Choi et 

al. (2010) developed an efficient automatic velocity analysis algorithm by using BDS and 

Monte Carlo inversion. 

Most velocity analysis is done in a processing shop by professional processors. 

These velocities are then used to prestack migrate the data. Our goal in this paper is to 

present a workflow that improves upon these images, giving a residual velocity analysis. 

To use the critical information contained in the long offset data, we need not only 

to flatten the reflections at far offset using nonhyperbolic travel time equation but also 

minimize the stretch typically associated with large aperture. In this paper, we first extend 

Toldi’s (1989) method by adding interval anellipticity as one of the parameters for the 

model to perform automatic nonhyperbolic analysis based on user defined horizons. We 

then follow Zhang et al., (2013) to minimize the stretch at far offset. We apply our 

technique as a residual velocity analysis workflow to a pre-stack time-migrated data 

volume acquired over the Fort Worth Basin, USA, and show the improvements on both 

the prestack corrected gathers and final stacked section. 

AUTOMATED NONHYPERBOLIC VELOCITY ANALYSIS 

There are mainly two issues in performing automatic residual velocity analysis. The 

first issue is to select a proper travel time equation. The second issue is to define the 

objective function as a function of proposed model. In this paper we employ the well-

known nonhyperbolic trajectory (Alkhalifah, 1997). Our model parameters consist of 

interval velocity 𝑣𝑛𝑚𝑜 and anellipticity 𝜂𝑖𝑛𝑡(𝜏). The objective is to find an interval model 
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that gives the maximum stacking power (semblance). Our optimization engine is a direct, 

global searching called differential evolution (DE) algorithm. 

Travel time equations 

The shifted hyperbola (de Bazelaire, 1988; Castle, 1994) and Alkhalifah-Tsvankin 

(Alkhalifah and Tsvankin, 1995; Alkhalifah, 1997) approximation are among the most 

commonly used traveltime equations for nonhyperbolic velocity analysis. Since we wish 

to perform residual velocity analysis on anisotropic shale reservoirs, we employ 

Alkhalifah-Tsvankin approximation 
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where t0 is the two-way traveltime at zero-offset, x is offset, Vnmo(t0) is the NMO velocity 

at small apertures, and ηeff is effective anellipticity. 

For VTI (vertical transverse isotropy) media, Alkhalifah (1997) deduced the 

relationship between effective and interval values using Dix forward equations 

   
0

0

2

0

0

2 1 t

nmonmo
dv

t
tV  ,                                                           (2a) 

and 

 
 

    








  181
1

8

1 0

0

4

0

4

0

0

t

intnmo

nmo

eff
dv

tvt
t  ,                      (2b) 

where 𝜂𝑖𝑛𝑡(𝜏) is the instantaneous (interval) anisotropy, and 𝑣𝑛𝑚𝑜is the interval NMO 

velocity given by 
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where 𝑣(𝜏) is the vertical interval velocity and 𝛿(𝜏) is one of the Thomsen’s anisotropy 

parameters (Thomsen, 1986). Note that although Equation 1 has higher accuracy than the 

conventional Dix equation, it is not suitable for velocity analysis when the absolute value 

of ηeff exceeds 0.2. And large value of ηeff might may result in a possible smoother and 

lower resolution mode of ηint. Furthermore equation 1 may introduce up to 2% travel time 

error when the aperture is greater than 2.0 (Alkhalifah, 1997). 

Differential evolution (DE) optimization 

Least-squares maximization is usually the optimization engine for automatic 

velocity analysis (e.g., Toldi, 1989). Classical least-squares requires the Hessian matrix 

(or approximations of the Hessian using the Jacobian matrix) to define the next search 

step. Unfortunately the relationship between the stacking power and a given interval 

model is highly nonlinear (Toldi, 1989). For this reason, we use an efficient, global search 

engine named differential evolution (DE), which is described in Appendix A, to obtain 

the optimal interval velocity and anellipticity model. The advantage of DE is that it avoids 

any estimation of derivatives but rather requires more computation to generate forward 

models, and it is more expensive than that of least-square based optimization. 

The Objective function 

Toldi (1989) proposes a two-step workflow to conduct automated hyperbolic 

velocity analysis. First, he calculates the stacking slowness from predicted trial interval 

slowness models. Then the algorithm computes the total stacking power of corrected 

gathers. The model with the greatest stacking power is considered as the best model. We 

follow Toldi’s workflow by extending it to automated nonhyperbolic velocity analysis. 

Toldi (1989) parameterizes the interval velocity model using equally-spaced increments 
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along the t0 axis.  In contrast, since we focus on residual velocity analysis of migrated 

gathers, we geologically consider our interval model using user-defined horizons. We 

choose the semblance S as the estimator of stacking power to minimize cost, though 

eigenstructure methods provide higher resolution (Key and Smithson, 1990; Sacchi, 

1998). The objective of our algorithm is to search an interval model m that gives the 

maximum semblance value S. And the model m consists of the interval NMO velocity 

𝑣𝑛𝑚𝑜and instantaneous (interval) anisotropy 𝜂𝑖𝑛𝑡 parameters 
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where x and y stand for inline and crossline, and indices i, j,  k indicate the index of time, 

inline, and crossline samples. 

Figure 2.1 illustrates the proposed workflow for automatic nonhyperbolic velocity 

analysis. Our input data consist of prestack time migrated CMP gathers, the initial 

migration velocity, and interpreted horizons. The outputs are flattened gathers, and a 

model of interval velocity and anellipticity that best flatten the gathers. The prestack 

gathers are generated from time-migrated gather that have been subjected to a reverse 

NMO correction using the migration velocity. The horizons are manually interpreted on 

an offset-limited stack of the migrated gathers, and are used to parameterize the interval 

model m. The algorithm starts by building an initial interval velocity model from 

migration velocity, then generates suite of alternative models in the decision space. Next, 

the model undergoes DE mutation and crossover to generate a set of new trial interval 

models and calculate the effective models using equation 2. The algorithm estimates the 
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objective function for each model, better models survive into the next generation. We 

repeat generating and evaluating the new models until all the reflection events are 

flattened, or convergence slows down. 

MINIMIZE THE STRETCH ASSOCIATED WITH FAR OFFSET 

Migration and NMO corrections are conducted sample by sample which results in 

the well-known decrease of frequency content and amplitude distortion through stretch at 

far offset. To avoid the effects of serious stretch associated with far offsets, we usually 

mute the farther offsets based on a user-defined criterion. Muting of far offset not only 

lowers the stacking power, it also reduces information necessary for accurate prestack 

inversion of shear impedance and density. Zhang et al. (2013) developed a wavelet-based 

algorithm named MPNMO (the matching-pursuit-based normal moveout correction) to 

minimize the stretch at large aperture. Their algorithm first applies reverse NMO 

correction, which “resqueezes” the migration stretch of the time migrated gathers, and 

then conducts a wavelet-based NMO correction on the reverse NMO corrected gathers. 

In this paper, we apply their workflow to the time migrated gathers using new the velocity 

and anellipticity model. In this manner, resolution is improved first by aligning the data 

and second by avoiding stretch. Furthermore the AVO phenomenon exited in the prestack 

gathers is well preserved. 

APPLICATION 

To illustrate the effectiveness of the proposed workflow, we apply it to prestack 

time migrated CMP gathers in the Fort Worth Basin (FWB), USA. The FWB is a foreland 

basin and covers approximately 54000 mi2 (14000 km2) in north-central Texas. The target 

is Mississippian Barnett Shale which is one of the largest unconventional reservoir in the 
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world and spreads approximately 28000 mi2 (72520 km2) across the FWB. Although the 

Barnett Shale (da Silva, 2013) is present in 38 counties in Texas, production is mainly 

restricted to Denton, Tarrant, Johnson, and Wise Counties in the northeastern portion of 

the FWB. Our survey is located in Wise County and has a maximum offset of 13000 ft. 

The target Barnett Shale lies at approximately 7000 ft depth.  Figure 2.2 shows a 

simplified stratigraphic column of the FWB in Wise County (Silva, 2013; Montgomery 

et al., 2005). Note the Barnett Shale lies directly on the easy-to-pick Viola limestone. 

Figure 2.3 is a representative time-migrated CMP gather using the two-term 

hyperbolic travel time equation. Note the “hockey stick” and stretch indicated by the 

white arrows at far offsets. Both “hockey stick” and stretch are harmful for the following 

processing and prestack inversion. The “hockey stick” can blur reflection events in the 

stacked volume while the stretch lowers the resolution of shear impedance and inversion 

volume. Usually, seriously stretched data are muted out (Figure 2.4) based on a user-

defined muting criterion. In this example we allow wavelets to stretch no more than 

130%. Figure 2.5 shows a prestack gather after applying reverse NMO correction on the 

gather shown in Figure 2.3. The RMS migration velocity (Figure 2.6a) comes from 

performing hyperbolic velocity analysis on coarse grid (20x20) super gathers. The 

migration velocity is then converted to interval velocity (Figure 2.6b) as one of the inputs 

for our algorithm. Figure 2.7 shows the horizons used for parameterizing the model. They 

are interpreted on the stacked volume which just uses the near offset data of time migrated 

gather (Figure 2.4). During each generation we only update the interval slowness and 

anellipticity values located at those horizons. Other interval model values are interpolated 

using values on the horizons. 
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 To automatically flatten the gather shown in Figure 2.5 without picking, we apply 

the workflow shown in Figure 2.1 to obtain the corrected results (Figure 2.8). The initial 

interval anellipticity ηint is set to zero and the maximum absolute value of corresponding 

ηeff is limited to 0.2 during the optimization. The maximum absolute deviation of interval 

velocity from the initial model is not permitted to more than 20%. Figures 2.9a and 2.9b 

show the optimal interval NMO velocity and anellipticity. The corresponding optimal 

RMS velocity and effective anellipticity are respectively shown in Figures 2.9c and 2.9d. 

Compared to the initial velocity model, the optimized interval NMO and RMS velocity 

have higher resolution. The differences between initial and optimized velocities are 

caused by 1) the isotropic assumption compensating for the anellipticity (Abbad, et al., 

2009) and 2) the initial velocity analysis performed on coarse grids super gathers having 

lower lateral resolution. Some correlations are observed between the inverted model and 

the geology features in the stacked section. For example, velocity pattern (high-low-high) 

indicated by the white arrows in Figure 2.9a correlates to the Marble Falls Limestone – 

Upper Barnett Shale – Forestburg Limestone sequences. The velocity increase indicated 

by the grey arrows corresponds to the Viola limestone. The feature in Figure 2.9b 

indicated by white arrow is associated with Barnett Shale which is known to be a VTI 

media. It can be used as a direct anisotropy indicator (Abbad, et al., 2009).   

Note that although the reflection events are flattened by our algorithm, we still 

cannot use the information contained at far offset due to the serious stretch indicated by 

the white arrows in Figure 2.8. At present MPNMO minimizes the stretch to some extent, 

but cannot resolve highly interfering and crossing events. Before using this algorithm, we 

therefore apply muting to the time migrated gathers (Figure 2.3) which allow wavelets to 
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stretch no more than 180% (Figure 2.10a). Then we apply a reverse NMO correction 

(Figure 2.10b) on the muted gathers. Finally we implement MPNMO algorithm (Figure 

2.10c). Note that MPNMO minimizes the stretch that occurs at the far offset data when 

compared to the original time-migrated gathers. Figures 2.11a and 2.11b shows vertical 

slices through the stacked volume from traditional time migrated gathers after muting and 

MPNMO corrected gathers. Note the greater stacked energy (red arrows) and improved 

resolution (yellow arrow) of the MPNMO results. To better see the improvements, we 

displayed a zoomed in part of the stacked section (Figure 2.12a and 2.12b) between 1.15s 

and 1.4s where our reservoir locates. Those horizons are no longer located at the troughs 

or peaks on the new stacked section and need re-interpretation. Note the improved 

resolution indicated by yellow arrows and more continuous reflection events indicated by 

the red arrow. Unfortunately the stacking power indicated by green arrow has lower 

energy compared to that of conventional. This artifact arises because MPNMO does not 

properly handle interfering reflections in prestack domain and moves all the interfered 

energy of current wavelets to the lower reflection events. To quantify the improved 

resolution, we compare the average amplitude spectra of the stacked data shown in Figure 

2.13. The blue and red curves represent the stacked data using gathers shown in Figure 

2.4 and MPNMO correction (Figure 2.10c). The MPNMO spectrum obviously has a 

greater ratio of high to low frequencies. 

CONCLUSIONS 

“Hockey stick” and stretch are the two main issues associated with long offset data 

processing. We propose a two-step workflow for maximizing the usage of information 

contained in far offsets. The first one is an automatic nonhyperbolic velocity analysis to 
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obtain an interval model that gives the maximum stacking power. The interval model 

based search ensures that the optimized model is physically feasible and avoids sudden 

variations. In our application the interval velocity has very good correlation with the 

reflection events in the stacked section. Unfortunately the interval anellipticity is 

ambiguous and need further comparison to well log data. Nonhyperbolic velocity analysis 

can mitigate the “Hockey stick” but not the stretch appeared at large aperture. MPNMO 

minimizes the stretch and improves the stacking power and resolution critical for 

interpreting thin reservoirs. Another advantage benefiting from MPNMO is that more far-

offset data are available for subsequent λρ-μρ and AVO inversion. 

The proposed methodology has some short comings. The algorithm favors 

flattening stronger reflection events due to their large stacking power, and may ignore 

some weak reflections. Also it still cannot estimate the nonuniqueness in the solution. 

There may exist a suite of kinematically equivalent models that exhibit identical moveout 

curves. The employed anti-stretch algorithm cannot decompose the highly compressed or 

crossing events. Future works therefore include 1) resolving interfering and crossing 

events in prestack domain and 2) employing well logs as the calibration during the 

optimization procedure. 
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APPENDIX A 

The differential evolutionary (DE) optimization algorithm used in this paper was 

initially proposed by Storn and Price (1997). The initial population of DE is randomly 

generated within the decision space. If the total variable number of the objective function 

is K, then the 𝑛th member at the gth generation can be expressed as: 
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where N is the population number, G is the total generation, and k is the index for 

variables. DE exhibits the basic features of any general evolutionary algorithm and is 

comprised of mutation, crossover, and selection. 

Mutation: For a given target vector 𝐦𝑛,g at generation g, randomly select three 

vectors from the population to generate the donor vector: 
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where the indexes 𝑟1, 𝑟2, and 𝑟3 represent selected integers from [1,N] that are different 

from 𝑛, and F is a user-defined  scaling factor. 

Crossover: The target vector 𝐦𝑛,g is recombined with the donor vector 𝐯𝑛,g to 

develop the trial vector 𝐮𝑛,g. Elements of the donor vector enter the trial vector with a 

probability 𝐶𝑟: 
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where n=1,2,…,N, k=1,2,…,K, RAND(0,1) is the 𝑘th evaluation of a uniform random 

number generator. 

Selection: The target vector 𝐦𝑛,g is evaluated against the trial vector 𝐮𝑛,g, with the 

better model surviving into the next generation: 
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We repeat implementing equation A-2 to A-4 until the maximum generation G is 

reached or the convergence rate is smaller than user-defined value.  
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Figure 2.1. Flowchart showing the automated nonhyperbolic velocity analysis. The model 

parameters consist of interval NMO velocity and anellipticity. The objective is to find a 

model that gives the maximum stacking power using a global optimization strategy called 

differential evolution.  
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Figure 2.2. Simplified stratigraphic column of the Fort Worth Basin in Wise County (da 

Silva, 2013). The Barnett Shale lies between the Marble Falls and Viola Limestone in our 

survey area. 
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Figure 2.3. A representative time-migrated CMP gather using two term hyperbolic travel 

time equation and the migration velocity shown in Figure 2.6. Note the “hockey stick” 

and stretch indicated by the white arrows at far offset. 
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Figure 2.4. The gather shown in Figure 2.3 after muting. The wavelet is not allowed to 

stretch more than 130%, resulting in the loss of information in the far offset. 
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Figure 2.5. The gather shown in Figure 2.3 after applying reverse NMO. This gather 

server as input to automatic nonhyperbolic velocity analysis. 
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Figure 2.6. Velocity analysis results performed on the coarse grid (20x20) super gathers. 

(a) RMS velocity from hyperbolic velocity analysis on the offset truncated gathers and 

(b) interval velocity converted from the RMS velocity. This interval velocity is used for 

generating the initial target interval velocity. The initial interval anellipticity is set to 0. 
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Figure 2.7. Horizons used in parameterizing the model. We interpreted these 18 horizons 

on the stacked volume of near-offset time migrated gathers (Figure 2.4). The named 

horizons are tied to wells. Unnamed horizons provide further constraints.  
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Figure 2.8. Flattened representative gathers using the workflow shown in Figure 2.1. Note 

the “hockey stick” is gone but not the stretch. 

 

 

 

 

 

 

 

 

 

 



65 

 

 

 

 

 

 



66 

 

 

 

Figure 2.9. Optimized model results using the workflow shown in Figure 2.1. During the 

optimization procedure, we first the update interval NMO velocity (a) 𝒗𝒏𝒎𝒐 and (b) 𝜼𝒊𝒏𝒕, 

then calculate the corresponding (c) RMS velocity and (d) effective anellipticity. The 

optimal interval velocity has higher resolution than the initial interval velocity (Figure 

2.6b). 
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Figure 2.10. Anti-stretch processing applied to prestack gathers. Representative gather 

after (a) muting and (b) reverse NMO correction. The muting is applied on the time 

migrated gathers shown in Figure 2.3 where the wavelet is not allowed to stretch more 

180%. Reverse NMO is applied to the muted gather. (c) The anti-stretching processed 

results. Note we minimize the stretch at far offsets. 
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Figure 2.11. Stacked sections after (a) conventional migrated gathers with 130% muting 

criteria and (b) MPNMO correction gathers with 180% muting criterion. The target 

Barnett Shale lies between t=1.1s and t=1.3s. Note the improved stacking power indicated 

by the red arrows and vertical resolution indicated by yellow arrow.  
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Figure 2.12. Zoom in display the stacked section of target reservoirs from (b) 

conventional (a) and (b) proposed residual velocity analysis workflow. Note we have 

more continuous reflection events (red arrows) and improved resolution (yellow arrow).  
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Figure 2.13. Spectra of stacked section from conventional- (blue) and proposed- (rea) 

processing. Note the spectrum of new stacked section obviously has a greater ratio of 

high to low frequencies. 
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Title: Improving the confidence of prestack inversion by preserving the data fidelity in 

long offset 

ABSTRACT 

Prestack seismic inversion techniques provide valuable information of rock 

properties, lithology, and fluid content for reservoir characterization. The confidence of 

inverted results increases with increasing incident angle of the seismic gathers. The most 

accurate result of simultaneous prestack inversion of P-wave seismic data is P-

impedance. S-impedance estimation become reliable with incident angles approaching 

30o, while density evaluation become reliable with incident angles approaching 45o.  As 

offset increases we often encounter “hockey sticks” and severe stretch at far offsets. Both 

“hockey stick” and stretch not only lower the seismic resolution but also hinder long 

offset prestack seismic inversion analysis. The invention results are also affected by the 

random noises presented in the prestack gathers. In this paper we present a three-step 

workflow to perform data conditioning prior to simultaneous prestack inversion. First, 

we mitigate the “hockey sticks” by using an automatic nonhyperbolic velocity analysis. 

Then we minimize the stretch at far offset by employing an anti-stretch workflow. Last, 

we improve the signal-to-noise ratio (SNR) by applying prestack structure oriented 

filtering. We illustrate our workflow by applying it to a prestack seismic volume acquired 

over the Fort Worth Basin (FWB), TX. The results inverted from the conditioned prestack 

gathers have higher resolution and better correlation coefficients with well logs when 

compared to those inverted from conventional time migrated gathers.  
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INTRODUCTION 

 

Simultaneous prestack inversion provides estimation of acoustic impedance (Zp), 

shear impedance (Zs), and density. Those estimations represent the intrinsic rock 

properties and are commonly used for predicting fluid, lithology, and geomechanical 

properties. Preserving data fidelity in the prestack seismic gathers is key to obtaining 

reliable impedance and density estimations. The main factors that affects the data fidelity 

in the restack gathers include 1) “hockey sticks” in the long offset seismic surveys, 

2)NMO/migration stretch, and 3) random noise. 

 “Hockey sticks” arise in the long offset of prestack gathers when we do not 

accounting for the effects of anisotropy (Alkhalifah, 1997; Fomel and Stovas, 2010) and 

long-offset (Taner and Koehler, 1969; de Bazelaire, 1988) in seismic processing. To 

mitigate the “hockey stick” at far offset, we need to perform nonhyperbolic velocity 

analysis using a proper travel time equation. The conventional nonhyperbolic velocity 

analysis (CNVA) first estimates the NMO velocity (Vnmo) on offset-limited gathers using 

a hyperbolic NMO correction, then picks effective anellipticity (ηeff) using the full-offset 

gathers. CNVA produces estimated model of Vnmo and ηeff on coarse grid of super gathers. 

The model at other common midpoint (CMP) gathers are interpolated from those at 

manually picked grids. However there is no guarantee that the interpolated velocity model 

is correct for all CMPs. Another disadvantage is that small aperture Vnmo analysis may be 

inaccurate. Picking errors in Vnmo introduce errors into the subsequent analysis of ηeff. 

Unfortunately simultaneously manual picking of Vnmo and ηeff at every CMP location is 

time consuming and tedious. In this paper, we extended Toldi’s (1989) automatic velocity 

analysis to mitigate the “hockey stick” in the long offset. 
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Migration and NMO corrections are conducted sample by sample which results in 

the well-known decrease of frequency content and amplitude distortion through stretch at 

far offset. To avoid the effects of serious stretch associated with far offsets, we usually 

mute the farther offsets based on a user-defined criterion. Muting of far offset not only 

lowers the stacking power, it also reduces the accuracy and vertical resolution of prestack 

inversion for shear impedance and density. Zhang et al. (2013) developed a wavelet-based 

algorithm named MPNMO to minimize the stretch at far offset. Their algorithm first 

applies reverse NMO correction, which “resqueezes” the migration stretch of the time 

migrated gathers, and then conducts a wavelet-based NMO correction on the reverse 

NMO corrected gathers. We apply their algorithm to minimize the stretch after having 

computed Vnmo and ηeff using automatic nonhyperbolic velocity analysis. 

Seismic signal is almost always contaminated with noise. To mitigate this undesired 

component of the seismic data, we assume that proper filters have already rejected the 

coherent noise (such as multiples) and that the remaining “noise” is random prior to 

applying our data conditioning workflow. If we assume the noise and reflected signals 

are uncorrelated, then we can decompose the prestack gathers into signal and noise parts 

by principal component analysis (Key and Smithson, 1990) along the structural dip.  

In this paper, we present a three-step workflow to perform prestack seismic data 

conditioning prior to prestack inversion. First we mitigate the “hockey sticks” by using 

an automatic nonhyperbolic algorithm. We then minimize the stretch at far offset using 

an anti-stretch procedure. Finally we improve the SNR by applying a prestack-oriented 

filtering. The workflow is validated on a seismic data volume acquired over the Fort 

Worth Basin, TX. 



79 

 

STRATEGIES TO PRESERVE THE DATA FIDELITY AT FAR OFFSET 

To use the critical information contained in the long offset data for prestack 

inversion, we need to 1) flatten the reflections at far offset using a nonhyperbolic travel 

time equation, 2) minimize the stretch typically associated with far offset, and 3) improve 

the SNR by prestack structure oriented filtering.  

Mitigating the “hockey stick” using automatic nonhyperbolic velocity analysis 

To mitigate the “hockey stick” associated with far offset and anisotropy, we employ 

an automatic nonhyperbolic velocity analysis algorithm (Zhang et al., 2014). The model 

m of the algorithm consists of the interval NMO velocity 𝑣𝑛𝑚𝑜and instantaneous 

(interval) anisotropy 𝜂𝑖𝑛𝑡 parameters. The workflow employs a genetic differential 

evolutionary (DE) algorithm to find the best model that can mitigate the “hockey stick” 

at far offset. Our input data consist of prestack time migrated CMP gathers, the initial 

migration velocity, and interpreted horizons. The outputs are flattened gathers, and a 

model of interval velocity and anellipticity that best flatten the gathers. The prestack time-

migrated gathers have been subjected to a reverse NMO correction using the migration 

velocity. The horizons are manually interpreted on an offset-limited stack of the migrated 

gathers, and are used to parameterize the interval model. The algorithm starts by building 

an initial interval velocity model from the migration velocity and setting the initial 

anellipticity model to 0, then generates a suite of alternative models in the decision space. 

Next, the model undergoes DE mutation and crossover to generate a set of new trial 

interval models. The algorithm estimates the objective function for each model. Better 

models survive into the next generation. We repeat generating and evaluating the new 

models until all the reflection events are flattened, or convergence slows down. 



80 

 

Minimizing the stretch at far offset 

The conventional NMO correction which processes the data sample-by-sample 

results in the well-known decrease of frequency content and amplitude distortion through 

stretch. The NMO-uncorrected traces, d(t), can be regarded as the convolution of the 

seismic wavelet with the reflectivity series and added noise 

 
       tntwtrtd  ,                        

(1)    

where r(t) is reflectivity series, w(t) is wavelet, and n(t) is noise. This classic theory 

suggests that the NMO correction can be implemented on a wavelet-by-wavelet basis, 

with the moveout applied to the reflection events, r(t), rather than to the data samples, 

d(t). Zhang et al. (2013) achieved this goal by using an algorithm named MPNMO. Our 

input data consist of pre-stack time migrated seismic gathers, d(t, xn), after performing 

reverse NMO correction using the migration velocity function. The output is the non-

stretch NMO corrected gathers. 

Improving SNR 

By assuming that 1) coherent noise have been filtered using proper filters, 2) noise 

and reflected signals are uncorrelated with zero mean, and 3) noise is uncorrelated from 

trace to trace and sample to sample, Key and Smithson (1990) concluded that the first 

few eigenvalues and eigenvectors of the covariance matrix of prestack seismic gathers 

represent the coherent reflection signals. Based on this assumption, we apply a prestack 

structure oriented filter (PSOF) based on principal component analysis (PCA) to the 

seismic gathers to improve the SNR. The workflow begins by calculating the reflectors 

dip in a running window on all traces of the stacked volume (Marfurt, 2006). Then we 
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estimate the correlation coefficients for the stack volume along the local reflection dip 

(Gersztenkorn and Marfurt, 1999). Next we extract the reflection signal whose correlation 

coefficients are greater than a user defined threshold through the first eigenvalue and 

eigenvector of seismic covariance matrix. The signals whose correlation coefficients are 

less than the threshold do not undergo any processing, thereby preserving potential 

discontinuities. 

Prestack seismic data conditioning workflow 

Figure 3.1 summarizes the proposed workflow for preserving the data fidelity 

contained the far offset. Our input data consist of prestack time migrated gathers and the 

initial migration velocity Vnmo_0. The initial effective anisotropy ηeff is set to 0. We obtain 

the initial migration velocity by performing hyperbolic velocity analysis on coarse grid 

super gathers. The workflow begins by performing reverse NMO on the time migrated 

gathers using the initial migration velocity. Then we obtain the optimal velocity and 

anellipticity model using our automatic algorithm. Next we apply MPNMO to the time 

migrated gathers using new velocity and anellipticity model resulting in flattened 

nonstretched prestack gathers. Lastly we apply PSOF to further improve the SNR. In this 

manner, both stacking power and vertical resolution are improved first by aligning the 

data and second by avoiding stretch. 

APPLICATION 

To evaluate the data quality processed by our workflow, we first apply it to pre-

stack time-migrated gathers acquired in the Fort Worth Basin (FWB), USA. We then 

compare the prestack inversion results computed from migrated gathers using 

conventional (muting) analysis and our proposed data conditioning workflow. The FWB 
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is a foreland basin and covers approximately 54000 mi2 in north-central Texas. The target 

is the Mississippian Barnett Shale which is one of the largest unconventional reservoir in 

the world and spreads approximately 28000 mi2 across the FWB. In our survey the “core” 

or main production area is the Barnett Shale formation lies between 1.2s and 1.4s. The 

maximum offset is around 14000 ft while the target Barnett Shale lies at approximately 

7000 ft depth, implying a maximum incidence angle of about 45o.  

Figure 3.2a shows a representative time migrated CMP gather using a two term 

hyperbolic travel time equation. Note the “hockey stick” and stretch indicated by white 

arrows at far offset. To avoid the effect of serious stretch, we usually the mute those 

serious stretched data according to a user defined criterion. Figure 3.2b shows the muted 

gather where the wavelet is not allowed to stretch more than 130%. By combining NMO 

velocity (Vnmo) and effective anellipticity (ηeff), nonhyperbolic velocity analysis can 

mitigate the “hockey stick” but not the stretch at far offset (Figure 3.2c). Figure 3.2d 

shows the flattened nonstretch gather. Note that MPNMO minimizes the stretch that 

occurs at the far offset data when compared to the original time-migrated gathers. Figures 

3.2e and f show the same gather after apply PSOF and the rejected random noise, 

respectively. 

P-impedance is the most reliable result from prestack inversion. S-impedance 

estimation become reliable when the incidence angle reaches 30o, while density become 

reliable when the angle approaching to 45o.  By applying the proposed workflow, more 

far offset data (Figure 3.2e) are available for the subsequent processing and inversion. 

We apply simultaneous prestack inversion to the gathers from both the conventional 

(Figure 3.2b) and the long offset preservation (Figure 3.2e) processing. We first extract 
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the angle dependent statistical wavelets for both the conventional migrated (Figure 3.3a) 

and the conditioned (Figure 3.3b) data after the seismic-well tie. The red, blue, and green 

lines show the extracted small (0o-12o), intermediate (12o-24o), and large angle wavelets 

(24o-36o), respectively. Note that the large angle wavelet extracted from time migration 

is distorted to some extent. To better compare the improvements, we show the amplitude 

spectrum of the extracted wavelets from time migrated and conditioned gathers in Figures 

3.3c and d.  Due to the increasing stretch with increasing incidence angle in the time 

migrated gathers, the spectral bandwidth (the blue and green lines in Figure 3.3c) of the 

intermediate and large angle wavelets are distorted and narrower than that of the small 

angle wavelet (the red line in Figure 3.3c). However the proposed conditioning workflow 

preserves the spectral bandwidth of the intermediated and large angle (the blue and green 

lines in Figure 3.3d). Another factor responsible for the narrower bandwidth of large 

angle wavelet is that we applied a low pass antialiasing filters to the far offset data internal 

to the time migration algorithms (Biondi, 2001). Figures 3.4, 3.5, and 3.6 compare the 

inverted P-impedance, S-impedance, and density from the conventional and long offset 

preservation gathers. The vertical black curve in those figures are the well tract that used 

to quality control the inversion results. We observe an overall improvement by including 

the long offsets, especially for the inverted S-impedance. For example, the formations 

indicated by the white arrow in the new inverted results from conditioned data are more 

laterally continuous compared to those from of conventional data. The zone indicated by 

dark arrows in the new data have higher resolution compared to that of conventional data. 

These improvement are due to our ability to preserve the frequency content for wavelet 

in the mid- and far-offset in particular. To better see the improvement, we quality control 
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our inverted results from (Figure 3.7a) time migrated and (Figure 3.7b) conditioned 

gathers with well logs at the target zone. The left, middle, and right tracks show the P-

impedance, S-impedance, and density panels. The black, blue, and red curves indicate the 

initial model, the original well logs, and the inverted results. The blue curves are the 

inverted result from conventional processed gathers while the red curves are the inverted 

result from the conditioned gathers. Note we have obvious improvements in the zone 

indicated by the red arrows. The new inverted results show a better correlation to the 

original well logs. The improvement of density is not as good as those of P- and S- 

impedance. This is due to that the maximum incidence angle of our gather is 

approximately 36o and it is beyond the inversion algorithm’s capability to generate a 

reliable result.   

CONCLUSION 

Preserving the data fidelity in the prestack gathers, especially the information 

contained in the far offsets is critical to obtaining a reliable prestack inverted results. The 

main tasks include 1) mitigating the “hockey stick” using high resolution automatic 

nonhyperbolic velocity analysis, 2) minimizing the stretch introduced by conventional 

NMO correction/migration, and 3) improving the SNR by applying proper filters. By 

combining all of the processing, the proposed workflow maintains the frequency content 

of wavelets and rejects unwanted random noise through the small- intermediate- and 

large- angles. Thus the more information is available for subsequent inversion, the more 

accurate the inverted results. The prestack inverted results based on the new conditioned 

gathers not only show higher resolution but also exhibit a better match to the original well 

logs due to critical information contained in the far offset. 



85 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Devon Energy in providing the data and CGG in 

providing the licenses for Hampson-Russell for use in research and education. We also 

thank the sponsors of Attribute-Assisted Seismic Processing and Interpretation 

Consortium (AASPI) for their guidance and financial support. 

  



86 

 

 

Figure 3.1. Flowchart showing the three data conditioning steps to preserve the data 

fidelity at far offset: 1) automatic nonhyperbolic velocity analysis, 2) applying anti-stretch 

processing on the time migrated gathers, and 3) prestack structure oriented filtering. 
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Figure 3.2. Representative gather showing the processing steps shown in Figure 3.1. (a) 

The time migrated gather from the conventional processing. (b) The same gather after 

applying 130% stretch mute. (c) The corrected gather using RMS velocity and effective 

anisotropy obtained from automatic nonhyperbolic velocity analysis. (d) The anti-stretch 

processing result applied to (a) using the new RMS velocity and effective anisotropy. (e) 

The SNR improved gather applied to (d) using the prestack structure oriented filter. (f) 

The rejected random noise. 
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Figure 3.3. Statistical extracted wavelets from (a) the time migrated and (b) the 

conditioned angle gathers. The corresponding amplitude spectra (c) and (d) of wavelets 

shown in Figures 3.3a and 3.3b. The red, blue, and green curves indicate the small, 

intermediate, and large angle wavelets and spectra.  
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Figure 3.4. Comparison of inverted P-impedance from (a) conventional and (b) 

preconditioned gathers. 
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Figure 3.5. Comparison of inverted S-impedance from (a) conventional and (b) 

preconditioned gathers. 
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Figure 3.6. Comparison of inverted density form (a) conventional and (b) preconditioned 

gathers. 
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Figure 3.7. Quality control of the inverted results using original well logs. The left, 

middle, and right panels shows the P-impedance, S-impedance, and density logs. The 

black, blue, green, and red curves shows the original logs, initial model, and inverted 

results from conventional and preconditioned gathers. 
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Title: Brittleness evaluation of resource plays by integrating petrophysics and seismic 

data analysis 

ABSTRACT 

The main considerations for well planning and hydraulic fracturing in 

unconventional resources plays include the amount of total organic carbon (TOC) and 

how much hydrocarbon can be extracted. Brittleness is the direct measurement of a 

formation about the ability to create avenues for hydrocarbons when suffering to 

hydraulic fracturing. Brittleness can be directly estimated from laboratory stress-strain 

measurements, rock properties, and mineral content analysis using petrophysics well logs. 

However the brittleness from these methods only provides “cylinder” estimates near the 

borehole. In this paper, we proposed a workflow to estimate brittleness of resource plays 

in three dimension by integrating the petrophysics and seismic data analysis. The 

workflow begins by brittleness evaluation using mineral well logs at the borehole 

location. Then we employ a proximal support vector machine (PSVM) algorithm to 

construct a classification pattern between rock elastic properties and brittleness from the 

selected benchmark wells. Then we prestack invert the fidelity preserved seismic gathers 

to generate a suite of rock properties volumes. Finally, we evaluate the brittleness of target 

formations by applying the trained classification pattern to the inverted rock properties 

volumes from seismic data, validating the results to wells not used in the construction of 

the classification pattern.  
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INTRODUCTION 

 

Brittleness and ductileness are used to describe deformation behavior under stress. 

A rock is considered to be ductile if it absorbs a high amount of energy before fracturing. 

Brittle rocks are unable to accommodate significant strain before fracturing, opening 

pathways for fluid flow. In conventional reservoirs brittleness is mainly used to evaluate 

the “drillability” in drilling, “sawability” in rock cutting, and mechanical “winning” of 

coal rocks (Jin et al., 2014). Brittleness is one of the most important rock parameters in 

shale reservoirs. Wells completed in brittle rock will develop more fractures. 

Furthermore, these fractures will close more slowly against the proppant than in more 

ductile rocks.  Thus differentiating brittle from ductile rocks has been the key to archive 

success in shale gas reservoirs. 

The methods of evaluating brittleness of rocks are mainly divided into three 

categories: (1) direct laboratory stress-strain measurements, (2) mineral content, and (3) 

empirical methods based on elastic module. Brittleness based on laboratory stress-strain 

testing (Honda and Sanada, 1956; Hucka and Das, 1974; Altindag, 2010) does not provide 

a direct link to seismic data. Thus, we concentrate on the last two methods in this paper. 

In the Barnett Shale, it is widely accepted that brittleness is mainly controlled by quartz 

content while ductility is related to clay minerals and TOC. Jarvie et al. (2007) proposed 

a brittleness equation based on the amount of quartz, calcite, and clay minerals where 

quartz is considered to be the brittle mineral while calcite and clay minerals are regarded 

to be ductile minerals. Wang and Gale (2009) improved Jarvie’s et al. (2007) equation by 

considering dolomite as one of the brittle minerals and TOC as one of the ductile mineral. 

The disadvantage of these two approach is that determination of mineral content requires 
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either core or an elemental capture spectroscopy (ECS) log that are not available for most 

of wells. Furthermore the brittle-ductile behavior of rock is related to but not fully 

controlled by the statistical content of brittle minerals. Other factors such as diagenesis 

and the distribution (such as layering) of mineral may also influence the brittle-ductile 

behaviors. Rickman et al. (2008) proposed an average brittleness equation based on the 

elastic parameters of Poisson’s ratio and Young’s modulus. Their equation assumes that 

more brittle rocks show relative high Young’s modulus and low Poisson’s ratio while 

more ductile rocks exhibit low Young’s modulus and high Poisson’s ratio. Brittleness 

estimation based on elastic parameters is more popular in the geomechanics field than 

that based on mineral content. This is due to the fact that they are easily derived from 

wire line logs where elastic parameters directly describe rocks ability to fail under stress 

and maintain an open fracture once the rock fractures (Pickman et al., 2008). Perez (2013) 

compared brittleness index estimated from mineral content and brittleness average 

estimated from elastic parameters. He observed inconsistencies between these two 

methodologies. Therefore he constructed brittleness template based on the Lamda-rho 

(λρ) and Mu-rho (μρ) analysis from selected benchmark wells that had both mineral 

content (ECS) and rock parameters (sonic, dipole sonic, and density) logs. At last he 

estimated the brittleness of shale reservoirs by applying his template to inverted λρ and 

μρ from prestack seismic inversion. Da Silva (2013) found that the brittleness index (BI) 

computed from mineral content is positively correlated to μρ and negatively correlated to 

λρ.  Jin et al. (2014) reviewed several based brittleness estimation from geomechanical 

and petrophysics. They proposed a fracability index equation by considering the elastic 

parameters and mineral content together where feldspar, mica, as well as the carbonate 
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minerals (limestone, dolomite, and calcite) are regarded as the brittleness contributors. 

They found a very good correlation between fracability index and mineral content based 

brittleness evaluation. 

Elastic parameters inverted from seismic are commonly used for reservoir 

characterization after calibration with well logs. The accuracy of elastic parameters 

derived from seismic inversion mainly depends on whether we can preserve the data 

fidelity at far offsets in the prestack gathers. Stretch and “hockey sticks” are the two main 

factors that affect the data fidelity at far offset. We apply a workflow to mitigate these 

two phenomena at far offset (Zhang et al., 2014) beginning by mitigating the “hockey 

stick” using automatic nonhyperbolic velocity and followed by a wavelet based correction 

to minimize the stretch at far offset. Zhang et al. (2014) found that inverted results from 

conditioned gathers have better resolution and higher correlation coefficients with well 

logs.  

In this paper, we propose a workflow to evaluate the brittleness of shale reservoirs 

by integrating petrophysics and seismic analysis. By employing a supervised 

classification algorithm, we obtain a classification pattern between multiple rock elastic 

properties and BI computed from mineral logs for the benchmark well. We then obtain 

the rock elastic properties volumes by performing prestack inversion on the fidelity 

preserved gathers. Finally, we evaluate the brittleness of target reservoirs by applying the 

classification pattern to the inverted rock properties volumes. 

BRITTLENESS DEFINITION 

Brittleness is used to describe the deformation behavior when the rocks are subject 

to stress in the laboratory. The brittleness index (BI) is commonly used to evaluate the 
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degree of brittleness of rocks. The higher the magnitude of BI, the more brittle of the 

rock. One common BI measurement is the ratio of compressive strength, 𝜎𝑐 to tensile 

strength 𝜎𝑡 (Coates and Parsons, 1966): 

t

cBI



 .                                                                   (1) 

However BI measurements based on compressive strength and tensile strength are 

only available in the laboratory. In practice it is expensive and therefore unrealistic to 

extract reservoir cores for all wells, limiting the use of such direct measurements to 

reservoir characterization. Several researchers have proposed BI definitions based on 

either mineral content logs or on rock elastic parameters for reservoir characterization. 

Jarvie et al. (2007) and Wang and Gale (2009) proposed BI definitions based on mineral 

content of rocks. They first classified the minerals as ductile or brittle by considering their 

deformation behavior. Then they computed BI as the ratio of the brittle mineral content 

to the sum of constituent minerals. Jarvie et al. (2007) considered quartz as the brittle 

mineral:  
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Wang and Gale (2009) further improved Jarvie’s definition by including dolomite as a 

brittle mineral and TOC as a ductile component 
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where 𝑄𝑧 is the fractional quartz content, 𝐷𝑜𝑙 is the dolomite content, 𝐶𝑎𝑙 is the calcite 

content, 𝑇𝑂𝐶 is the total organic carbon content, and 𝐶𝑙𝑦 is the clay content by weight in 

the rock. 
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Rickman et al. (2008) proposed a brittleness average estimation using Young’s 

Modulus E and Poisson’s ratio 𝜎.  

2

nnE
BI


 ,                                                           (4) 

where 𝐸𝑛 and 𝜎 are the normalized Young’s Modulus and Poisson’s Ratio 
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where 𝐸𝑚𝑎𝑥, 𝐸𝑚𝑖𝑛 are maximum and minimum Young’s Modulus; 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 are the 

maximum and minimum Poisson’s Ratio. 

The BI evaluation based on mineral content is widely used for shale reservoir 

characterization. Unfortunately it is expensive to obtain the mineral content logs and this 

evaluation is only available for the formations at the borehole location. While it is easier 

and cheaper to compute the average brittleness but it fails when there are limestone 

stringers (Perez, 2013). In this paper we employ Wang and Gale’s (2009) definition to 

evaluate the brittleness of formations. 

PRESTACK SEISMIC DATA CONDITIONING 

Simultaneous prestack seismic inversion provides a 3D estimation of reservoir 

properties such as acoustic impedance (ZP), shear impedance (ZS), and density (ρ). These 

estimates represent intrinsic rock properties and are commonly used to predict fluid, 

lithology, and geomechanical properties (Goodway et al., 1997). The reliability of 

inverted results increases with increasing angle of incidence. However information 

contained in the far offsets (large incidence angle) are usually distorted to some extent 
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after conventional processing. Thus preserving the data fidelity in prestack seismic 

gathers is one of the key factors to obtain reliable estimations of ZP, ZS, and ρ.  The main 

factors that affects the data fidelity in the prestack gathers include 1) “hockey sticks” at 

far offset in the long offset seismic surveys, 2) NMO/migration stretch, and 3) random 

noise. To use the critical information contained in the long offset data for prestack 

inversion, we need to 1) flatten the reflections at far offset using a proper nonhyperbolic 

travel time equation, 2) minimize the stretch typically associated with far offset, and 3) 

improve the signal-to-noise ratio (SNR) by prestack structure oriented filtering (PSOF).  

Figure 4.1 summarizes the workflow for preserving the data fidelity contained in the 

far offset. Our input data consist of prestack time migrated gathers and the initial 

migration velocity Vnmo_0. The initial effective anisotropy ηeff is set to 0. We obtain the 

initial migration velocity by performing hyperbolic velocity analysis on coarse grid super 

gathers. The workflow begins by performing reverse NMO on the time migrated gathers 

using the initial migration velocity. Then we obtain the optimal velocity and anellipticity 

model using our automatic algorithm (Zhang et al., 2014). Next we apply nonstretch 

NMO correction (Zhang et al., 2013) to the time migrated gathers using new velocity and 

anellipticity model resulting in flattened nonstretched prestack gathers. Lastly we apply 

PSOF algorithm to further improve the SNR. In this manner, both stacking power and 

vertical resolution are improved first by aligning the data and second by avoiding stretch. 

BRITTLENESS EVALUAITON BY INTEGRATING PETROPHYSICS AND 

SEISMIC DATA ANALYSIS 

BI estimation based on mineral logs is widely used to evaluate the brittleness of 

resources plays reservoirs (Jarvie et al., 2007; Wang and Gale, 2009). However, mineral 
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content logs are expensive to acquire, therefore limiting direct brittleness estimates to 

only a few wells. Different minerals exhibit different rock elastic properties such as 

acoustic impedance, shear impedance, Poisson’s ratio (σ), incompressibility lambda (λ), 

and shear modulus mu (μ). For example λ of quartz is lower than those of clay and calcite, 

while the μ of quartz is higher than those of clay and calcite (Mavko et al., 2009). This 

observation of elastic properties to minerals provides a mean to evaluate the brittleness 

of resource play by multiple rock elastic properties analysis (Goodway et al., 1997; Perez, 

2013; Da Silva, 2013). In this paper we employ an advanced classification algorithm 

named proximal support vector machine (PSVM) (Fung and Mangasarian, 2001) to find 

the pattern between multiple rock properties and BI.  PSVM is a supervised learning 

procedure which uses associated learning algorithms to analyze data and recognize 

patterns. It is widely used for classification and regression analysis (Fung and 

Mangasarian, 2005). The details of PSVM are described in Appendix A.  

 We proposed a workflow of Figure 4.2 to obtain a 3D brittleness estimates for 

resource plays by integrating petrophysics and seismic data. Our workflow contains two 

parts 1) obtaining the classification pattern between elastic properties and BI, and 2) 

applying the recognized pattern to the elastic volumes from seismic data to generate a BI 

volume. Our algorithm starts by computing rock elastic properties from sonic and density 

logs and BI from mineral content logs. Next we obtain a classification pattern between 

these elastic properties and BI by performing PSVM training on randomly selected well 

log samples (the training subset). The recognized pattern is then tested on the remaining 

well log samples (the testing subset) to validate the mapping. The seismic inversion 

begins by applying PSOF (Figure 4.1). Then we obtain the 3D elastic property volumes 
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by performing simultaneous prestack inversion using commercial software. Finally, we 

generate a 3D brittleness estimates for the target reservoir by applying the recognized 

PSVM pattern to the inverted elastic properties volumes. 

APPLICATION 

The Barnett Shale of Fort Worth Basin (FWB), TX, USA is one of the largest 

unconventional shale reservoirs in the world. The FWB is a foreland basin and covers 

approximately 54000 mi2 in north-central Texas (Da Silva, 2013). A high quality long 

offset surface seismic survey (Figure 4.3) was acquired in 1990s over “core” production 

area of FWB. In our survey, the Barnett Shale formation lies between 1.2 s and 1.4 s. The 

maximum offset is around 14000 ft while the target Barnett Shale lies at approximately 

7000 ft depth. Well A, which lies approximately 5 miles to the northeast of seismic survey 

(Figure 4.3), serves as the bench mark well to build the classification pattern between 

selected elastic properties and BI.  

Classification training between rock properties and BI for the benchmark well 

Figure 4.4 illustrates gamma ray, percent weight clay, percent weight TOC, percent 

weight quartz, percent weight calcite and BI logs computed using equation 3 for well A. 

Note that zones with high quartz content are more brittle than zones with high clay, 

calcite, and TOC content which are less brittle. Figure 4.4 also shows that the shale 

formation (Upper and Lower Barnett Shale) exhibits moderate to high brittleness index 

values while the limestone formations (Marble Falls Limestone, Forestburg Limestone, 

and Viola Limestone) show low GR and low BI values. Considering the reliability of 

inverted rock properties from seismic inversion, we choose ZP, ZS, σ, and μ/λ as the elastic 

properties (Figure 4.5) used in training with BI. First we break the continuous BI logs 
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into 10 equal petro-type to obtain a normalize BI (BI_N) (Figure 4.6). Next we assign a 

value between 1 and 10 to BI_N corresponding to its petro-type number. The sixth track 

in Figure 4.6 shows the normalized results. A rating of 1 denotes the most ductile rock 

while a rate of 10 denotes the most brittle rock. Figure 4.5 illustrates a positive correlation 

between μ/λ and BI_N. We also observe a negative correlation between σ and BI_N. Then 

we randomly select 30% of total samples as the training subset used in PSVM 

classification. The remaining 70% samples are used as the testing subset to validate our 

classification pattern. The seventh track in Figure 4.5 shows the new classified BI (BI_C) 

logs by applying the classification pattern on selected rock properties. Note the strong 

agreement between the original normalized (the sixth track in Figure 4.5) and new 

classified BI (the seventh track in Figure 4.5). We obtain a very high correlation 

coefficient (0.9) between original and new BI logs. 

Simultaneous prestack inversion and 3D brittleness evaluation 

P-impedance is the most reliable result from prestack inversion. S-impedance 

estimation become reliable when the incidence angle reaches 30o, while density become 

reliable when the angle approaches to 45o). The maximum incident angle of our prestack 

gathers used for inversion is approximate 36o in our survey. Thus preserving the fidelity 

of far offset data is one of the main targets in processing and is the key to obtain reliable 

estimation of rock properties form prestack seismic inversion. Figure 4.7a shows a 

representative time-migrated CMP gather using a two term hyperbolic travel time 

equation. Note the “hockey sticks” and stretch indicated by the white arrows at far offsets. 

The “hockey sticks” blur the reflection events while the stretch lowers the resolution in 

the stacked volume. Usually, seriously stretched data are muted out based on a user-
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defined muting criterion. However muting the far offset data rejects the critical 

information contained in the far offset.  Figure 4.7b shows the flattened nonstretch gather. 

Note that the “hockey sticks” and stretch at far offset are gone when compared to the 

original time-migrated gather. Figures 4.6c and d show the same gather after applying 

PSOF and the rejected noise, respectively. Figure 4.7d illustrates that the noise rejected 

by PSOF is incoherent noise. By applying the pre-conditioning workflow (Figure 4.1), 

more far offset data (Figure 4.7c) are available for the subsequent processing and 

inversion. 

We use eight wells located in our seismic survey for prestack seismic inversion. All 

the wells have P-wave sonic and density logs. S-wave sonic logs are available for three 

of the wells. By using a nonlinear regression, we derive S-wave sonic logs for other wells 

using P-wave sonic. First, six interpreted horizons and eight wells are used to build the 

background P-impedance, S-impedance and density models. Next we apply simultaneous 

prestack inversion to the conditioned gathers (Figure 4.7c) to obtain rock properties. The 

inversion window ranges from 50 ms above the first horizon (Marble Falls limestone) to 

50 ms below the last horizons (Viola limestone).  Figures 4.8a, 4.8b, 4.8c, and 4.8d show 

the inverted P-impedance, S-impedance, Poisson’s ratio, and Mu-Lambda ratio, 

respectively. The vertical black curves in figures are the well tract that used for quality 

control of the inverted results (Figure 4.9). The first, second, third, and fourth tracks in 

Figure 4.9 show the comparison of P-, S- impedance, density, and Poisson’s ratio. The 

blue, black, and red curves are respectively the original logs, initial model, and inverted 

results from the prestack seismic gathers. Note that the inverted results from seismic do 

not have the high vertical resolution of the well logs, but they bear an excellent trend 
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matching with the initial low frequency models derived from well logs at the seismic 

scale. Figure 4.10 shows the predicted brittleness by applying the classification trained 

from the benchmark well to the inverted rock properties. Note that the Upper and Lower 

Barnett Shale are generally more brittle than limestone which agree with the conclusions 

derived from well data analysis. The brittleness degree varies horizontally within the 

Upper and Lower Barnett Shale formation.  Figure 4.9 also shows that a ductile zone exist 

in the Upper Barnett Shale and the brittle zone in Lower Barnett Shale is more continuous 

than that of Upper Barnett Shale. This phenomenon indicates that Lower Barnett Shale 

may more easily produce factures than the Upper Barnett Shale when completed with 

hydraulic fracturing.  Microseismic data (Perez, 2013) indicate that the amount of 

microseismic events happened in Lower Barnett Shale is much larger than that in the 

Upper Barnett Shale. 

CONCLUSION 

The proposed workflow provides a 3D Brittleness estimates for unconventional 

resource plays by integrating petrophysics and seismic data analysis. The key algorithm 

of this workflow is to obtain the classification pattern between rock elastic properties that 

can be estimated from surface seismic data and BI from petrophysical data. The prestack 

seismic data conditioning preserve more far offset data for seismic data and improve the 

reliability of the inverted rock elastic parameters. The increasing reliability of inverted 

results further stabilize the brittleness estimation of reservoirs when applying the 

classification pattern on inverted rock properties volumes.  
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APPENDIX A 

The proximal support vector machine (PSVM) used in this paper was initially 

proposed by Fung and Mangasarian (2005). The algorithm of PSVM is an evolutionary 

variant of support vector machine algorithm (SVM) (Cortes and Vapnik, 1995). The SVM 

is a powerful supervised machine learning technique widely used in text detection, image 

recognition and protein classification. It has been found that PSVM provides comparable 

classification correctness to standard SVM but at considerable computational savings 

(Fung and Mangasarian, 2005; Mangasarian and Wild, 2006). We show a binary (two 

cluster) classification problem in this appendix for simplicity.  

The PSVM decision is defined as  

       𝒙𝑇𝝎 − 𝛾 {
> 0                       𝒙 ∈ 𝐴+

= 0          𝒙 ∈ 𝐴+ 𝑜𝑟  𝐴−

< 0                        𝒙 ∈ 𝐴−  ,
                          (A1) 

where 𝒙 ∈ 𝑅𝒏 is a n dimensional vector data point that needs to be classified, T denotes 

the vector transpose, 𝝎 ∈ 𝑅𝒏 implicitly defines the normal vector to the decision-

boundary, 𝛾 ∈ 𝑅 defines the location of the decision-boundary, and 𝐴+ and 𝐴− are two 

classes of the binary classification. We estimate 𝝎 and 𝛾 by solving the following 

constrained optimization problem by using the training sample set (Fung and 

Mangasarian, 2005): 

       min
𝝎,𝛾,𝒚

𝜈
1

2
‖𝒚‖2 +

1

2
(𝝎𝑇𝝎 + 𝛾2),                                   (A2) 

subject to  

         𝑫(𝑨𝝎 − 𝒆𝛾) + 𝒚 = 𝒆,                                                (A3) 

where 𝑨 ∈ 𝑅𝑚×𝑛 is the sample matrix composed of 𝑚 samples which can be divided into 

two classes, 𝐴+ and 𝐴−. 𝑨 was used for supervised training to obtain  𝝎 and 𝛾; 𝒚 ∈ 𝑅𝑚 is 
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the training error vector; 𝑫 ∈ 𝑅𝑚×𝑚 is a diagonal matrix of labels with a diagonal 

composed of  +1 for 𝐴+ and −1 for 𝐴− , 𝜈 is a non-negative parameter, and 𝒆 ∈ 𝑅𝑚 is a 

column vector of ones. This optimization problem can be solved by using a Lagrangian 

multiplier (Fung and Mangasarian, 2005). If we employ the Gaussian kernel function, 

then the decision condition for the testing samples can be expressed as  

       𝑲(𝒙𝑇, 𝑨𝑇)𝑫𝒖 − 𝛾 {
> 0                       𝒙 ∈ 𝐴+

= 0          𝒙 ∈ 𝐴+ 𝑜𝑟  𝐴−

< 0                        𝒙 ∈ 𝐴−  ,
              (A4) 

where 

       𝑲(𝒙′, 𝑨′)𝑖𝑗 = exp(−𝜎‖𝒙 − 𝑨′
𝑖∙‖

2) , 𝑖 ∈ [1, 𝑚].            (A5) 
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Figure 4.1. Flowchart showing steps to preserve the data fidelity at far offset. It contains 

three main steps 1) automatic nonhyperbolic velocity analysis, 2) applying anti-stretch 

processing on the time migrated gathers, 3) prestack structure oriented filtering. 
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Figure 4.2. Flowchart showing steps to estimate the brittleness of resources reservoirs 

containing two main parts 1) obtaining the classification pattern between rock properties 

and BI from bench mark wells and 2) inverting rock parameters from seismic and obtain 

3D BI by applying the classification pattern on inverted volumes. 
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Figure 4.3. Outline of seismic survey located in Wise County including the fold map 

resulting from 3D seismic acquisition. Survey boundaries are highlighted in black and the 

bench mark well used in this paper is located approximately 5 miles to the northeast of 

seismic survey. 
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Figure 4.4. Gamma Ray, clay mineral, TOC, quartz mineral, calcite mineral, and 

brittleness index logs corresponding to Well A.  Brittleness index values were calculated 

using Wang and Gale’s equation (2009). 
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Figure 4.5. Gamma Ray, P- and S- impedance, Possion’s ratio, Mu-Lambda ratio, 

normalized BI and new classified BI corresponding to Well A. 
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Figure 4.6. Cartoon illustrating the strategy to normalize the BI logs computed from 

mineral content using Wang and Gale’s equation (2009). 
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Figure 4.7. Representative gather showing the processing steps shown in Figure 4.1. 

Normally, we need to mute the serious stretch appearing at far offset in (a) the time 

migrated gather in the conventional processing. (b) The stretch free and flattened gather 

after applying automatic nonhyperbolic velocity analysis and anti-stretching processing.  

(c) The SNR improved gather applied to (c) using the prestack structure oriented filter. 

(d) The rejected noise. 
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Figure 4.8. Simultaneous prestack inverted (a) P-impedance, (b) S-impedance, (d) 

Poisson’s ratio, and (d) Mu-Lambda ratio. 
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Figure 4.9. Quality control the inverted results with original well logs. The first, second, 

third, and fourth panels are respective the P-impedance, S-impedance, density logs, and 

Poisson’s ratio. The blue, black, and red curves are respectively the original logs, initial 

model, and inverted results from seismic gathers. 
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Figure 4.10. Brittleness estimation by applying the classification pattern on the inverted 

rock properties volumes. We obtained the classification pattern by training the rock 

properties and BI from bench mark wells using PSVM. 
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Title: Semi-automated fault interpretation based on seismic attributes 

ABSTRACT 

3D fault interpretation is a time consuming and tedious task. Huge efforts have been 

invested in attempts to accelerate this procedure. We present a novel workflow to perform 

semi-automated fault illumination that uses a discontinuity attribute as input and provides 

labeled fault surfaces as output. The procedure is modeled after a biometric algorithm to 

recognize capillary vein patterns in human fingers. First, a coherence or discontinuity 

volume is converted to binary form indicating possible fault locations. This binary 

volume is then skeletonized to produce a suite of fault sticks. Finally, the fault sticks are 

grouped to construct fault surfaces using a classic triangulation method.  The processing 

in the first two steps is applied time slice by time slice, thereby minimizing the influence 

of staircase artifacts seen in discontinuity volumes. We illustrate this technique by 

applying it to a seismic volume acquired over the Netherlands Sector of the North Sea 

Basin and find that the proposed strategy can produce highly precise fault surfaces.  



131 

 

INTRODUCTION 

 

Faults in the subsurface can act as barriers or efficient avenues for hydrocarbon 

migration and flow, and often form hydrocarbon traps. Identifying the fault system is one 

of first steps in seismic interpretation and a key component in developing both exploration 

and development strategies. However, careful fault interpretation is a highly time-

consuming task. Algorithms that facilitate fault interpretation fall into two categories. The 

first category deals with development and application of attributes that highlight fault 

locations.  The algorithms in the second category are for generating fault surfaces from 

these attributes volumes. 

Coherence/similarity (Bahorich and Farmer, 1995; Marfurt et al., 1998; 

Gersztenkorn and Marfurt, 1999; Randen et al., 2001), reflector dip (Marfurt, 2006), and 

curvature (Stewart and Wynn, 2000; Roberts, 2001; Al-Dossary and Marfurt, 2006) are 

the most popular seismic attributes routinely used to assist in fault interpretation. 

Unfortunately, attributes in their native form are not generally amenable to semi-

automated fault system extraction. Rather, we need to apply additional edge enhancement 

technology to these attributes to better illuminate faults and minimize human labor. There 

are a variety of image processing techniques which can enhance fault visualization and 

detection. AlBinHassan and Marfurt (2003) employed the Hough transforms to enhance 

faults appearing on time slices. Aarre and Wallet (2011) generalized this workflow to 3D 

using an efficient add-drop algorithm. Barnes (2006) designed a filter to pass steeply 

dipping discontinuities which can serve as the first step in automating fault interpretation. 

Lavialle et al. (2006) proposed a nonlinear filtering approach based on 3D GST analysis 

that de-noises and preserves faults prior to automatic fault extraction. Image processing 
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techniques applied to seismic attributes usually require a suitable window size. Larger 

window size not only smears the fault information but also increases the computational 

cost, while smaller window sizes introduces less smearing but are sensitive to noise.  

Almost all automated fault extraction strategies need human intervention from time 

to time and include three main steps. First, the interpreter selects an appropriate fault-

sensitive seismic attribute (e.g., coherence or reflector dip magnitude) to highlight the 

fault location. Next, the interpreter employs different technologies to transform the 

attribute volume into a fault likelihood/confidence volume. Finally, the interpreter 

generates a localized surface to fit a cloud of fault points. Randen et al. (2001) presented 

a four-step workflow to automatically extract fault surface from an attribute cube. 

Unfortunately this workflow does not handle X-pattern faults properly. Gibson et al 

(2003) proposed a two-step strategy to automatically detect the fault surface in 3D seismic 

data. The first step was to generate a confidence cube based on the coherence attribute. 

They then generated small patches and least-squares fit those patches to generate a fault 

surface. In both the Randen et al. (2001) and Gibson et al. (2003) workflows, the 

challenge lies in how to define a suitable threshold to generate the confidence volume as 

well as a proper window size to generate the fault surface. Silva et al. (2005) provided 

greater insight into the ant tracking algorithm proposed by Randen et al. (2001). They 

reported that this strategy can reduce human interaction from 10 days to 3 days in their 

testing. Jacquemin and Mallet (2005) proposed a method based on a cascade of two 

Hough transforms to automatically extract fault surfaces.  Cohen et al. (2006) proposed a 

workflow, which contains four steps to detect and extract fault surfaces in 3D volumes, 

resulting in a set of one-pixel-thick labeled fault surfaces. Kadlec et al. (2008) presented 
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a method to model faults surface using a growing surface strategy while Dorn et al. (2012) 

generated fault surfaces through azimuth scanning on horizontal slices, and dip scanning 

on vertical slices. 

In this paper, we present a semi-automated strategy to extract fault surfaces from 

seismic attributes volumes that requires minimum human intervention. We start by 

introducing an edge-detection algorithm successfully used in the biometric field. We then 

use these edges to construct a fault system. Finally we apply our algorithm to a seismic 

data volume acquired over the Netherlands Sector of the North Sea Basin. 

METHOD 

Coherence-like attributes typically highlight faults quite well on time/depth slices 

(Dorn et al., 2012) but usually exhibit a staircase behavior on the vertical sections. Based 

on this observation, we produce our fault sticks time slice by time slice prior to 

constructing the fault surfaces in the vertical direction. 

Seismic Attribute Conditioning 

The fault patterns shown on the time slices (Figure 5.1a) share similar 

characteristics with capillary vein images of fingers (Figure 5.1b) acquired using infrared 

light. Based on this observation, we borrow an effective method of extracting vein 

patterns (Miura et al., 2007) to recognize the fault elements on time slices. In the 

experiments, Miura et al. (2007) reduced the equal error rate (EER), which evaluates the 

mismatch ratios of personal identification, to 0.0009%. While the EER in other reported 

methods ranges from 0.2% to 4%. By calculating the local maximum curvature in cross-

sectional profiles of discontinuity attribute on time slices, the algorithm can extract the 
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centerlines of possible fault locations. The output is a binarized volume where 1 indicates 

possible fault locations and 0 the absence of faults. 

Assume that P is an attribute slice and 𝑃(𝑥, 𝑦) is the value at grid (𝑥, 𝑦). We define 

𝑃[𝜉(𝑗)] as a cross-sectional profile acquired from 𝑃(𝑥, 𝑦) along azimuth j, where 𝜉(𝑗) is 

the position sequence number in the profile and (𝑥, 𝑦) are respectively the index of inline 

and crossline number. For a given point of discontinuity attribute on time slice, our 

method checks the curvature, 𝑘[𝜉(𝑗)], of cross-sectional profiles, 𝑃[𝜉(𝑗)], as a function of 

𝜉(𝑗) along azimuth j. The curvature, 𝑘[𝜉(𝑗)], can be expressed as  
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The shape of the attribute profile, 𝑃[𝜉(𝑗)], is determined by the type of attribute. For 

example coherence appears as a low coherence dent (Figure 5.2a) and exhibits negative 

curvature using equation 1. To simplify the following processing, if the attribute shows 

low values at the fault location, we reverse the sign of equation 1. 

Note that the discontinuity attributes should theoretically reach minimum/maximum 

value at the fault location and increase/decrease abruptly (Figure 5.2b). We assume that 

the local maxima, 𝑘[𝜉(𝑗)], in each profile, 𝑃[𝜉(𝑗)], indicate the possible fault positions. 

Those points are defined as center positions 𝑈(𝑗)(𝑥, 𝑦). To determine whether a center 

position, 𝑈(𝑗)(𝑥, 𝑦), has the possibility to lie on the fault location, we compute scores, 

𝑆[𝑈(𝑗)(𝑥, 𝑦)] (Figure 5.2c), defined as 

        yxUWyxUkyxUS jjj ,,, )()()(  ,                                                                          (2) 

where 𝑊[𝑈(𝑗)(𝑥, 𝑦)] is the local width of the profile where 𝑘(𝜉(𝑗)) is positive (Figure 

5.2b), and 𝑘[𝑈(𝑗)(𝑥, 𝑦)] is valued directly from 𝑘[𝜉(𝑗)] from location mapping between 
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(x, y) and 𝜉(𝑗). The score parameter, 𝑆[𝑈(𝑗)(𝑥, 𝑦)], considers the width and changing rate 

of the attribute at the same time. If the score is large, the probability that there is a fault 

is also high. To obtain the fault pattern development along all azimuths in the entire time 

slice, the scores are accumulated and assigned to a capability plane (Figure 5.3), 𝑉(𝑥, 𝑦), 

which has the same size as the attribute time slice, 

     
J

j

j yxUSyxV ,, ,                                                                                                     (3) 

where 𝑗 the index of azimuth direction, J is the number of azimuth and set as 8 in this 

paper, and (x, y) is the horizontal coordinate pair. 

If V(x, y) is large and has large values nearby, we consider this point lying on a fault 

system. Even if V(x, y) is large but has small values nearby, a dot of noise is interpreted 

to occur at (x, y). By applying equations 4a to 4d on the capability slice shown in Figure 

5.3, Figures 5.4 show the confidence slice, C(x, y), of encountering a fault at 0o, 45o, 90o, 

and 135o using a strategy described by Miura et al. (2007).  

            2,,1,max,2,,1,maxmin,0  yxVyxVyxVyxVyxC ,                                           

(4a) 

            2,2,1,1max,2,2,1,1maxmin,45  yxVyxVyxVyxVyxC ,             

(4b) 

            yxVyxVyxVyxVyxC ,2,,1max,,2,,1maxmin,90  ,                                          

(4c)        

            2,2,1,1max,2,2,1,1maxmin,135  yxVyxVyxVyxVyxC , 

and  (4d). 
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The final confidence estimate is given by 

          yxCyxCyxCyxCyxC ,,,,,,,max, 13590450 .                                                                                   

(5) 

Note fault confidence attributes indicated by the green arrows in Figure 5.5 is more 

continuous compare to that of Figure 5.3. The improvement is critical in generating the 

binary slice.  

The confidence slice is binarized according to a user-defined threshold (Cthd in 

Figure 5.7). Only those points with values greater than or equal to the threshold are set to 

1 and considered as candidate points for the following processing and fault surface 

construction. All other points are treated as background with a value of 0 (Figure 5.6a). 

The above workflow is designed and set to highlight the faults and is applied to the 

whole seismic attribute cube time slice by time slice. The final result is a binarized cube 

where the points with value 1 indicate possible fault locations. 

Thinning and Connected Component Analysis 

Thinning algorithms (e.g., Bag and Harit, 2011) applied to the binarized time slices 

can approximate the medial lines of the connected candidate points. The results are one-

pixel thick lineaments that can also be used to separate different fault surfaces (Cohen et 

al., 2006). However thinning may generate undesired bifurcation branches (indicated by 

blue arrows in Figure 5.6b) due to its sensitivity to noise and complex boundaries. 

Crossing fault surfaces also appear as bifurcated branches (indicated by the red arrows in 

Figure 5.6b) on the thinned slices. To determine whether a thinned stick has bifurcated 

branches, we examine the number of connected neighbor pixels (NCNP) for each pixel 

of current stick.  A pixel is considered as the bifurcated point if its NCNP is greater than 
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three and the stick has branches. We use the following criteria to preserve or trim the 

branches. If the length of the branches is much larger (e.g. three times for the examples 

shown in this paper) than the local width of the hypothesized binarized result at bifurcated 

point (e.g. the limb indicated by red arrow in Figure 5.6c), we assume the branches belong 

to some other fault surface. Otherwise we simply trim the limbs and archive the maximum 

length of the current element (e.g. the limbs indicated by the blue arrows in Figure 5.6b). 

The length of the branches is determined by the number of pixel from bifurcated point till 

the end pixel of current limb (e.g. the length of branches indicated by the red arrow is 19 

in Figure 5.6b). To determine the local width for binarized slice at the bifurcated point, 

we first draw a circle with a diameter of 1 pixel centered at the bifurcated point, and then 

increase the diameter until a pixel on circle has value of 0 (Figure 5.6a).  At last the local 

width is set as the diameter of the circle (e.g. the width labeled by red arrow is 5 in Figure 

5.6a).  

Faults, stratigraphic edges, and acquisition footprint all give rise to elongated 

features on the trimmed time slice. To preserve the fault sticks only, we first use 

connected component analysis (e.g., Dillencourt et al., 1992) to label all the connected 

elements. Then we only keep those components whose lengths are greater than or equal 

to a user-defined value (Lmin in Figure 5.7). For example the components indicated by 

yellow arrows in Figure 5.6b are deleted due to their limited length. This threshold also 

serves as the smallest length of the fault sticks we detect on each time slice. Figure 5.6c 

is the last output fault stick used for the following fault-generating surface.  

Thinning, trimming, and component analysis are applied on the entire binarized 

cube time slice by time slice, resulting in  a suite of linear fault elements on each slice 
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ready for the final fault system construction. Channels often exhibit long linear elements 

on time slices and survive the initial fault sticks winnowing process. However, channels 

are stratigraphically limited and will in general only exhibit a few sticks vertically, which 

provides a means of rejecting them through the use of a vertical continuity threshold. 

Interactive Fault Surface Generation 

The fault surface projected on the time slice is a suite of curves called fault sticks. 

Fault sticks on adjacent time slices having similar size and shape are assumed to define 

the same geologic feature. Based on this assumption, we group the sticks by comparing 

their size and shape (e.g., Bribiesca and Aguilar, 2006). Starting with a given (source) 

stick, we search vertically ±4 samples over target sticks that share similar features with 

the source stick. Once a target stick is joined to the current fault surface, it is deleted from 

the sticks set and serves as the source stick to determine whether the next target stick is 

suitable for the current fault system. Once the stick grouping is done, we triangulate (e.g., 

Hartmann, 1998) the stick groups whose size is greater than or equal to a user defined 

value (Gmin in Figure 5.7) to generate a smooth fault surface. The suitable group size can 

reject not only the single noisy sticks but also the channel-like long sticks. Interactive 

editing (e.g. merging) to ensure the fidelity of the extracted results is the final process in 

our workflow.  

Figure 5.7 shows workflow which summarizes fault surface extraction strategy in 

this paper. The input is seismic amplitude cube and outputs are labeled fault surfaces. We 

need three parameters to control the extraction procedure. The first parameter, Cthd, 

influences the generating of binary cube. The bigger value of Cthd, the fewer pixels 

survive in the following processing. The second parameter, Lmin, constrains the minimum 
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length of fault sticks on horizontal slice while the third parameter, Gmin, controls fault 

surface size on vertical section. 

APPLICATION 

To demonstrate the capability and efficiency of our algorithm, we apply it to a 

subvolume of a seismic survey acquired in the Dutch portion of the North Sea Basin. 

Detailed mapping of the faults is critical to this survey because some of the faults may 

act as pathways for gas or fluids (Schroot and Schüttenhelm, 2003). The tested volume 

contains 250 by 200 traces and ranges from 300 ms to 700 ms with a sample interval of 

4 ms. 

Figure 5.8a shows the seismic cube with a major fault cutting data along one of the 

vertical faces.  We choose coherence (Figure 5.8b) as the fault sensitive attribute. Note 

that the meandering channel indicated by the green arrow is shown in Figure 5.8b. We 

generate a capability cube C (Figure 5.9a) from coherence (Figure 5.8b) using the 

proposed conditioning strategy and scale it to range between 0 and 1. The binary cube is 

shown in Figure 5.9b with values 1, for C>0.95 and 0 for C<0.95. Fault sticks generated 

from thinning and trimming are shown in the Figure 5.10. The previously described 

trimming successfully removes unwanted branches introduced by the thinning algorithm. 

Note that we still have unwanted sticks in Figure 5.10 such as noise sticks indicated by 

the red arrow and the channels sticks indicated by the green arrow.  We choose a threshold 

value of 10 slices (40 ms) for the size of stick group to reject stratigraphic features.  Figure 

5.11a shows the final automated extracted fault surfaces labeled by different colors. Note 

that by setting a threshold value of 10 (40 ms) for the size of stick group, the algorithm 

also deletes sticks belonging to two small faults indicated by the yellow arrows in Figure 
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5.10.  Figure 5.11b is the manually interpreted fault surfaces based on coherence attribute 

shown in Figure 5.8b. We can see that there is good agreement between the automated 

and manually interpreted results. To better quality control the results, we respectively 

show vertical sections (indicated by green arrows in the Figure 5.11a and 5.11b) with 

automated extracted and manually interpreted faults in Figures 5.11c and 5.11d. The 

yellow arrows in the Figures 5.11c and 5.11d state our algorithm locate the fault surface 

better than that of manually interpreted results. Reducing time cost of human is the bright 

spot of our method. The whole procedure only requires about 5 minutes human 

intervention to generate all the fault surfaces.  However, attribute-based manually 

interpretation needs about 20 minutes. 

DISCUSSION 

The size of our subvolume is about 20 Megabytes and whole computational cost is 

around 15 minutes on a single processor. And the most time consuming step is the 

generating of confidence cube and it account for about 80% in our example. Through the 

parallelization of our algorithm, we can heavily speed up the whole extraction procedure. 

Parameter, Cthd, controls whether we can successfully generate desired faults surfaces. 

Since the cost of binary generating is negligible, our suggestion is that produces several 

binary cubes by setting different values of  Cthd and uses the one that has connected pixels 

(pixels with value 1) at the possible fault locations.  
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CONCLUSIONS 

Understanding the fault system is a critical objective for any structural 

interpretation. The proposed algorithm and workflow facilitates this procedure by 

automatically generating fault surfaces from a discontinuity volume. There is no need for 

the tedious window size testing for attributes conditioning and the whole procedure only 

needs three threshold values which simplify the fault conditioning process. The first 

threshold value is used for generating the binary cube. And the second and third threshold 

values are respectively the lateral length of the fault stick and vertical size of the fault. 

The lateral length of the sticks controls the fault size apparent on time sections while the 

vertical size of the stick group determines the size of the fault on the vertical sections. 

Increasing the size of the stick group required to define a valid fault surface can reject 

noisy sticks but may reject small faults. Note that the accuracy of our results is highly 

dependent on the quality of the seismic data. If the seismic data are so noisy that the 

coherence or other geometric attributes do not approximate faults, or if acquisition 

footprint is very strong, we do not recommend using an automated interpretation method. 
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Figure 5.1. Patterns comparison between (a) seismic discontinuity attribute on time slice 

and (b) binarized vein plane (Modified from Miura et al., 2007). Those two objectives 

from different field show similar features in the plane. 
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Figure 5.2. Diagrams showing the procedure of seismic attribute conditioning. The 

attributes value comes from the red line shown in Figure 5.1a. (a) Coherence serves as 

the input for the fault sensitive attribute. (b) The curvature computed from coherence 

attribute. (c) The score values used to output binary fault sticks. 

 

 

Figure 5.3. Capability time slice computed from the attribute slice shown in Figure 5.1a 

using the strategy of equation 3. 
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Figure 5.4. Confidence time slices encountering a fault at (a) 0o, (b) 90o, (c) 45o and (d) 

135o using equations 4a to 4d applying on the capability time slice shown in Figure 5.3. 
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Figure 5.5. The final confidence estimated from Figures 5.4 using equation 5. We scale 

it to range between 0 and 1. 
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Figure 5.6. (a) Binarized slice after (b) thinning, and (c) trimming processes. The 

binarization processing is applied on the time slice shown in Figure 5.5. The threshold 

value used in generating Figure 5.6a is 0.95. 
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Figure 5.7. Flowchart showing the semi-automated fault interpretation based on seismic 

attributes. The whole procedure only requires three parameters which simplify the 

extraction processing.   
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Figure 5.8. (a) Seismic amplitude and (b) coherence cube used for the algorithm testing.  
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Figure 5.9. (a) Capability and (b) binarized cube computed from coherence attribute 

shown in Figure 5.8b. 
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Figure 5.10. 3D view of trimmed fault sticks and original seismic data. 
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Figure 5.11. Visualization of the fault surfaces and original seismic data. Different color 

means different fault systems. (a) Extracted fault surfaces using the workflow shown in 

Figure 5.7. (b) Attribute-based manually interpreted fault surfaces. (c) Vertical section 

view of extracted fault surfaces. (d) Vertical section view of manually interpreted fault 

surfaces. 
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