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In this section, we will provide the motivation, theory, and application of generative topographic mapping.



Multiattribute Analysis Tools

• K-means

• Gaussian Mixture Models

• Kohonen Self-Organizing Maps

• Generative Topographical Maps

Unsupervised Learning

Machine Learning Multiattribute Analysis
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We have a broad range of tools for integrating the information provided by seismic attributes. These can be subdivided based upon the mechanism for decision making (computer or interpreter). Interactive decision making can be divided into visual and numerical techniques while machine learning techniques can be divided into supervised and unsupervised techniques.



2D latent spaceA 2D manifold in N-dimensional attribute space

Generative Topographic Mapping (GTM)
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 (a) Like SOM, GTM represents the distribution of higher N-dimensional (in this cartoon, N = 3) attribute vectors by a 2D deformed manifold, discretized by a lattice of nodes, mk that represent the centers of N-dimensional Gaussian distributions with constant variance 1/β. Although the centers mk move at each iteration to better represent the data vectors aj, unlike SOM, the relative spacing between nodes does not change. (b) While the centers mk in N-dimensional attribute space map to unique grid points uk in the latent space, the corresponding N-dimensional Gaussian distributions need to be remapped to a suite of 2D Gaussian distributions represented by centers rq. After Figure 1 of Roy et al. (2014 ). Used by permission.  Again. Used in presentation but not in published paper. Published in the 2014 paper.



Iteration 2: Shrink Gaussians but deform 
manifold and move centers to fit data

Data in 2D space
Iteration 1: Define Gaussian centers to fall 

along the first eigenvector

Iteration 3: Continue the process, deforming 
manifold 

Iteration T: Expectation can no longer be 
maximized by further deformation

v1

(Marfurt, 2018)6c-4
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Cartoon of data in 2D illustrating the principles used in generative topographic mapping (GTM). (a) Red dots indicate 2D data vectors. The process is initialized by (b) computing the eigenvectors of the n-dimensional space. This 2D example uses a 1D manifold. Most of the attribute applications shown in this book will use a 2D manifold, which in turn is mapped to a 2D latent space against a 2D color bar. The variance of the Gaussians is initialized to be equal to the first eigenvalue. The centers of the Gaussians are distributed equally along the initial manifold, defined to be the first eigenvector, v1, spanning two standard deviations from the center. (c) At the second iteration, the Gaussians are shrunk equally and their centers have moved to maximize the expectation of the data. (d) The process continues until (e) no further manifold deformation can decrease the size of the Gaussians and increase the expectation. Each red data vector has a probability that it is represented by a given green Gaussian distribution. Gaussians whose centers are closer to a given red data vector exhibit a greater responsibility for its prediction. In contrast, the responsibility of Gaussians whose center is far away becomes vanishingly small.



A 2D manifold through the n-D data
Maximize the likelihood that 
the model fits the data
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Generative topological maps provide a more powerful (and computationally intensive) unsupervised classification algorithm. As with K-means and SOM, a user-defined number of cluster means are found. As with SOM, these clusters are organized and projected onto a latent space. However, in addition to being able to assign any data vector to the nearest cluster, j,  each cluster is also defined by a multidimensional Gaussian distribution. In this manner, one can compute the probability that any data vector, d, falls within any other cluster, k, thereby providing a measure of confidence in our clustering.



1. Estimate PDF in n-D space by a suite of Gaussians with constant variance but different 
means. 

2. Estimate initial means of Gaussian PDFs using the first two principal components of the 
data.

3. For each n-D data point compute the probability of the “realization” (the a posteriori 
probability)

4. Modify the means of the Gaussian PDFs to maximize the likelihood of the “realization”

5. Assign n-D data points to Gaussian PDFs (clusters) using Bayes’ classification

Objective: Determine the location of a suite of probability distribution 
function (PDFs) lying along a smooth manifold that best represents 
the current realization (the input data)
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Steps in generating a GTM classification.



Generative Topographic Mapping

(Zhao et al., 2015)6c-7
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Horizon slice through crossplotted GTM projections 1 and 2 with a 2D colorbar, using the same attributes as those used to generate Figures 32, 33, and 34 . White arrows indicate channel-like features, yellow arrows indicate overbank deposits, and red arrows indicate slope fan deposits. The blue arrow indicates a braided channel system that can be seen on PCA but cannot be identified from k-means or SOM classification maps. The color indicates the location of the mean probability of each data vector mapped into the 2D latent space. After Figure 19 of Zhao et al. (2015). Used by permission.   
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The posterior probability densities of (a) an average attribute vector around a producing well w, and (b) an attribute vector at voxel j. (c) The joint probability distribution of the two probability density functions. Their similarity is measured by the Bhattacharyya distance, djw, given by equation 15. After Figure 12 of Roy et al. (2014). Used by permission.



Distinguishing facies that exhibit similar voxel-by-voxel appearance
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(a) Vertical slice along line , and (b) time slice at t = 1.144 s seismic amplitude volume from a survey acquired offshore Louisiana on the Gulf of Mexico shelf. The seismic expressions of the “chaotic” mass transport complex (MTC) and salt are quite similar, with the MTC exhibiting piecewise continuous, stronger internal reflectors. Line  will be used later in a facies extraction validation step. After Figure 5 of Qi et al. (2016). Used by permission.



Distinguishing facies that exhibit similar voxel-by-voxel appearance
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The same (a) vertical slice and (b) time slice shown in Figure 44, but now through the coherence volume. Both the MTC and the salt facies are generally incoherent, yet both contain voxels that exhibit a coherent (white) behavior, resulting in a “salt-and-pepper” appearance. More careful inspection will reveal that the size of the “salt grains” is different in the two images. After Figure 7a and 10b   of Qi et al. (2016). Used by permission.



Attribute expression of seismic facies

(Qi et al., 2016)

Facies name Seismic expression Coherence Coherent 
energy

Reflector 
convergence

GLCM   
entropy

GLCM 
dissimilarity

Salt Low energy, incoherent,   
vertically and laterally chaotic

“salt and 
pepper” Low Low High High

MTC Mixed energy, incoherent, mixed 
frequency, piecewise conformal

“salt and 
pepper”

“salt and 
pepper” Low High High

Turbidite Low energy, coherent,    
piecewise conformal High Low Moderate Moderate High

Sand/shale package High energy, coherent,    
moderate frequency, conformal High High High Low Moderate

Shale package Low energy, coherent,     
conformal High Moderate High Low Moderate
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Table of five seismic facies, their seismic expression, and their attribute response seen in this data volume shown in Figure 44. The recognition of features that allow discrimination between seismic facies is critical. If this can be done, the next most important task is to select attributes that quantitatively measure these features.



Seismic  Facies 
Classification Workflow

Compute 
Bhattacharyya 

distance  

Correlate Histograms

GTM

Compute histogram of 
each painted facies

Generate candidate 
attributes

Seismic 
amplitude

Coherence Coherent 
Energy

Reflector 
Convergence

GLCM Entropy GLCM 
Dissimilarity

Kuwahara filter Kuwahara filter Kuwahara filter Kuwahara filter Kuwahara filter

Does attribute 
differentiate 

facies?

yes no
Discard 

Attribute

PDF of each 
painted facies  fj

PDF of each voxel 
m

Likelihood volume 
facies f1

Likelihood volume 
facies f2

Likelihood volume 
facies fn

…

Paint facies of 
interest

(Qi et al., 2016)6c-13

Presenter
Presentation Notes
Workflow illustrating the steps used in a GTM multiattribute seismic facies analysis workflow. The interpreter begins by painting target facies of interest on either seismic amplitude or attribute data. After Kuwahara filtering, histograms are computed for each facies and each candidate attribute. Attributes that do not differentiate facies are rejected, and those that do are kept and mapped onto a latent space using GTM. Next, the probability density function for each facies f is mapped onto the latent space generating a suite of probability density functions. Then, the attribute vector at each voxel m is projected onto the latent space, generating an additional probability density function. Finally, the likelihood that a given voxel m belongs to facies f is computed using the Bhattacharyya distance. After Figure 1 of Qi et al. (2016). Used by permission.



Compute 
Bhattacharyya 

distance  

Correlate Histograms

GTM

Compute histogram of 
each painted facies

Generate candidate 
attributes

Seismic 
amplitude

Coherence Coherent 
Energy

Reflector 
Convergence

GLCM Entropy GLCM 
Dissimilarity

Kuwahara filter Kuwahara filter Kuwahara filter Kuwahara filter Kuwahara filter

Does attribute 
differentiate 

facies?

yes no
Discard 

Attribute

PDF of each 
painted facies  fj

PDF of each voxel 
m

Likelihood volume 
facies f1

Likelihood volume 
facies f2

Likelihood volume 
facies fn

…

Paint facies of 
interest

(Qi et al., 2016)Figure 4.50

Seismic  Facies 
Classification Workflow
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Workflow illustrates the steps used in our multiattribute seismic facies analysis workflow. The interpreter begins by painting target facies of interest on either seismic amplitude or attribute data. After Kuwahara filtering, histograms are computed for each facies and each candidate attribute. Attributes that do not differentiate facies are rejected, while those that do are kept and mapped onto a latent space using GTM. Next, the pdf for each facies f is mapped onto the latent space generating a suite of PDFs. Next, the attribute vector at each voxel, m, is projected onto the latent space, generating an additional PDF. Finally, the Likelihood that a given voxel m belongs to facies f is computed using the Bhattacharyya distance.
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Vertical slices along line A-A′ (see Figure 44) through the five candidate attributes (a) before and (b) after Kuwahara filtering. The patchiness associated with the Kuwahara filter provides a better representation of the patterns seen by a human interpreter than the overly detailed voxel-by-voxel expression. After Figures 6 and 9 of Qi et al. (2016). Used by permission.
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Workflow illustrates the steps used in our multiattribute seismic facies analysis workflow. The interpreter begins by painting target facies of interest on either seismic amplitude or attribute data. After Kuwahara filtering, histograms are computed for each facies and each candidate attribute. Attributes that do not differentiate facies are rejected, while those that do are kept and mapped onto a latent space using GTM. Next, the pdf for each facies f is mapped onto the latent space generating a suite of PDFs. Next, the attribute vector at each voxel, m, is projected onto the latent space, generating an additional PDF. Finally, the Likelihood that a given voxel m belongs to facies f is computed using the Bhattacharyya distance.



Original Attribute Salt vs. MTC MTC vs. conformal 
sediments

Conformal sediments 
vs. salt

Coherence 0.2871 0.1645 0.4526

Reflector 
convergence 0.8945 0.7385 0.4581

GLCM entropy 0.9336 0.5369 0.3163

GLCM dissimilarity 0.6476 0.3399 0.2612

Coherent energy 0.9546 0.9946 0.9209

Attribute differentiation of seismic facies without Kuwahara filtering

inseparable

separable

(Qi et al., 2016)6c-20
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Correlation of the histograms shown in the previous figure (a) before and (b) after Kuwahara filtering. Histogram correlation coefficients less than < 0.5 (highlighted in green) indicate “good” attribute facies discriminators, while those > 0.5 (highlighted in red) indicate “poor” attribute facies discriminators. (After Qi et al., 2016).



Kuwahara-filtered 
attribute Salt vs. MTC MTC vs. Conformal 

sediments
Conformal sediments 

vs. salt

Coherence 0.0434 0.1593 0.2933

Reflector 
convergence 0.6579 0.2714 0.1363

GLCM entropy 0.6085 0.182 0.0684

GLCM dissimilarity 0.1414 0.1501 0.2435

Coherent energy 0.7362 0.9718 0.6606

inseparable

separable

Attribute differentiation of seismic facies with Kuwahara filtering

(Qi et al., 2016)6c-21
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and v(2)  extending               and            
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The results of GTM classification of the four attributes chosen in the previous figures. (a) The 2D histogram in GTM latent space. (b) A 2D color bar. (c) The histogram plotted against the 2D color bar. By defining the 2D latent space using the two GTM latent space axes (along the first two eigenvectors), we can use not only a 2D color bar but also 2D crossplotting tools to facilitate manually defining the hypothesized clusters by drawing polygons on the 2D latent space histogram. The 2D latent space and the initial 2D manifold were defined by the first two eigenvectors, v(1) and v(2), extending distances  and  where λ1 and λ2 are the corresponding first two eigenvalues. After Figure 16 of Qi et al. (2016). Used by permission.



GTM classification using unfiltered attributes
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Vertical slice through a GTM projection of five attributes onto a 2D manifold plotted against a 2D color bar. Classification of attributes (a) before and (b) after Kuwahara filtering. To see an animation between the two images, please select DISC2018_Figure_4.54_video. After Figure 16a and 16c of Qi et al. (2016). Used by permission.



GTM classification using Kuwahara-filtered attributes

(Qi et al., 2016)
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Workflow illustrates the steps used in our multiattribute seismic facies analysis workflow. The interpreter begins by painting target facies of interest on either seismic amplitude or attribute data. After Kuwahara filtering, histograms are computed for each facies and each candidate attribute. Attributes that do not differentiate facies are rejected, while those that do are kept and mapped onto a latent space using GTM. Next, the pdf for each facies f is mapped onto the latent space generating a suite of PDFs. Next, the attribute vector at each voxel, m, is projected onto the latent space, generating an additional PDF. Finally, the Likelihood that a given voxel m belongs to facies f is computed using the Bhattacharyya distance.
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Workflow illustrates the steps used in our multiattribute seismic facies analysis workflow. The interpreter begins by painting target facies of interest on either seismic amplitude or attribute data. After Kuwahara filtering, histograms are computed for each facies and each candidate attribute. Attributes that do not differentiate facies are rejected, while those that do are kept and mapped onto a latent space using GTM. Next, the pdf for each facies f is mapped onto the latent space generating a suite of PDFs. Next, the attribute vector at each voxel, m, is projected onto the latent space, generating an additional PDF. Finally, the Likelihood that a given voxel m belongs to facies f is computed using the Bhattacharyya distance.
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(a) The original picked facies on line A-A′: salt, MTC, and sediments. The voxels falling within these three polygons will form the probability density function for each on the latent space shown in the next figure. (b) Three validation points picked within the different facies on line B-B′ 1.6 km (1 mi) to the east of line A-A′.  These three points will also generate probability density functions displayed in the next figure. Courtesy of Jie Qi, OU. Used by permission.



Bhattacharyya distance = SQRT(training pdf * voxel pdf)
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Probability density functions computed for voxels falling within the polygonal areas on line A-A′ shown in Figure 57a (the training facies) for (a) salt, (b) MTC, and (c) sediment facies. Probability density functions for validation voxels selected on line B-B′ shown in Figure 57b for (d) salt, (e) MTC, and (f) sediment facies. Note the overlap between the probability density functions of the training and validation facies. (To see an animation of this overlap, please select DISC2018_Figure_4.59.video. After Figure 18 of Qi et al. (2016). Used by permission.



Bhattacharyya distance = SQRT(training pdf * voxel pdf)
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Probability density functions computed for voxels falling within the polygonal areas on line A-A′ shown in Figure 57a (the training facies) for (a) salt, (b) MTC, and (c) sediment facies. Probability density functions for validation voxels selected on line B-B′ shown in Figure 57b for (d) salt, (e) MTC, and (f) sediment facies. Note the overlap between the probability density functions of the training and validation facies. (To see an animation of this overlap, please select DISC2018_Figure_4.59.video. After Figure 18 of Qi et al. (2016). Used by permission.



Bhattacharyya distance = SQRT(training pdf * voxel pdf)
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Probability density functions computed for voxels falling within the polygonal areas on line A-A′ shown in Figure 57a (the training facies) for (a) salt, (b) MTC, and (c) sediment facies. Probability density functions for validation voxels selected on line B-B′ shown in Figure 57b for (d) salt, (e) MTC, and (f) sediment facies. Note the overlap between the probability density functions of the training and validation facies. (To see an animation of this overlap, please select DISC2018_Figure_4.59.video. After Figure 18 of Qi et al. (2016). Used by permission.



(Qi et al., 2016)
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Vertical slice along uninterpreted line BB’ and time slice at t=1.172 s through seismic amplitude, and co-rendered with volumetric images of the Bhattacharyya Coefficient for (a) salt, (b) MTC, and (c) sediment facies. Areas that are bright orange and yellow have a 90% similarity to the facies used in training. Note that there are areas of the MTC that have misclassified as being salt. After Figure 19 of Qi et al. (2016). Used by permission.
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(Qi et al., 2016)

Conformal sediments
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In Summary:

• Generative topological maps project high dimensional data onto a lower order (typically 2-
dimensional) manifold

1. Voxels with a similar attribute expression lie near each other on the manifold and appear as a similar 
color, and

2. Each voxel is assigned a probability that it belongs to a given cluster providing a measure of confidence 
in the classification.

• Supervision can be introduced into GTM after unsupervised classifications by 
1. Constructing  PDFs of voxels that fall within user-defined seismic facies, and
2. Comparing PDFs to the PDF of each voxel using the Bhattacharyya distance.

Unsupervised Multiattribute Clustering – Generative Topographic Mapping

6c-42
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A summary of the GTM method. 



Unsupervised Multiattribute Clustering – Some General Observations

In Summary:

• In general, unsupervised classification does not answer a specific question, but 
rather allows the data to “speak for itself”

• In general, unsupervised learning is unbiased, finding facies and lithologies that are 
not encountered by wells used in supervised learning algorithms

• Bias can be introduced by selecting attributes sensitive to specific features, and 
training data that favors features of interest

6c-43



Comparison of alternative clustering schemes
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A map showing the location of the 3D seismic survey acquired over the Canterbury Basin, offshore New Zealand. The black rectangle denotes the limits of the Waka-3D survey, while the smaller red rectangle denotes the part of the survey shown in subsequent figures. Colors represent the relative depth of the current seafloor, warm being shallower and cold being deeper. Current seafloor canyons are delineated in this map, which are good analogs for the paleocanyons in Cretaceous and Tertiary ages. (Modified from Mitchell and Neil, 2012).
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Presentation Notes
Time slice at t=1.88 s through the seismic amplitude volume. White arrows indicate potential channel/ canyon features. The yellow arrow indicates a high amplitude feature. Red arrows indicate relatively low energy, gently dipping area. AA’ denotes a cross section shown in Figure 14.
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Presentation Notes
Time slice at t=1.88 s through peak spectral frequency co-rendered with peak spectral magnitude that emphasizes the relative thickness and reflectivity of the turbidite system and surrounding slope fan sediments into which it was incised. The two attributes are computed using a continuous wavelet transform algorithm. The edges of the channels are delineated by Sobel filter similarity. 
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Presenter
Presentation Notes
Time slice at t=1.88 s through the GLCM homogeneity attribute co-rendered with Sobel filter similarity. Bright colors highlights areas with potential fan sand deposits.
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Presenter
Presentation Notes
Time slice at t=1.88 s through K-means classification volume with K=256. The classification result follows the same pattern as K=16 but is more chaotic since the classes are computed independently and are not constrained to fall on a lower dimensional manifold. Note the similarity between clusters of high amplitude overbank (yellow arrows) and slope fan deposits (red arrows) which were separable in Figure 15.
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Presenter
Presentation Notes
Time slice at t=1.88 s of the first two principle components plotted against a 2D color bar. These two principal components serve as the initial model for both the SOM and GTM images that follow. With each iteration, the SOM and GTM manifolds will deform to better fit the natural clusters in the input data.
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Presenter
Presentation Notes
Time slice at t=1.88 s through an SOM classification volume using 256 clusters. White arrows indicate channel-like features. Combined with vertical sections through seismic amplitude, we interpret overbank deposits (yellow arrows crevasse splays (blue arrows). slope fan deposits (red arrows). The data are mapped to a 2D manifold initialized by first two principle components and are somewhat more organized than the K-means image shown in the previous figures.
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Presenter
Presentation Notes
Time slice at t=1.88 s through crossplotting GTM projection 1 and 2 using a 2D colorbar. White arrows indicate channel-like features, yellow arrows overbank deposits, and red arrows slope fan deposits. The blue arrow indicates a braided channel system that can be seen on PCA but cannot be identified from K-means or SOM classification maps. The color indicates the location of the mean probability of each data vector mapped into the 2D latent space.
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Presenter
Presentation Notes
The same time slice through the GTM projections shown in the previous image but now displayed as four seismic facies. To do so, we first create two GTM “components” aligned with the original first two principal components. We then pick four colored polygons representing four seismic facies on the histogram generated using a commercial crossplot tool, This histogram is a map of the GTM posterior probability distribution in the latent space..  The  yellow polygon represents overbank deposits, the blue polygon channels /canyons, the green polygon slope fan deposits, , and the red polygon “everything else”.
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