Seismic Attributes - from Interactive Interpretation
to Machine Learning
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Presenter
Presentation Notes
We have a broad range of tools for integrating the information provided by seismic attributes. These can be subdivided based upon the mechanism for decision making (computer or interpreter). Interactive decision making can be divided into visual and numerical techniques while machine learning techniques can be divided into supervised and unsupervised techniques.
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The good, the bad, and the ugly of manifolds

Clint Eastwood-—
lips move in English

Mario Brega —
lips move in Italian

Janos Bartha —
lips move in Hungarian

Antonio Molino Rojo —
lips move in Spanish
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Presentation Notes
One of Marfurt’s favorite movies – a “spaghetti western” – a story about the American west filmed in Italy.  This film provides an excellent example of attribute combinations that do NOT fall near the latent space of human speech. The sound and lips are totally out of synch for almost all the actors, something that could not happen in the real world.


®ata vectors in n-D attribute space

Unlikely data

Ford Mustang manifold

A B’ 1D color bar

A Latent Space Data vectors (Marfurt, 2018)
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Presentation Notes
An example of a one-dimensional latent space manifold (in blue) embedded in two dimensions. A point distant from the blue line would be of very low probability and would be considered implausible. Note that although points A and B are relatively close in Euclidean distance in the attribute space, they are extremely distant when mapped into the latent space (in magenta) as points A' and B'. The proximity of data points to each other is represented by plotting them against a continuous color bar.   Image from an online auto parts catalog.


B\ Seismic Facies (Waveform) Map
Each trace is assigned the color of the class to which it has the best correlation.

(Frio gas play, south Texas)
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(Poupon et al., 2002)

Data courtesy of CGG-USA
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Presentation Notes
This example using one of the most popular software packages based on self-organizing maps. The interpreter chooses a window of data (say, 16 samples) tied to a picked horizon. In this case, each of the 16 stratal slices through the amplitude volume is a given attribute. The cluster means in 16 dimensional space can then be interpreted as a 16-sample waveform, giving rise to the term ‘waveform classification’.  After defining these means using the SOM algorithm, each trace is labeled (and colored) according with the label of the nearest cluster mean. By observing the distribution of color on this map, we can assess the distribution of seismic shapes throughout the interpreted area. Note that there are 12 clusters! (After Poupon et al., 2002).



D|]mpact of mapping colors to the latent space

K-means Map Self-Organizing Map
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Presenter
Presentation Notes
Comparison between a K-means clustering map (left) and an SOM (right) of a Frio Channel gas play (South Texas). Note the abrupt changes of color on the K-means clustering map compared to the ordered class colors on the SOM. The SW-E arbitrary line (yellow dotted line) highlights the interval of interest between the two color ribbons and the differences between the two seismic facies techniques. Note how the NWSE feeder channel is classified with the same class as the main channel on the SOM (purple and white dotted outline), while it is classified with a similar class as the overbank formation on the K-means clustering map (brown and light blue dotted outline—area A). Also note in area B interleaved patterns unique to SOM corresponding to a transition in seismic trace shape; this is never found in K-means results which can only have abrupt color changes. (After Coleou et al., 2003).


Sensitivity to number of classes Self-Organizing Map K-means Map

6 classes

8 (Coleou et al. 2003)
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Presentation Notes
Directly mapping the color table to the latent space greatly reduces the sensitivity to the number of classes used. Note the similarity between the 6- and 12-class clustering of SOM on the left. Both show the same basic lithology, with the image using 12 clusters showing improved lateral detail.  In contrast, the K-means clustering images are radically different, since there is no ordering of the clusters and hence no way to order the color table. The actual location of cluster centers between K-means and SOM is actually quite similar. (After Coleou et al., 2003).


D|]Jrojecting 3 attributes onto the 2D plane that best represents the data

(Marfurt, 2018)
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Presentation Notes
Cartoons showing a crossplot of attributes (a1, a2, a3) in multiattribute space. (a) The first two eigenvectors represent the plane that best fits the attribute distribution. Projecting each attribute vector onto this plane produces a principal-component map. (b) Self-organizing maps and generative topographic maps deform this plane into a surface (or manifold) that better fits the attribute distribution. In both the SOM and GTM algorithms we define a lattice of equally spaced prototype vectors on the original principal-component plane. The lateral spatial relationships (or topology) of this lattice is maintained at each iteration during the deformation process. Courtesy, Atish Roy, OU. Used by permission. 
 


rojecting 3 attributes onto a 2D manifold that best represents the data

(Marfurt, 2018)


Presenter
Presentation Notes
Self-organizing maps and generative topographic maps deform this plane into a surface (or manifold) that better fits the attribute distribution. In both the SOM and GTM algorithms we define a lattice of equally spaced prototype vectors on the original principal-component plane. The lateral spatial relationships (or topology) of this lattice is maintained at each iteration during the deformation process. Courtesy, Atish Roy, OU. Used by permission. 
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Workflow of self-organizing map (SOM) facies analysis

1. Select attributes

+

Attribute a, 2. Crossplot

Attribute a,

(Courtesy Tao Zhao, OU)
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Presentation Notes
The self-organizing map workflow for seismic facies classification. The first, and hardest step, is to select attributes that will best discriminate the facies of interest. Assuming three attributes, the second step is to  “crossplot” the three attribute volumes originally measured in 3D (x, y, z) into mulitattribute (a1, a2, a3) space. (Courtesy of Tao Zhao, OU).  



O
Workflow of self-organizing map (SOM) facies analysis

4+
3. Compute eigenvectors

Attribute g,

4. Define initial prototype vectors
in the latent space

Eigenvector v,

Attribute a,

Eigenvector v,

(Courtesy Tao Zhao, OU)
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Presentation Notes
The third step is to compute the eigenvectors that represent the  data in 3D attribute space. The first two  two eigenvectors, v(1) and v(2) define the plane that best represents the 3D data. The fourth step is to  define a lattice of equally spaced prototype vectors that span the range of data. One copy of this original plane in 2D is used as the latent, or “hidden” space. A second copy is used as the initial estimate of a manifold that resides in the multiattribute space. (Courtesy of Tao Zhao, OU).  
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Workflow of self-organizing map (SOM) facies analysis

+

5. Map prototype vectors in
Attribute a, /| multiattribute space thereby
defining a manifold

Eigenvector v,

Attribute a,

Eigenvector v,

(Courtesy Tao Zhao, OU)
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Presentation Notes
The prototype vectors in the latent space are mapped one-to-one to prototype vectors that define a 2D manifold in the original 3D attribute space. These two maps initialize the SOM algorithm. (Courtesy of Tao Zhao, OU).  
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Workflow of self-organizing map (SOM) facies analysis
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6. Project data vectors onto the

Attribute a, ‘ manifold and latent space.

7. Move prototype vectors to
better represent the data
vectors, thereby deforming the
manifold as well
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Attribute a,

Eigenvector v,

(Courtesy Tao Zhao, OU)
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Presentation Notes
(6) Data samples are chosen at random, one-by-one and are projected onto the latent space and the manifold. The algorithm defines a neighborhood region (orange circle) about the nearest prototype vector (called the “best matching unit”, or BMU) to the data point. The BMU and neighboring prototype vectors are drawn towards the data point to better represent it, thereby not only modifying their distribution in the latent space, but also warping the 2D manifold in the 3D attribute space. (Courtesy of Tao Zhao, OU).  
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Workflow of self-organizing map (SOM) facies analysis
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Presentation Notes
This process is continued until all of the training data vectors (a large subset of the original data) have been projected, further deforming the manifold. After all data points have been projected, the resulting manifold is then used to define the location of the initial prototype vectors. The process is repeated iteratively until convergence is achieved. These prototype vectors are then mapped against a 2D color bar. In general, the prototype vectors will be organized, forming clusters that represent the input data. Finally, one calculates the distance between the attribute vector at each voxel and all of the prototype vectors, determining which vector is closest. The color of that prototype vector is assigned to the voxel, resulting in   a seismic facies volume. (Courtesy of Tao Zhao, OU).  
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Horizon slice through seismic amplitude

(Zhao et al., 2015)
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Presentation Notes
A suite of horizon slices along Horizon A through various attributes. (a) The seismic amplitude volume. White arrows indicate potential channel/canyon features. The blue arrow indicates a high-amplitude feature. Red arrows indicate a relatively low-energy, gently dipping area. The black arrow indicates a sinuous channel complex. A-A′ denotes the cross section shown in the inset. (b) Peak spectral frequency corendered with peak spectral magnitude that emphasizes the relative thickness and reflectivity of the turbidite system and surrounding slope fan sediments into which it was incised. The edges of the channels are delineated by Sobel filter similarity. (c) Corendered shape index, curvedness, and Sobel filter similarity. The shape index highlights incisement, channel flanks, and levees and provides an excellent image for interactive interpreter-driven classification. However, the shape index dominates the unsupervised classifications, highlighting valley and ridge features and minimizing more planar features of interest in the survey. (d) Corendered GLCM homogeneity and coherent energy, and with Sobel filter similarity. After Figures 3 through 6 of Zhao et al. (2016). Used by permission.
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Mulitattribute visualization

B - Co-rendered shape index,
' curvedness, and Sobel
filter similarity

Horizon A

(Zhao et al., 2015)



Mulitattribute visualization
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rincipal Component Analysis

Eigenvector v,

Eigenvector v,
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2D colorbar
-

Eigenvector v,

Eigenvector v, (ZhaO et al, 2015)
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Presentation Notes
Horizon slice through the first two principal components plotted against a 2D colorbar. These two principal components serve as the initial model for the SOM and GTM images that follow. With each iteration, the SOM and GTM manifolds will deform to better fit the natural clusters in the input data. Arrows indicate the same features shown in Figure 30.  After Figure 15 of  Zhao et al. (2015). Used by permission.


D?’raditional SOM

256 clusters

2D histogram

SOM latent axis 2

03
2D colorbar

Horizon A &g SOM latent axis (Zhao et al., 2016)
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Presentation Notes
The SOM facies map delineates two main slope channels (white arrows) which are classified as cyan that converge downstream. Vertical slices show these both to be multistory channels. As the channels move downslope, the slope becomes gentler, so that sediments lose momentum, spread out, and form a lobate feature. Black arrows indicate several sinuous channel complexes. Most of the channel fill appears as cyan, which is similar to the two main channels and suggests that they are probably mud-filled. The coherent slope fans (indicated by red arrows) are characterized by brownish colors. The purplish color facies are less coherent and may indicate massive turbidite current or slump deposits. Blue arrows indicate a facies that we interpreted to be an older, high-energy, sand-filled channel developed earlier than the mud-filled channel cutting through it. This sand-filled channel spreads out and contributes to the lobe farther downslope, where it is covered by mud deposits transported by later stage channels.  After Figure 12 of Zhao et al. (2016).


%istance-preserving SOM

256 clusters

2D histogram

10025

SOM latent axis 1 (Zhao et al., 2016)
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Presentation Notes
The same attributes used to generate the SOM image in Figure 33, but now used to generate a distance-preserving SOM. The cartoon in Figure 28[ showed how the SOM algorithm maps each data vector to the nearest prototype vector on the deformed manifold. Because the manifold is usually curved, large distances between prototype vectors on the manifold might appear to be smaller distances when projected onto the latent space. To address this shortcoming, Zhao et al. (2016) modified the SOM algorithm to balance the distances between prototype vectors in the original attribute space with those when projected on the latent space. Note how the prototype vectors displayed as a 2D histogram in the latent space computed using (a) conventional SOM occupy less of the space than do those computed using (b) distance-preserving SOM.] This greater separation does not significantly affect the clustering, although it significantly improves the geologic detail in the horizon slices. Each histogram crossplot contains 256 prototype vectors, clumping into about 35 clusters. After Figure 11 of Zhao et al. (2016). Used by permission. 


SOM is best computed within a geologic formation

24 (Courtesy of Tao Zhao, OU)
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Presentation Notes
A representative time slice through the SOM facies volume, showing architectural elements of the turbidite formation in 3D. In order to minimize the number of different seismic facies and maximize the ability of SOM to differentiate subtle differences between seismic facies falling within a given geologic formation, we should restrict the computation to a finite region about the target area of interest. In the accompanying animation loop, the SOM image fades in and out as we cross the upper and lower horizons defining the analysis window. In contrast, the corendered Sobel filter similarity is computed for the entire volume. (To access the animation loop, select DISC_4.35.video). Courtesy of Tao Zhao, OU. Used by permission.


SOM is best computed within a geologic formation

(Courtesy of Tao Zhao, OU)


Presenter
Presentation Notes
A representative time slice through the SOM facies volume showing architectural elements of the turbidite formation in 3D. In order to minimize the number of different seismic facies, and maximum the ability to SOM to differentiate subtle difference between seismic facies falling within a given geologic formation, one should restrict the computation to a finite region about the target area of interest. In this animation loop, the SOM image fades in and out as one crosses the upper and lower horizons defining the analysis window. In contrast, the co-rendered Sobel filter similarity is computed for the entire volume. (To access the animation loop, select DISC_4.35.video). (Courtesy of Tao Zhao, OU).
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Calibration using seismic geomorphology
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26 (Zhao et al., 2016)
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Presentation Notes
In the absence of well control, calibration of the horizon slice shown in Figure 34 and time slices in Figure 37 relies on principles of geomorphology. White arrows indicate two straight to meandering mud-filled channels. Blue arrows indicate a possible sand-filled channel that is cut through by one of the mud-filled channels. Red arrows indicate possible slope fan deposits. Black arrows indicate sinuous channel complexes. Yellow arrow  indicates possible sand-filled lateral accretion packages. Sections (a) through (f) are vertical sections of corendered seismic amplitude and SOM facies, demonstrating the morphology of the channel complexes in vertical profiles. The displayed SOM facies volume is centered at horizon A. After Figure 11 of Zhao et al. (2016). Used by permission.  Thanx! Added in updated figure



Linking seismic geomorphology to attribute response
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Presentation Notes
(a) 3D chair display of the SOM facies map along horizon A with orthogonal vertical slices through seismic amplitude. The location of four prototype vectors are shown on the facies map as well as on the 2D histogram and colorbar. Also note the similarity in classification of what we interpret to be an older sand-filled channel (blue circle) and a discrete sand-filled channel that forms part of a multistoried channel complex (yellow circle). (b) Seismic attribute responses of the four prototype vectors. Input attributes are coherent energy, curvedness, peak spectral frequency, and peak spectral magnitude. All attribute values are normalized using a Z-scale. After Figure 13 of  Zhao et al. (2016). Used by permission.


EqHig.ghlighting facies using a crossplot tool
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28 (Courtesy Tao Zhao, OU)
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Presentation Notes
An example of interactive facies analysis by crossplotting the two SOM axes and defining the yellow polygon on the histogram, thereby resulting in a 3D geobody of channel facies. Image courtesy of Tao Zhao, OU. Used by permission.


%nsupervised Multiattribute Clustering — Self-Organizing Maps

In Summary

e Unlike k-means, Kohonen self-organizing maps have the advantage of presenting similar classes next to
each other

e Choosing a large number of classes and color-coding using a continuous 1D, 2D, or 3D color bar
circumvents the need to estimate the number of classes

e Classifying data to reveal seismic trends has more to do with the input attributes used than with the
particular classifier used

e Supervision can be introduced into SOM classifications by fixing attribute clusters corresponding to well
control or desired anomalies

29 (Updated after Barnes and Laughlin, 2002)
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Presentation Notes
Several of the  points made in this summary are from Barnes and Laughlin (2002)


	Slide Number 1
	Slide Number 2
	The good, the bad, and the ugly of manifolds
	Data vectors in n-D attribute space
	Slide Number 5
	Slide Number 6
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 23
	 
	 
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

