
1

1 SENSITIVITY ANALYSIS OF SEISMIC ATTRIBUTES PARAMETRIZATION TO REDUCE 

2 MISINTERPRETATIONS: APPLICATIONS TO DEEPWATER CHANNEL COMPLEXES

3

4

5

6 Authors —Karelia La Marca*¹, Heather Bedle¹, Lisa Stright², and Kurt Marfurt¹

7 1 School of Geosciences, The University of Oklahoma, 100 East Boyd St. Suite 710 

8 Norman, OK 73019.   2 Department of Geosciences, Colorado State University, 322 Natural 

9 Resources Building, Fort Collins, CO 80523-1482.

10  Email: karelialm@ou.edu, hbedle@ou.edu, lisa.stright@colostate.edu, kmarfurt@ou.edu

11

12

13 Original paper date of submission: February 2023

14 Revised paper date of submission:    

15

16

17

18

19

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4369298

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



2

21 ABSTRACT

22 Geoscientists apply algorithms such as seismic attributes to better interpret depositional systems 

23 that enhance various aspects of the seismic data. However, they are limited by the original seismic 

24 amplitude or frequency content, data quality, and algorithm parameters considered. 

25 Additionally, our capacity to interpret depositional system architecture is limited by seismic 

26 resolution, which results in potential misinterpretations associated with the correct position of 

27 stratigraphic features. This is particularly important as mapping reservoir architecture (geobody 

28 size, shape, and stacking patterns) in the subsurface is critical for exploring and producing 

29 hydrocarbons, CO2 storage, and geothermal resource development since it can define connectivity 

30 or compartmentalization of flow zones.

31 To address these concerns, we investigated five synthetic seismic volumes from low to high-

32 frequency bandwidths of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz based on an architectural model 

33 of an outcropping deepwater channelized slope system in the Magallanes Basin, Chile. We 

34 analyzed 1) how seismic bandwidth affects the resolution of stacked stratigraphic features (i.e., 

35 deepwater channel elements and Mass Transport Deposits (MTDs)) and their subsequent seismic 

36 interpretation, and 2) the effect of different seismic attributes commonly employed in channel 

37 interpretation on our data to understand the “mixing” or “vertical smearing” of stratigraphic 

38 features by comparing the seismic with the true geological model 3) we explored how the 

39 attributes’ parametrization affects the imaging of differently sized features by modifying the 

40 analysis window in each case from +/-2ms to +/- 50 ms. Finally, 4) we evaluated the effect of 

41 different noise levels in the sensitivity analysis.

42 Results show that the “mixing” of events occurs mainly as a result of 1) the seismic bandwidth, 2) 

43 the algorithm used for each seismic attribute calculation, 3) the attribute vertical analysis window, 
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3

44 and 4) the signal-to-noise ratio of the data. Broadband, higher frequency data, and small analysis 

45 windows provide clearer images of the stacked channels. In contrast, low-frequency data and larger 

46 analysis windows result in more mixing or “composite” appearances, affecting interpretations and 

47 net-to-gross estimates, especially in small-size stratigraphic features such as individual channel 

48 elements and Mass Transport Deposits (MTDs). Our observations warn of potential 

49 misinterpretations in applying default attributes to actual seismic data, especially in geometrical 

50 attributes and window-dependent ones. Recognizing these misinterpretations is paramount for 

51 reconstructing deepwater architecture (this study), sedimentary and structural studies for drilling 

52 locations, reserves estimation, and overall uncertainty assessment.

53 Keywords: deepwater; seismic facies; architectural elements; seismic geomorphology; 

54 interpretation; seismic attributes; channel complex, analysis window.

55

56
57 1. Motivation and objectives

58 Seismic exploration of deepwater channels is challenging due to the physical properties 

59 inherent to the seismic, the variability in fill and stacking of reservoir geobodies, and the 

60 uncertainty that can occur due to the lack of hard data (core or well data). Reservoir architecture 

61 controls the distribution of fluids in the subsurface and the connectivity (or 

62 compartmentalization) of the reservoir that impacts recovery or injectivity. Therefore, 

63 geoscientists seek to understand how sensitive the interpretation of reservoir architecture is to 

64 different quality and types of seismic data, as well as different attributes and parameters 

65 commonly used to identify the architecture better and to make appropriate well plan decisions, 

66 volumetric and recovery/storage estimates.

67 The primary questions we aimed to address with the study are:
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4

68  How does the seismic data's frequency content affect the imaging of deepwater 

69 architecture?

70  What is the effect of each seismic attribute on the architecture interpretation and its true 

71 position, both vertically and horizontally?

72  What is the effect of the seismic attribute analysis window size on the vertical smearing of 

73 architecture?

74  What is the effect of seismic noise on our sensitivity analysis?

75 The study's importance is identifying common pitfalls in seismic interpretation using 

76 synthetic seismic data created from an outcrop-derived architectural model of a seismic-scale 

77 deepwater channel system. Studies with synthetic data like this allow geoscientists to understand 

78 uncertainty in interpreting channel architecture from seismic data. 

79

80 2. Introduction

81 When it comes to reservoir characterization using seismic reflection data, even if we 

82 employ all the tools available to interpret, locate, and measure the reservoir that will contain (oil, 

83 gas, and water) or allow for the storage (geothermal, CO2) of economic resources, uncertainty 

84 prevails. This interpretational ambiguity occurs due to changes in various physical parameters in 

85 response to the media and the seismic records’ inherent acquisition and processing characteristics.

86 The imaging and interpretation of different-sized stratigraphic features in the subsurface 

87 using seismic reflection data are often compromised due to limits in seismic resolution, which in 

88 addition to tuning effects, can influence volumetric interpretations and gross rock volume 

89 calculations (Pemberton et al., 2018). Therefore, geoscientists need to understand the common 

90 pitfalls associated with seismic interpretation: the impact of the frequency content on the imaging 
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91 of reservoir architecture, the choice of parameters and attributes’ influence on the interpretation of 

92 architectural elements, and the detrimental impact noise can have on the overall picture. To address 

93 this, we performed a sensitivity analysis that evaluated four parameters: frequency content, the 

94 effect of the seismic attribute, the impact of the window of analysis, and noise level combined with 

95 five 3D synthetic datasets.

96  The synthetic data that was derived from an outcrop analog in Magallanes Basin, Chile 

97 (Ruetten, 2021), and employed realistic acoustic impedances. The models that used a series of 

98 zero-phase Ormsby wavelets and 1D convolution (Langenkamp et al., 2021) allowed us to better 

99 understand how seismic bandwidth and seismic attribute parametrizations affect the resolution of 

100 stacked stratigraphic features in a seismic-scale channel system, providing insights that could be 

101 beneficial to the industry for drilling decisions, whether it is for hydrocarbon, geothermal, or 

102 CO2 storage purposes.

103 In order to extract the most value and information from the seismic data, seismic 

104 interpreters often derive seismic attributes from the data to reveal additional stratigraphic or 

105 structural features. These attributes provide a means to enhance vertical and lateral changes in 

106 reflectivity, thickness, continuity, and orientation of seismic features. From the exhaustive list of 

107 seismic attributes existent, we focus on amplitude-derived, instantaneous, and geometric 

108 attributes for offering promising results in channel architecture definition (La Marca, 2020). All 

109 coherence algorithms (that belong to the geometric attributes’ class) use a vertical and lateral 

110 analysis window, whether they are based on cross-correlation, semblance/variance, 

111 eigenstructure analysis, or the gradient structure tensor. For good quality data, Marfurt et al. 

112 (1998) found it best to analyze stratigraphic features using a temporal analysis window as narrow 

113 as possible, determined by the highest frequency in the data or the 3rd frequency corner in the 
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114 Ormsby wavelets. For poor-quality data, a larger window approximating the dominant period of 

115 the data provides improved results with minimal stratigraphic mixing. 

116 Pemberton et al. (2018) and Langenkamp (2021) provided insights into the effect of 

117 amplitude and frequency on architectural element imaging and interpretation and facies 

118 classification. Nonetheless, the impact of seismic attributes, the parameters, and the noise content 

119 were not evaluated. Hence, this is one-of-a-kind study that focuses on assessing the complexities 

120 of attribute parameterization using synthetic data based on a known geologic model.

121  With the true model known, attribute parameterization and its effects on stratigraphic 

122 interpretation can be quantified, particularly highlighting the parameters that impact the apparent 

123 stratigraphic mixing or smearing of events such as the windows of analysis. 

124 We first describe the aspects related to the architectural (outcrop) model and the 

125 characteristics of the synthetic datasets used. Then, our workflow is explained, providing details 

126 on the four parameters evaluated. Results are presented and focused on the cases derived from 

127 parameter combinations/sensitivity analysis. In the end, we provide a table and workflow that 

128 allows geoscientists to identify potential pitfalls in interpretation and address them according to 

129 their individual datasets, as best practices in interpretation should be documented and available to 

130 the geoscientific community to help reduce uncertainty in reservoir characterization.

131

132 3. Geological model description

133 The geological model that is the basis of this study is derived from a sandstone-rich 

134 deepwater channel system along a progradational slope system (Hubbard et al., 2010). These 

135 deepwater slope deposits from the Late Cretaceous (70-80 Mya) Tres Pasos Formation are 

136 exposed on approximately 3 km long, 200m thick outcrops near Laguna Figueroa in the 
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137 Magallanes Basin, Southern Chile (Macauley and Hubbard, 2013; and Hubbard et al., 2014). The 

138 high quality of the stacked channel systems has been used to construct a seismic-scale 3D 

139 architectural model of the deepwater channel system (Pemberton et al., 2018; Jackson et al., 

140 2019; Langenkamp et al., 2020; Ruetten, 2021). According to Fildani et al. (2013) the outcrop is 

141 analogous to many slope channel systems globally in stratigraphy and depositional setting, which 

142 makes it an excellent benchmark for any study that aims to address problems associated with 

143 channel interpretation.

144 The models are the result of several studies from Macauley and Hubbard (2013), Fletcher 

145 (2013), and Southern et al. (2017) combining measured sections, hierarchical stratigraphic 

146 interpretations, paleoflow measurements and thousands of GPS data points that calibrated a drone-

147 derived photomosaic. For these models, the fundamental architectural component are channel 

148 elements, defined as distinct, mappable channelized sedimentary bodies (Figure 1). Multiple 

149 stacked, related channel elements form a channel complex, and two or more complexes form a 

150 channel complex set (McHargue et al., 2011; Macauley and Hubbard, 2013, Meirovitz et al., 2020; 

151 Figure 1). The outcrops at Laguna Figueroa contain two complex sets, simply referred to as the 

152 Upper and Lower Figueroa. The upper complex set consists of eight channel elements and are 

153 grouped into four distinct channel complexes. The lower complex set contains twelve channel 

154 elements grouped into three channel complexes.  Elements are modeled with a standardized width 

155 of 400 m and thickness of 25 m.  Three additional architectural components are present in the 

156 outcrop: mudstone drapes at the base of channel elements, mass transport deposits (MTDs) at the 

157 base of channel complexes, and inner-levee thin-bed deposits encasing the channelized elements 

158 (Macauley and Hubbard, 2013; Hubbard et al., 2014). The geological models consist of five facies: 

159 1) channel element axis in yellow, 2) channel element off-axis in orange, 3) channel element 
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160 margin in brown, 4) homogeneous shale in gray, and 5) background shale (inner and outer levee 

161 facies) in white (Figure 2C). 

162 Jackson et al. (2019) developed the first fine-scale geocellular model combining channel 

163 planforms and vertical stacking for the lower outcrop section (lower channel system) but did not 

164 include hierarchical groupings in the architecture. Pemberton et al., (2018) generated forward 

165 seismic models using Jackson et al. (2018)’s model and analyzed seismic interpretation of 

166 architecture as a function of seismic resolution.  Nielson (2018) analyzed the tuning effects of 

167 single channel elements. Ruetten (2021) updated Jackson’s initial model with new interpretations 

168 and added an upper channel system separated from the lower system by a debris flow, and 

169 studied how stacking patterns impact reservoir connectivity and fluid flow. Finally, Langenkamp 

170 (2021) analyzed the influence of stacked channel element architecture on facies classification 

171 using Ruetten’s model. This work utilizes the geocellular model of Ruetten (2021) and synthetic 

172 seismic models from Langenkamp (2021).

173 The five synthetic seismic models used in this study were built using a series of zero-

174 phase Ormsby wavelets of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz and 1D convolution (Chile 

175 Slope Systems research consortium; Langenkamp et al., 202; Figure 2C) with a reflectivity 

176 model. More aspects of each model are found in Langenkamp (2021). Facies-based rock 

177 properties (Figure 2B), adopted from Stright et al. (2014), show that amplitude peaks represent 

178 an increase in acoustic impedance (Figure 2D). In contrast, troughs depict a decrease in acoustic 

179 impedance. The synthetic volumes have a vertical window of 500 ms. For analysis purposes, we 

180 cropped the volume from 120ms to 380ms to avoid dead/blank zones in the reflectivity and focus 

181 on the target channel systems.
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182

183

184 Figure 1. Stratigraphic hierarchy: from a single element to complex sets. A vertical slice within the Pipeline 
185 3D dataset offshore New Zealand shows the seismic appearance of different architectural hierarchies in 
186 deepwater channels, with corresponding cartoons below. The smallest architecture (4th to 5th order) is 
187 the channel element (box 1 in green). The second hierarchy (6th order) occurs when the channel elements 
188 stack together, forming a channel complex (box 2 in blue). The higher-order hierarchy (7th order and higher) 
189 occurs with the amalgamation of channel complexes, developing a channel complex set (box 3 in magenta). 
190 The color legend indicates the distinct facies that commonly occur within each element of each architecture. 
191 Measuring the sizes of each architectural element indicated on the right as well as their hierarchy, provides 
192 key insight into the underlying depositional processes as well as a prediction of the more common 
193 lithologies. Hierarchies mentioned follow Pickering and Cantalejo (2015) classification. 
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194

195 Figure 2: A visual guide showing the steps to convert outcrop measurements to a synthetic model. (A) Location and 
196 exposure of the outcropping deepwater channels at Laguna Figueroa. Paleoflow is from North to South (obliquely and 
197 to the right into the outcrop at this location) (B) Conceptual diagram of the Upper and Lower Figueroa outcrops 
198 showing channel elements, complexes, and complex sets. The red line indicates the outcrop profile. Left of the line is 
199 into the outcrop face, and the right has been eroded away. (C) geocellular model using the constraints from (B) 
200 augmented by facies and corresponding rock properties, including acoustic impedances from Shallow Offshore West 
201 African modeled rock properties (Stright et al., 2014). (D) The Ormsby wavelet and a representative vertical slice 
202 through the 3D synthetic seismic data volume generated from the model shown in (C). Courtesy of Teresa 
203 Langenkamp and Lisa Stright.
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204 4. Methods

205 To address the questions posed in the study and focus on analyzing the effect of 

206 bandwidth on vertical resolution, we introduce the term "stratigraphic event mixing." This 

207 vertical smearing phenomenon is explained in Figure 3, using a real example where the 

208 interference of channels from other stratigraphic levels is evident. As depicted in Figure 4, first, 

209 we performed an exploratory data analysis to define a vertical window of interest constrained to 

210 the objective of the study: 120 ms and 380 ms from our five volumes of synthetic seismic data. 

211 After cropping the 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz dominant frequency volumes, we 

212 performed a sensitivity analysis on four parameters: 1) frequency content, 2) seismic attribute 

213 effect, 3) the effect of the analysis window, and 4) the influence of band-limited random noise. 

214 Next, we calculated a series of seismic attributes from amplitude accentuating, geometric, 

215 and instantaneous attributes commonly employed in seismic interpretation of channel systems. 

216 Due to the number of cases to evaluate, we decided to explore and present the most 

217 representative seismic attributes for each case in detail (the most commonly used and that 

218 provided better results). Next, for each scenario, we defined a suite of 3-trace by 3-trace analysis 

219 windows with various vertical lengths from 2 ms to 50 ms. For visualization and interpretation 

220 purposes, we used co-rendering techniques. Finally, we explored the impact of the addition of 

221 low and high levels of noise.

222 The final analysis of the results was performed by combining the aforementioned parameters into 

223 the following cases: 1) the response on the same attribute and analysis window in the different 

224 bandwidth volumes, 2) the impact of changing the analysis window for different seismic 

225 attributes, 3) the effect of changing the window of analysis size for the same seismic attribute, 

226 and 4) the effect of noise. All cases were contrasted with the initial actual data/model.
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227 More details and considerations taken in each parameter evaluation are presented below.

228

229 Figure 3. Explanation of stratigraphic event mixing or vertical smearing of stratigraphic features. (A) 
230 Vertical resolution of channel elements related to different peak frequencies (modified after Nielson, 
231 2011). (B) Vertical slice through the 3D Pipeline 3D offshore New Zealand seismic survey showing a 
232 channel complex and a Horizon used for interpretation at different stratigraphic levels indicated by yellow 
233 arrows. The dominant frequency at this level is 40 Hz giving a dominant period of 25 ms. (C) Stratal 
234 slices at approximately 25 ms intervals through the coherence volume computed using a ±20 ms analysis 
235 window show “stratigraphic” mixing by the seismic wavelet. Note that the relatively straight channel 
236 form at 2050 ms can be seen at 2080 ms and other stratigraphic levels (1,2,3 from deeper to shallower) 
237 where other channel forms (green arrow) appear causing interference. The cause of this mixing could be 
238 1) mixing of reflectivity by the 25ms dominant period seismic wavelet, 2) mixing of discontinuities 
239 through the 40 ms coherence computation, 3) shifting of the basal channel element thalweg due to 
240 compensational style as you move up or 4) differential compaction over deeper discontinuities between 
241 the floodplain and the channel element fill.

242

243 4.1. Parameter 1: frequency content effect
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244 Tuning thickness is the temporal resolving power of seismic data. Some authors use 

245 resolution and tuning thickness terms interchangeably, although tuning starts right below the 

246 vertical resolution. Table 1 presents the tuning thickness for each element in the synthetic 

247 volumes studied here. Knowing the resolvability in seismic is paramount to understanding the 

248 effect of other parameters considered in the sensitivity analysis.

249 Resolution is the ability to resolve by seismic interpretation methods two features that are 

250 close together. By definition, the vertical resolution of seismic data is ¼ of the wavelength (λ), 

251 where the λ is determined by dividing the average velocity by the dominant frequency.

252

253 Figure 4. Workflow of the study. Four different parameters were evaluated in the sensitivity analysis: 1) 
254 the effect of frequency content, 2) the impact on the choice of the seismic attribute, 3) the analysis window 
255 effect, and 4) the sensitivity to band-limited random noise addition. The best cases were selected to be 
256 shown in each case, and analysis was performed by comparing them with the original 3D geological model 
257 derived from the Laguna Figueroa Deepwater outcrop. This resulted in 4 cases for analysis, ultimately 
258 leading to a workflow and documentation of best practices in channel architecture interpretation.
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259 The frequency content was the first parameter evaluated for the impact on the 

260 interpretation and resolvability of the different architectural elements. The five dominant 

261 frequency synthetic seismic volumes were analyzed, and we compared the results with those of 

262 Pemberton et al. (2018), and Langenkamp (2021).

Channel elements MTDs

Dominant Frequency (Hz) Tuning Thickness (m) Tuning Thickness (m)

15 48.9 53.2

30 24.4 26.6

60 12.2 13.3

90 8.1 8.9

180 4.1 4.4

263  Table 1. Tuning thicknesses for shallow and deep elements in each synthetic seismic volume. Modified 

264 from Langenkamp (2021).

265 4.2. Parameter 2: Choice of seismic attributes 

266 A seismic attribute is a computation made from algorithms applied to seismic data to get 

267 a more interpretable output. These responses relate to rock physical properties (La Marca, 2020) 

268 in rocks and fluids in the subsurface. However, there are tens if not hundreds of seismic 

269 attributes (Barnes, 2016), and time constraints do not allow for testing them all. Some of the 

270 latest studies (Posamentier and Kolla, 2003; Chopra and Marfurt, 2007; Hossain, 2020; and La 

271 Marca and Bedle, 2022) have proven the successful application of amplitude accentuating, 

272 geometrical and instantaneous attributes applied to PSTM data to interpret and characterize 

273 channel elements and complexes in both fluvial and deepwater settings. Generally, we need the 

274 combination of a geometrical attribute that allows defining edges and at least one attribute that 
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275 provides insights into stratigraphy (La Marca et al., 2019) to characterize channel features in 

276 seismic data. Therefore, we focused on testing attributes that belonged to those three attribute 

277 categories and chose the most prominent of each class.

278 Table 2 summarizes the most representative seismic attributes selected for each class: root mean 

279 square amplitude (RMS), Sobel filter coherency, and instantaneous frequency.

Attribute Appearance Attribute 
Category Measurement Use in architecture 

interpretation

Coherence Geometric 

Direct measure of waveform 
similarity or how similar 

waveforms or traces are in a 
volume- used to emphasize 
continuous events or edges.

Delineates edges of 
channel elements 

RMS amplitude Amplitude/Energy 
Measures the square root of the 
average energy within a vertical 

window. 

Provides measure of 
channel element vs 

inner levee
Provides statistical 

measures of channel 
element fill between 
two picked horizons 

Instantaneous 
frequency Spectral

A simple approximation of the 
mean frequency of the seismic 

wavelet. 

Channel element 
thickness

280

281 Table 2. Selected seismic attributes to perform the sensitivity analysis showing a representative image, 

282 feature measurement, and use in channel element interpretation.  

283 4.2.1. RMS amplitude

284 The RMS amplitude is an amplitude accentuating attribute often used for stratigraphic 

285 and lithologic variations enhancement. It is defined by the standard deviation, σ(t), of the data, 

286 d(t), within a running analysis window, subsequently measuring the reflectivity within that 

287 window (Meek, 2015). For a window that ranges from -T=-KΔt to +T=+KΔt about a sample j, 

288 the RMS amplitude is:
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289       . Eq (1)𝑑𝑅𝑀𝑆(𝑗∆𝑡) = σ(𝑗∆𝑡) = ( 1
2𝐾 + 1 ∑ + 𝐾

𝐾 = 𝐾{𝑑[(𝑗 + 𝑘)∆𝑡)]}2)1/2

290 In this study, we evaluated how well RMS showed stratigraphic variations. 

291 4.2.2. Coherence (Sobel Filter)

292 Seismic coherency is a measure of how similar traces are among their neighbors, which is 

293 a response to lateral changes in the seismic record caused by variations in structure, stratigraphy, 

294 lithology, porosity, and the presence of hydrocarbons (Marfurt et al., 1998), and it is determined 

295 computing amplitude derivatives along structural dip. Sobel filter (Luo et al., 1996) is one of the 

296 many coherence methods, which for seismic data normalizes coherence data to produce results 

297 between 0 and 1, where 0 is the lowest coherence, and 1 is the highest coherence. It has proven 

298 to be effective in delineating channel element edges (La Marca and Bedle, 2021; Hossain, 2020; 

299 and Herron, 2011); therefore, we aimed to test the definition of the channel elements' edges. 

300 4.2.3. Instantaneous frequency

301 The instantaneous frequency is computed sample by sample, is the time derivative of the 

302 instantaneous phase φ(t): 

303 F(t)=d[φ(t)]/dt.      Eq (2)

304 and provides a simple estimate of the mean frequency of an isolated seismic event. 

305 Subrahmanyam and Rao (2008) find that the instantaneous frequency attribute can 

306 indicate bed thickness and provide lithology insights. Chopra and Marfurt (2007) emphasize 

307 their usefulness in identifying abnormal attenuation and thin-bed tuning. Our model has thin 

308 features, such as channel elements (from axis, off-axis, to margins), that we aimed to test by 

309 using this instantaneous attribute.
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310 4.3. Parameter 3: Analysis window effect

311 According to Lin et al. (2014), the scale of the window height, H, is a function of the 

312 dominant or peak frequency fpeak:

313   H=1/(2fpeak)   .   Eq (3)

314 Applying this concept to our dataset spectrum, we would need to use a window of 2ms 

315 for the highest frequency volume (180Hz) and ~33 ms for the lower frequency volume (15Hz). 

316 Figure 5. A representative analysis window used in attribute calculations. Signals are sampled at discrete 
317 points, not continuous recordings. Therefore, each seismic trace will contain as many samples as the sample 
318 rate allows. For the example shown, if we consider the dominant period (distance between two peaks), our 
319 analysis window will contain 20 samples, equivalent to ~ 20 msec. Other examples of analysis windows 
320 are depicted, including the smallest possible equivalent to the sample increment, in this case, 1 msec. 

321

322 To understand the concept of analysis window, we have drawn a cartoon (Figure 5) that 

323 shows a seismic trace with its respective samples. It illustrates how a small, medium or large 

324 analysis window would look and what a dominant period is. Usually, the number of samples 

325 considered in a default analysis window parameter setting is around 11 samples (default window 

326 60ms) for a 6ms sample rate dataset; in our dataset, the sample rate is 1ms. In real data, 

327 shallower, higher frequency data often shows smaller periods than the deeper strata/intervals 
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328 where lobes of the traces are wider. Due to this change in frequency, some authors, like Lin et al. 

329 (2014), recommend using an adaptive window. However, this is not often possible or available in 

330 the software packages commonly used by geoscientists. Nonetheless, the geoscientist/interpreter 

331 can control the analysis window in the attribute settings. Therefore, we want to provide insights 

332 into the difference between a default analysis window and a shorter or larger one (which reduces 

333 or increases the number of samples, respectively). We compared the results from each different 

334 analysis window to the original, true data (the geological model), which provides a good 

335 sensitivity analysis for all kinds of datasets and any of the attribute families studied here. 

336 4.4. Parameter 4: Addition of band-limited random noise

337 When seismic data is recorded, we find two components: signal and noise. The latter 

338 comprises all the unwanted recorded energy that contaminates seismic data, and it can be random 

339 or coherent (Kumar and Ahmed, 2021). Random noise is generated by activities in the 

340 environment where seismic acquisition work is being carried out, and this noise appears in a 

341 seismic record as spikes (Enwenode, 2014). Seismic noise levels depend on the type of 

342 acquisition—land or marine—and the intrinsic conditions unique to every site, such as climate, 

343 the burial of sensor, and wind (Tanimoto et al., 2015). Although there are many types of noise, 

344 like Gaussian, Pink, Brownian, violet, and blue, in this study, our fourth parameter incorporated 

345 in the sensitivity analysis is the band-limited random noise. 

346 Signal-to-noise ratio (SNR) is a measure used to compare the degree of signal to the level 

347 of background noise, in which case a ratio larger than 1:1 suggests more signal than noise. So, 

348 the lower the SNR, the noisier our dataset. As Chen et al. (2019) mentioned, this will lower the 

349 quality of the seismic, affecting subsequent analyses such as imaging and inversion.
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350 We incorporated different noise levels, from a low noise added of 5% to a high 30%. 

351 Higher noise levels were not presented due to the incapacity to extract meaningful interpretations 

352 from the data. Nowadays, noise can be added to synthetic datasets thanks to available software 

353 like the one used in this study.

354 5. Results

355 To address the study questions and link the parameters taken into account in the 

356 sensitivity analysis, we present the results summarized in four cases: 

357 5.1. Case 1: The effect of the spectral bandwidth on the imaging of architectural elements

358 After evaluating the five synthetic models of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz 

359 dominant frequencies, we observed that the level of detail of the different sized architectural 

360 elements increases with frequency; therefore, broadband, higher frequency provides better 

361 resolution. 

362 Figure 6 shows the effect of each frequency in imaging each geological element. Figure 

363 6B corresponds to the lowest frequency, and we can distinguish channel complexes and mass 

364 transport deposits (MTDs). However, smaller features like the 25m thick channel elements and 

365 MTDs are mixed in thicker, unresolvable reflectors.

366 Figures 6C and 6D show frequencies commonly encountered in the subsurface (30Hz and 

367 60Hz for vintage and recent data, respectively). Here, the individual complexes are well-defined. 

368 Nonetheless, the amalgamation or stacking of elements presents a single response and minimal 

369 acoustic impedance contrast. 

370 Higher frequencies shown in Figures 6E and 6F present the best responses compared to 

371 the original model. Figure 6E can even differentiate some of the stacked packages; overall, the 
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372 individual and stacked channel elements can be better resolved. It is noteworthy how the highest 

373 frequency (180 Hz) illustrated in Figure 6F starts to lose the definition of the inner reflectors. 

374 Another observation is that, in all cases, the vertical channel axis (center) is resolved better than 

375 the channel's margins, both as a function of thickness (channel elements are thickest in the center 

376 at the axis) and acoustic impedance contrast (rock properties of channel element margin is more 

377 similar to inner levee than the channel element axis).

378 In general, channel complexes sets are visible at all frequencies analyzed, whereas 

379 individual complexes start to be resolvable from 30 Hz and higher. However, when elements 

380 have vertical stacking, channels do not show contrast in acoustic impedance due to repeated 

381 material/ similar composition and properties, therefore the attribute response is also affected by 

382 this phenomenon.

383 5.2. Case 2: Attribute sensitivity to thickness and extent of stratigraphic elements

384 After performing the seismic attribute sensitivity analysis, we noticed that the thickness 

385 and extent of stratigraphic events imaging are inherently linked to the frequency content of the 

386 seismic, analysis window, and seismic attribute used. At peak frequencies commonly 

387 encountered in the subsurface (around 30- 60Hz), the number of complexes was underestimated, 

388 and the size, shape, and type of architectural bodies (channels elements vs. margins, elements vs. 

389 complexes) were difficult to differentiate (Figure 7).

390 In most cases, channel complex sets were able to be interpreted. However, the 

391 amalgamation of smaller-scale channel elements results in an incorrect estimation of thicknesses. 

392 Nielson (2016) documented the same phenomenon.
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393

394 Figure 6. A representative vertical slice (224) and time slices at t=-191ms) through the (A) 3D model that 
395 shows (B) 15 Hz data, (C) 60 Hz data, (D) 90 Hz data, and (E) 180 Hz data. Notice the improvement in the 
396 channel architecture's detail with the increase in the dominant frequency and corresponding spectral 
397 bandwidth, being able to interpret complexes from figure B on.
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398 For example, in cases where similar facies were in contact, the acoustic impedance 

399 similarities did not allow for the differentiation of individual channel elements. Also, in tests 

400 performed with a large analysis window, the interpretation of smaller features was not possible 

401 (Figure 8B, 8D).

402

403 Figure 7. Results on the attribute sensitivity analysis to thickness and extent of architectural elements using 
404 a default analysis window. We present results on the 30 Hz dataset, analogous to vintage seismic data (to 
405 the left), and the 60Hz dataset, representing modern seismic data (to the right). Each attribute is presented 
406 for both frequencies in a representative inline (224) and time slices (-280 ms and –191ms) as follows: (A) 
407 RMS (Root Mean Square) amplitude for 30 Hz (B) coherence (Sobel filter) for 30Hz, (C) Instantaneous 
408 frequency for 30 Hz, (D) RMS amplitude for 60 Hz (E) coherence (Sobel filter) for 60Hz, (F) Instantaneous 
409 frequency for 60 Hz. 

410

411 5.3. Case 3: Effect of the analysis window size on the vertical smearing of stratigraphic 

412 architecture

413 To demonstrate the effect of the window size on the vertical smearing of the different 

414 architectural elements in the model, we show an RMS amplitude sensitivity analysis (Figure 8). 

415 We perceived that RMS amplitude offers a detailed picture of the various facies in the 180 Hz 

416 volume, including imaging of the MTD associated with the channel complexes and the 
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417 individual channel elements. However, for larger analysis windows and lower frequency 

418 volumes, for example, 50 ms window combined with a 15Hz dominant period seismic volume, 

419 such details are lost, resulting in an accentuated vertical stratigraphic smearing effect. Therefore, 

420 the application of amplitude-derived seismic attributes results more effective in higher frequency 

421 content datasets and using a small analysis window than in another configuration. It is 

422 noteworthy that a higher value of RMS is presented where an amalgamation of events occurs, 

423 which potentially leads to the interpretation of higher NTG (Figures 7 and 8).

424 Since the Sobel filter coherence seismic attribute aids in detecting discontinuities, such as 

425 geological structures and edges, especially in time slices, we included this attribute in our 

426 analysis to identify the channel complexes and the edges of the channel elements (Figure 9). 

427  We observe stratigraphic mixing occurring in the vertical slices when we utilize a larger 

428 analysis window. It is also noticeable that higher dominant frequency data in combination with a 

429 small analysis window allows for a correct placing of feature edges (Figure 9C), which is 

430 supported when compared to the true model. In contrast, the position of the channel element 

431 edges deviates from the original/ true location or becomes distorted when the analysis window 

432 size increases (Figure 9D) or the frequency of the data is small (Figure 9A) regardless of the 

433 analysis windows used.

434 5.4. Case 4: Effect of noise in the sensitivity analysis

435 Figure 10 shows the most prominent results of the sensitivity analysis on the noise effect. We 

436 compared, in this case, how instantaneous frequency, coherence, and RMS amplitude seismic 

437 attributes respond to variations in band-limited random noise from 5% to 30%.
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438

439 Figure 8. RMS amplitude sensitivity analysis to evaluate the effect of the window size W on the vertical 
440 smearing of the different channel elements in the model. (A) 15 Hz with W=2ms (B)50 Hz with W=50ms 
441 (C) 30Hz with W=2ms (D) 50 Hz with W=50ms (E) 180 Hz with W=2 ms (F) 180 Hz with W=50 ms. High-
442 frequency data with a small analysis window provides the most suitable representation of the true model. 
443 In RMS amplitude, the most accurate facies depiction is given by high frequencies and small window 
444 combination, imaging channel element base, and inner and outer levee facies.
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445

446 Figure 9. Sobel filter coherence attribute sensitivity analysis to evaluate the effect of the window size W 
447 on the vertical smearing and displacement of the different architectural elements in the model. (A) 15 Hz 
448 with W=2ms (B)30 Hz with W=2ms (C) 60Hz with W=2ms (D) 60 Hz with W=50ms. Notice how at a 
449 higher dominant frequency (60Hz) and smaller window of analysis, there is better detection of the channel 
450 element edges and channel element fill. In contrast, at lower frequencies and or larger windows of analysis, 
451 there is interference from deeper channel elements, as in the case presented on Figure 3.

452

453 The most evident finding is that with the increase in noise content, interpretation becomes 

454 more challenging since the amount of noise hinders channel element edge and facies detection. A 
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455 particular result found is a low coherence value predominance when evaluating the 30% noise 

456 case (Figure 10B).

457 5.5. Pitfalls in attribute interpretation and how to minimize them

458 The results mentioned above warn of potential pitfalls when interpreting seismic data. For 

459 example, not understanding the frequency content and quality of the seismic dataset could result 

460 in the inappropriate use of seismic attribute parameters and subsequent misinterpretations. To 

461 summarize all these results, we present a list of common pitfalls (Table 3) in attribute interpretation 

462 and how the interpreter can attempt to avoid them. 

Common 
misinterpretation

How to address it Comments

Not inspecting the 
frequency content and 
dominant frequency of the 
data

Inspect the seismic volume and understand 
dominant frequency and variations with 
depth

Higher frequency, broader bandwidth 
data provide higher vertical and lateral 
resolution

Not understanding the 
quality of the data and 
resolution

Calculate the seismic resolution Imaging of different scales of 
architecture improves with a higher 
signal-noise ratio

Using meaningless 
attributes

Have a clear geological goal and calculate 
attributes effective for similar targets in 
literature

Avoid attributes that make pretty 
pictures but are not directly related to 
the target objective. 

Using default parameters Select parameters adequate to your study. 
In windows-based attributes, smaller 
windows provide less vertical mixing 
whereas larger windows are less sensitive 
to noise. Because data quality and 
resolution change with depth, parameters 
appropriate for the shallow part may be 
suboptimum for the deeper part of your 
survey.

Defaults are provided for the most 
common cases encountered by the 
most common user (e.g., oil and gas 
exploration). If your data are unique in 
either acquisition or objective, test a 
wide variety of parameters and choose 
the ones that best delineate your target.

Interpreting data that has a 
low S/N ratio, or high noise

Inspect your seismic volume and 
categorize the noise type and level when 
possible. Then apply a noise reduction or 
removal algorithm

Noise can hinder the interpretation of 
seismic facies and calculating 
attributes won't help. If data are noisy, 
we recommend just using amplitude-
related attributes.

463 Table 3. Common pitfalls in seismic interpretation and how to avoid them. 
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464

465 Figure 10. Sensitivity analysis of the effect of random noise in channel architecture interpretation. Results 
466 shown refer to the 60 Hz dominant frequency seismic volume (which would be analog to real datasets). (A) 
467 5% band-limited random noise added evaluated in RMS, Coherence, and Instantaneous frequency 
468 attributes. Interpretation of prominent features like channel complexes is only possible. (B) 5% band-
469 limited random noise added applied to RMS, coherence, and instantaneous frequency attributes. Notice 
470 how the increase in noise is detrimental in the channel architecture interpretation, especially when using 
471 coherence. This may be due to the sensitivity that small windows have on high noise content. 
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472 6. Discussion 

473 6.1. The importance of mapping channel architectures

474 Channels systems, whether fluvial or deepwater in origin, exhibit petrophysical 

475 characteristics that make them excellent reservoirs for oil, gas, or other resources (Slatt et al., 

476 2009). However, channel system mapping in the subsurface becomes challenging, especially 

477 when only seismic data is available. 

478 In seismic reflection data, the amplitude, frequency, and noise content will condition the 

479 quality of the seismic image, affecting the interpretation of different architecture and facies 

480 embedded in the reflector configuration and overall seismic response. It is, therefore, paramount 

481 to understand how size-dependent architecture is displayed and imaged under different 

482 conditions and how the application of seismic attributes could help or hinder the interpretation of 

483 such architecture.  

484 In this study, we used a unique approach by employing 3D synthetic seismic datasets as a 

485 benchmark to perform a sensitivity analysis to understand how different-scales of architecture 

486 appear as a function of frequency content, noise level, type of seismic attribute, and 

487 parametrization, especially the analysis window selected to calculate attributes.  

488 The analysis of all the scenarios resulted in the following observations: broadband higher 

489 frequency data (e.g., 90 and 180 Hz) combined with a short analysis window (e.g., 2 ms, 20 ms) 

490 minimized the stratigraphic mixing (Figure 6). In contrast, lower frequency data that were 

491 analyzed using a large vertical analysis window (Figure 8) resulted in poor imaging of the 

492 channel architecture, vertically mixing stratigraphic architecture at different hierarchical levels. 

493 This affects the temporal evaluation of features that show an overlap of individual architecture 
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494 (i.e., channel elements) in the system in consecutive time slices, or in other words, a vertical 

495 offset from the known position (Figure 9) of sedimentary units (also shown by Pemberton et al., 

496 2018). 

497 This observation warns of potential interpretation pitfalls in applying such seismic 

498 attributes to actual seismic data. Stratigraphic mixing can hinder the correct temporal and spatial 

499 representation of individual channel elements and boundaries of channel complexes, leaving the 

500 internal architectures and potential fluid flow barriers imprecisely imaged (Coleman, 2000), 

501 hence, incorrectly mapping and estimating the volume of the reservoir units of interest, which 

502 could result in important economic loses.

503 6.2. The effect of frequency content in the imaging of architectural elements

504 Resolution has always been one of the main concerns for seismic interpreters since 

505 important features like small channels, or DHIs/ bright spots can be overlooked in seismic data. 

506 Also, hazards and baffles (Cardona, 2020; Meirovitz et al., 2020; Ruetten, 2021), like the MTDs, 

507 may not be imaged in the seismic picture analyzed. In this study, MTDs are only five meters 

508 thick and usually mantle the base of the channel complexes and complex sets.

509 To improve the seismic data’s resolution, as demonstrated in this study by the enhanced 

510 definition of each element in higher frequency datasets, frequency content should be increased. 

511 This suggests that ideally, modifying the initial design of the seismic data and obtaining higher 

512 frequency data will allow us to get the resolution required to image submarine channel 

513 complexity to the detail commonly observed in outcrop (Coleman et al., 2000). This type of data 

514 is, however, costly.
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515 Although the cost of high-quality data is currently high, with the advancement in 

516 technology, we presume that access to higher-quality data at reduced prices will become 

517 available soon. An example of this kind of data is the use of OBN (ocean bottom nodes) – high-

518 resolution 3D seismic acquired with the addition of P-Cable, an offshore seismic data acquisition 

519 system that provides highly detailed ultrahigh-resolution images of the seafloor and subsurface 

520 geology (McGregor et al., 2022) – and high-resolution (1-6 kHz) chirp data that offer a better 

521 image of the stratigraphy and structure of rocks in the shallow subsurface. 

522 It is likely that soon most of the seismic data acquired will be high resolution, without 

523 necessarily needing to be high frequency, and that we will find ways to improve our algorithms 

524 to treat the noise associated with acquisition and processing or overall improve the data quality 

525 from the early stages of seismic acquisition. But, until then, we need to understand the 

526 limitations of various kinds of seismic data and become aware of potential pitfalls in 

527 interpretation.

528 6.3. Selecting seismic attributes and parameters that are ideal for mapping channel 

529 architecture

530 In this study, we evaluated the effect of seismic attributes on the channel system 

531 architecture interpretation and their true position in the outcrop model. Our first insight is that 

532 there is no one-size-fits-all kind of seismic data. 

533 Therefore, we suggest that the first step when interpreting seismic reflection data should 

534 be to 1) define the geological goal, 2) become familiar with the acquisition and processing of 

535 information, 3) make an initial inspection of the data, 4) determine if there is some noise or 
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536 artifact that the interpreter needs to correct or be aware of. Finally, 5) select seismic attributes 

537 based on established purpose/geological goal. 

538 One of the most critical steps is defining a clear geological goal. The interpreter should 

539 reflect on what attribute would better suit their purpose. For example, we would use amplitude-

540 derived or instantaneous attributes in studying bright spots. For channel systems, instantaneous 

541 or frequency attributes can help highlight the differences between the channel elements 

542 (Fedorova, 2016), whereas geometrical attributes (such as Sobel filter coherence) aid in 

543 delineating the external shape of the architecture (La Marca, 2020).

544 Because there are tens to hundreds of attributes, testing many of them can be time-

545 consuming. Imagine that in this study, with just three attributes shown and the case 

546 combinations, we had a total of 90 volumes to evaluate. Therefore, it is recommended to work 

547 only with attributes whose principles the interpreter understands or, if using multiple attributes, 

548 rely on experimental designs like Box Behnken (Ferreira et al., 2007) that will help to synthesize 

549 a large amount of data. 

550 Attribute computation varies from software to software, and some attributes are 

551 computed trace by trace, whereas others are sample by sample. Understanding this initially 

552 would help in setting the correct parameters in each case. For attributes that are window based, 

553 like wavelet or average frequency, and the ones studied here, the variation of the analysis 

554 window affects the imaging of architectural elements. 

555 We used instantaneous frequency since it can indicate the edges of thin low-impedance 

556 thin features. Additionally, it is an excellent bed thickness indicator, where higher frequencies 

557 indicate sharp interfaces or thinly bedded strata and lower frequencies indicate thickly bedded 

558 sandstone-rich strata (Subrahmanyam and Rao, 2008). Interestingly, in the study, the true 
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559 thickness of isolated channel elements (approximately 25m of thick-bedded amalgamated 

560 sandstone at the channel element axis) was more interpretable from the dataset of 60 Hz 

561 dominant frequency and above and only partially distinguishable in the shallow portion of the 

562 30Hz dataset. This finding was also noted by Nielson (2018) and Langenkamp (2021), although 

563 neither study included seismic attribute analysis.

564 RMS amplitude measures reflectivity within a time window (Meek, 2015). It computes 

565 the square root of the sum of squared amplitudes divided by the number of samples within the 

566 windows used (Equation 1). Therefore, the number of samples and windows used affects the 

567 strength of reflectivity we get with the algorithm used. In contrast, some attributes like Sobel 

568 filter coherence do not necessarily improve channel architecture imaging by selecting a minimal 

569 analysis window. In this case, since the wavelength increases with increasing velocity, which 

570 increases with depth, we agree with Lin et al. (2014) that coherence attributes should use a 

571 shorter analysis window in the shallow section and a larger vertical analysis window in the 

572 deeper section. Some software has this already integrated as an adaptive window, which we 

573 consider to be one route to improve attribute results in the future.

574 6.4. Impact of noise on the interpretation of channel features

575 Different types of noise could be found in our seismic data: coherent noise, a series of 

576 unwanted signals that appear when the source is applied (Alderton and Elias, 2021), and 

577 incoherent noise, which would appear whether we shoot or not. For this sensitivity analysis, we 

578 only explored the effect of band-limited random noise, which belongs to the latter category, on 

579 imaging the different architecture in a deepwater channel system.

580 When using instantaneous attributes such as instantaneous frequency, it was noticed that 

581 at low noise levels (e.g., 5%), smaller features like MTDs were still visible. However, with the 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4369298

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



33

582 increase in noise, it was extremely difficult to interpret individual geologic features in the 

583 seismic volume. 

584 As Herron (2011) stated, the output's quality of interpretability relies on the input's noise 

585 content. In fact, a highly noisy dataset will likely contain very little reliable information. 

586 Moreover, we noticed that the effect of stratigraphic mixing is emphasized in the coherence 

587 attribute, where anomalous low or high values of the attribute were unexpectedly found and that 

588 the interpretation of small or large size features in the seismic was very hard to impossible to 

589 perform. These findings stress the importance of noise removal using adequate techniques 

590 related to the type of noise. This must be done in the early stages of seismic interpretation to 

591 avoid misinterpretations (Figure 11).

592 In terms of the analysis window selected in the presence of noise, using a very large data-

593 analysis window (in three dimensions) will include plentiful data and likely produce output with 

594 a marked structural overprint. On the contrary, a window that is too small will barely include 

595 data and produce an outcome that is more a manifestation of noise in the data rather than 

596 geological content (Herron, 2011). 

597 Our final thoughts are that although studies that use synthetic data and perform sensitivity 

598 analyses provide a tool to address misinterpretations encountered in the seismic interpretation of 

599 potential reservoirs, especially in the exploration stage, it is necessary to take into account that 

600 each seismic dataset and geologic setting are unique to the exploration area and that every aspect 

601 should be considered carefully before making impactful decisions.
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602

603 Figure 11. Generalized workflow for a geoscientist to avoid pitfalls in interpretation by getting optimized 
604 results according to their dataset. 

605

606

607

608
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609 7. Conclusions

610  The sensitivity analysis of 3D synthetic seismic volumes derived from a model of an 

611 outcropping deepwater slope-system and assigned reservoir properties was performed. The study 

612 comprised the combination of four parameters: 1) frequency content, 2) attribute selection, 3) 

613 windows of analysis and 4) noise content to identify their effects on the imaging of different 

614 scales of deepwater architecture.

615 The results are summarized in four cases that allow the depiction of common pitfalls in 

616 channel interpretation: 1) the effect of the spectral bandwidth on the imaging of the different 

617 scales of architectural elements, 2) the seismic attribute sensitivity to the thickness and extent of 

618 element and complexes, 3) the effect of the analysis window size on the vertical smearing of 

619 channel elements and MTDs, and 4) the effect of noise in the sensitivity analysis. 

620 In this study, we introduced the term "stratigraphic mixing" to define the combined 

621 picture resulting from the inability to resolve a single channel element. In this sense, broadband, 

622 higher bandwidth (e.g., 90 Hz) data combined with a short analysis window (e.g., 2ms) 

623 minimizes stratigraphic mixing. In contrast, lower bandwidth data, in addition to a large analysis 

624 window, results in poor imaging of the channel element and channel complexes that exhibit a 

625 "composite" appearance, vertically mixing geological features at different stratigraphic levels.

626  The importance of this analysis resides in that stratigraphic mixing affects the temporal 

627 evaluation of features that show an overlap of individual architecture at different scales in the 

628 system in consecutive time slices or a vertical offset from the known position of sedimentary 

629 units, which may result in important economic losses by misplacing an exploration well (e.g., 

630 actual target not in place) or overestimating reserves due to an incorrect NTG estimation and 

631 subsequent volumetric calculation (e.g., baffles like MTD are not imaged).
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632 In order to determine the sensitivity of the different architectural elements to seismic 

633 attributes, we explored three classes of algorithms: amplitude-based, geometrical, and 

634 instantaneous, and showed the results of the most prominent attributes: RMS amplitude, 

635 instantaneous frequency, and Sobel filter coherence. 

636 Attributes that are window-dependent, such as RMS amplitude, show an improved 

637 imaging of the actual thickness of the channel architecture when calculated using a short analysis 

638 window (e.g., 2ms) over a higher frequency dataset (from 30Hz and above). With larger analysis 

639 windows and or a small frequency dataset, there is significant vertical stratigraphic mixing. High 

640 RMS values and a composite effect were found in stacked channel element configurations 

641 indistinctly of the parameters used, which would likely result in an overestimation of NTG. 

642 Conversely, for edge detection attributes like coherence, a small analysis window does 

643 not provide a better depiction of channel element/complex/complex set edges. Instead, we 

644 observed displacement with respect to the actual position and composite pictures of them, 

645 especially in vertical sections, which makes their interpretation cumbersome. Therefore, we 

646 suggest using an adaptative window with depth or a default analysis window (half of the peak 

647 frequency is a good approximation).

648 When evaluating the last parameter, which corresponds to the effect of band-limited 

649 noise content, it was observed that the mapping of channel elements is hindered by adding noise 

650 to the data. When the noise level increases, as expected, the interpretation of features is hindered 

651 by the impact of the noise. We suggest applying algorithms that will allow us to eliminate or 

652 reduce the noise before calculating any seismic attribute. 
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653 Our observations warn of potential interpretation pitfalls in applying default attributes to 

654 real seismic data, especially when using geometrical attributes and others that are windows 

655 dependent. We offered a simplified workflow for geoscientists to understand and address these 

656 concerns depending on their available data.

657 The importance of using synthetic data to reduce uncertainty is proved. This data allows 

658 essaying multiple scenarios to provide tools that serve geoscientists that face different kinds of 

659 datasets around the world and help reduce uncertainty by applying best practices in seismic 

660 interpretation, especially in channel deposit settings.

661 Best practices in interpretation should be documented more often to better address 

662 uncertainty and optimize reservoir characterization. 

663 Data Availability

664 Dataset presented at this article can be found at 

665 https://data.nzpam.govt.nz/GOLD/system/mainframe.asp, an open-source online data repository 

666 hosted at New Zealand and Petroleum Minerals. Synthetic data and model need to be requested 

667 to authors.
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810
811 LIST OF FIGURES

812 Figure 1: Stratigraphic hierarchy: from a single element to complex sets. A vertical slice within 

813 the Pipeline 3D dataset offshore New Zealand shows the seismic appearance of different 

814 architectural hierarchies in deepwater channels, with corresponding cartoons below. The smallest 

815 architecture (4th to 5th order) is the channel element (box 1 in green). The second hierarchy (6th 

816 order) occurs when the channel elements stack together, forming a channel complex (box 2 in 

817 blue). The higher-order hierarchy (7th order and higher) occurs with the amalgamation of channel 

818 complexes, developing a channel complex set (box 3 in magenta). The color legend indicates the 

819 distinct facies that commonly occur within each element of each architecture. Measuring the sizes 

820 of each architectural element indicated on the right as well as their hierarchy, provides key insight 

821 into the underlying depositional processes as well as a prediction of the more common lithologies. 

822 Hierarchies mentioned follow Pickering and Cantalejo (2015) classification. 

823 Figure 2. A visual guide showing the steps to convert outcrop measurements to a synthetic model. 

824 (A) Location and exposure of the outcropping deepwater channels at Laguna Figueroa. Paleoflow 

825 is from North to South (obliquely and to the right into the outcrop at this location) (B) Conceptual 

826 diagram of the Upper and Lower Figueroa outcrops showing channel elements, complexes and 

827 complex sets. The red line indicates the outcrop profile. Left of the line is into the outcrop face, 

828 and the right has been eroded away. (C) geocellular model using the constraints from (B) 

829 augmented by facies and corresponding rock properties, including acoustic impedances from 

830 Shallow Offshore West African modeled rock properties (Stright et al., 2014). (D) The Ormsby 

831 wavelet and a representative vertical slice through the 3D synthetic seismic data volume generated 

832 from the model shown in (C). Courtesy of Teresa Langenkamp and Lisa Stright.

833 Figure 3. Explanation of stratigraphic event mixing or vertical smearing of stratigraphic features. 

834 (A) Vertical resolution of channel elements related to different peak frequencies (modified after 

835 Nielson, 2011). (B) Vertical slice through the 3D Pipeline 3D offshore New Zealand seismic 

836 survey showing a channel complex and a Horizon used for interpretation at different stratigraphic 

837 levels indicated by yellow arrows. The dominant frequency at this level is 40 Hz giving a dominant 

838 period of 25 ms. (C) Stratal slices at approximately 25 ms intervals through the coherence volume 

839 computed using a ±20 ms analysis window show “stratigraphic” mixing by the seismic wavelet. 

840 Note that the relatively straight channel form at 2050 ms can be seen at 2080 ms and other 
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841 stratigraphic levels (1,2,3 from deeper to shallower) where other channel forms (green arrow) 

842 appear causing interference. The cause of this mixing could be 1) mixing of reflectivity by the 

843 25ms dominant period seismic wavelet, 2) mixing of discontinuities through the 40 ms coherence 

844 computation, 3) shifting of the basal channel element thalweg due to compensational style as you 

845 move up or 4) differential compaction over deeper discontinuities between the floodplain and the 

846 channel element fill.

847 Figure 4. Workflow of the study. Four different parameters were evaluated in the sensitivity 

848 analysis: 1) the effect of frequency content, 2) the impact on the choice of the seismic attribute, 3) 

849 the analysis window effect, and 4) the sensitivity to band-limited random noise addition. The best 

850 cases were selected to be shown in each case, and analysis was performed by comparing them with 

851 the original 3D geological model derived from the Laguna Figueroa Deepwater outcrop. This 

852 resulted in 4 cases for analysis, ultimately leading to a workflow and documentation of best 

853 practices in channel architecture interpretation.

854 Figure 5. A representative analysis window used in attribute calculations. Signals are sampled at 

855 discrete points, not continuous recordings. Therefore, each seismic trace will contain as many 

856 samples as the sample rate allows. For the example shown, if we consider the dominant period 

857 (distance between two peaks), our analysis window will contain 20 samples, equivalent to ~ 20 

858 msec. Other examples of analysis windows are depicted, including the smallest possible equivalent 

859 to the sample increment, in this case, 1 msec. 

860 Figure 6. A representative vertical slice (224) and time slices at t=-191ms) through the (A) 3D 

861 model that shows (B) 15 Hz data, (C) 60 Hz data, (D) 90 Hz data, and (E) 180 Hz data. Notice the 

862 improvement in the channel architecture's detail with the increase in the dominant frequency and 

863 corresponding spectral bandwidth, being able to interpret complexes from figure B on.

864 Figure 7. Results on the attribute sensitivity analysis to thickness and extent of architectural 

865 elements using a default analysis window. We present results on the 30 Hz dataset, analogous to 

866 vintage seismic data (to the left), and the 60Hz dataset, representing modern seismic data (to the 

867 right). Each attribute is presented for both frequencies in a representative inline (224) and time 

868 slices (-280 ms and –191ms) as follows: (A) RMS (Root Mean Square) amplitude for 30 Hz (B) 

869 coherence (Sobel filter) for 30Hz, (C) Instantaneous frequency for 30 Hz, (D) RMS amplitude for 

870 60 Hz (E) coherence (Sobel filter) for 60Hz, (F) Instantaneous frequency for 60 Hz. 
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871 Figure 8. RMS amplitude sensitivity analysis to evaluate the effect of the window size W on the 

872 vertical smearing of the different channel elements in the model. (A) 15 Hz with W=2ms (B)50 Hz 

873 with W=50ms (C) 30Hz with W=2ms (D) 50 Hz with W=50ms (E) 180 Hz with W=2 ms (F) 180 

874 Hz with W=50 ms. High-frequency data with a small analysis window provides the most suitable 

875 representation of the true model. In RMS amplitude, the most accurate facies depiction is given by 

876 high frequencies and small window combination, imaging channel element base, and inner and 

877 outer levee facies.

878

879 Figure 9. Sobel filter coherence attribute sensitivity analysis to evaluate the effect of the window 

880 size W on the vertical smearing and displacement of the different architectural elements in the 

881 model. (A) 15 Hz with W=2ms (B)30 Hz with W=2ms (C) 60Hz with W=2ms (D) 60 Hz with 

882 W=50ms. Notice how at a higher dominant frequency (60Hz) and smaller window of analysis, 

883 there is better detection of the channel element edges and channel element fill. In contrast, at lower 

884 frequencies and or larger windows of analysis, there is interference from deeper channel elements, 

885 as in the case presented on Figure 3.

886 Figure 10. Sensitivity analysis of the effect of random noise in channel architecture interpretation. 

887 Results shown refer to the 60 Hz dominant frequency seismic volume (which would be analog to 

888 real datasets). (A) 5% band-limited random noise added evaluated in RMS, Coherence, and 

889 Instantaneous frequency attributes. Interpretation of prominent features like channel complexes is 

890 only possible. (B) 5% band-limited random noise added applied to RMS, coherence, and 

891 instantaneous frequency attributes. Notice how the increase in noise is detrimental in the channel 

892 architecture interpretation, especially when using coherence. This may be due to the sensitivity 

893 that small windows have on high noise content. 

894 Figure 11. Generalized workflow for a geoscientist to avoid pitfalls in interpretation by getting 

895 optimized results according to their dataset. 

896 LIST OF TABLES

897 Table 1. Tuning thicknesses for shallow and deep elements in each synthetic seismic volume. 

898 Modified from Langenkamp (2021).

899 Table 2. Selected seismic attributes to perform the sensitivity analysis showing a representative 

900 image, feature measurement, and use in channel element interpretation.  

901 Table 3. Common pitfalls in seismic interpretation and how to avoid them.
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902 APPENDIX

903 A- Specs for each synthetic volume

Dominant 

Frequency 

(Hz)

Length 

(ms)

Sample 

rate (ms)

Low-cut 

Frequency 

(Hz)

Low-Pass 

Frequency 

(Hz)

High-Pass 

Frequency 

(Hz)

High-cut 

Frequency 

(Hz)

15 200 1 1 3 23 35

30 200 1 2 6 45 70

60 100 1 4 12 90 140

90 100 1 6 18 135 210

180 26 1 10 30 225 350

904
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