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Attribute selection for seismic facies classification

AASPI

Kurt J. Marfurt (The University of Oklahoma)

Seismic Attributes - from Interactive Interpretation 
to Machine Learning

Presenter
Presentation Notes
I am giving this talk at machine learning workshop to be held in Houston on October 31, 2019, coordinated by the SEG and Geophysical Insights.
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• Selecting attributes that are correlated to the facies of interest
• Rejecting attributes that are meaningless for the problem at hand
• Minimizing the use of redundant (or mathematically correlated) attributes

Objectives in attribute selection
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Which attribute 
should I use?

Machine-Driven Interpretation   

Stochastic Workflow
-> Try them all and see which 
ones correlate

Deterministic Workflow
-> Use attributes associated with 
a geologic model or process

Presenter
Presentation Notes
There are two workflows that can be used in attribute selection. 

The first, or stochastic workflow, attempts to find a statistical relation between a given attribute and a rock property or seismic facies of interest.  In general, the geologic or physical reason for such a correlation is not known. Combinations of multiple attributes are often selected using a process called step-wise regression, whereby each attribute is used to construct a higher dimensional relationship and is then validated against data not used in training. A pitfall of the stochastic workflow is finding a false correlation between a poorly understood attribute and given seismic facies or rock property.

The second, or deterministic workflow, requires greater skill and insight on the part of the interpreter. Here, attributes are selected that are hypothesized to correlate to a given seismic facies or rock property through the use of a depositional, tectonic, or diagenetic model. For example, if one were interested in correlating fractures seen in image logs, one might use curvature (and attribute that measures strain), azimuthal anisotropy ( an attribute that measures the intensity and orientation of changes in reflectivity), and brittleness (an attribute that measures whether a rock will deform brittlely or ductilely).

(Image of Washington State July 6, 2009 Pe Ell landslide. 

Robot image from https://www.google.com/search?biw=2560&bih=964&tbm=isch&sa=1&ei=Ui8DW5y0OaS4jwSDv76IDg&q=robot+thinking&oq=robot+thinking&gs_l=img.3..0l5j0i8i7i30k1j0i24k1.26556.27495.0.27619.6.6.0.0.0.0.132.709.1j5.6.0....0...1c.1.64.img..0.6.707...0i67k1j0i7i30k1.0.pIFer15RaTE#imgrc=KILMoxSSk4BiMM:)
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Attribute selection goal 1: Minimize geological or 
geomechanical irrelevance

Azimuth cannot differentiate salt, MTD, or withdrawal basin voxels

Presenter
Presentation Notes
A time slice at t = 1.0 s through coherence co-rendered with reflector convergence volumes for a survey acquired in the Gulf of Mexico, offshore Louisiana, USA, showing salt diapirs, salt withdrawal basins, mass transport complexes (MTCs),and faults. (Data courtesy of PGS). This image is quite useful for human interpretation where the conformal reflectors appear as gray and those that are converging (pinching out) towards the edges of the withdrawal basins take on the pattern seen in the color wheel.  However, there is no way to discriminate between salt, MTCs, and withdrawal basins using the azimuth of reflector converge on a voxel by voxel basis. 

In contrast, the coherence within the salt and most of the MTCs is low, while that of relatively conformal reflectors is high, such that coherence can be used to differentiate the simpler sedimentary section from the other two seismic facies on a voxel by voxel basis. (Seismic data courtesy of PGS).
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Attribute selection goal 2: Minimize mathematical redundancy 
• Some attributes are correlated through their algorithmic implementation and provide little 

useful additional information 
• Instead, we want attributes that are correlated through geology or geomechanics

(Barnes, 2006)

Presenter
Presentation Notes
In this work, Art Barnes (2006) showed that many amplitude attributes can be tightly correlated. The image on the left shows nine commonly used amplitude attribute measures, all made along the same horizon using a 100 ms window. The crossplots on the right show that many of these attribute pairs are linearly or quadratically correlated. In machine learning the addition of such redundant attributes does not provide additional useful information.
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Attribute selection goal 3: Maximize geological or geomechanical redundancy

Shear wave time thickness difference

P-wave coherence P-wave most-positive curvature P-wave AVAz anisotropy

Multiattribute fracture prediction

Risk analysis table

Mapping fractures in a Sichuan carbonate reservoir

Presenter
Presentation Notes
In general, we wish to use attributes that are mathematically independent but are correlated through the underlying geology. In this example, the authors conducted a 3C-3D survey and generated a suite of attributes sensitive to fractures: coherence, curvature, AVAz P-wave anisotropy, and shear wave splitting time thickness differences. These attributes were then combined in an risk analysis spread sheet which I consider to be a not-so-random, model-based decision tree multiattribute analysis tool. The result is a map showing where multiple attributes indicate high probability of fractures (yellow and red areas of the lower right map).. (After Jianming et al., 2009).
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(Cassel, 2018)

Attribute selection based on interpreter insight

Karst collapse 
features in the

 Fort Worth Basin

Presenter
Presentation Notes
A skilled interpreter that knows a target horizon is either carbonate or a salt (including anhydrite) can readily identify karst collapse or salt dissolution features. In general, it is difficult to estimate an accurate velocity for the deformed reflections internal to the karst collapse. These velocity errors give rise to disruptions in the continuity of deeper reflectors. These disruptions as well as the overlying patterns of the fill allow the interpreter to better classify the target feature. Today’s machine learning algorithms (including deep learning CNN) would have difficulty using the information content contained in the disruptions. (Seismic data courtesy of Marathon Oil Co., after Cassel, 2018).
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Attribute selection based on interpreter insight

Presenter
Presentation Notes
Attribute expression of the base Barnett Shale/Top Ellenburger Dolomite for a survey acquired in the Fort Worth Basin. Coherence, curvature, peak spectral magnitude, GLCM dissimilarity, GLCM contrast, and vector aberrancy all help to separate the karst collapse features from the surrounding unaltered rock. (Data courtesy of Marathon Oil Co.; after Cassel, 2018). 
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SOM identification of karst 
Ellenburger dolomite, Fort Worth Basin, TX

Attributes used:
• Coherence
• GLCM homogeneity
• Spectral Magnitude
• Amplitude Curvature e1 and e2
• Structural Curvature k1 and k2
• Peak Frequency
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Geologic Feature Visual Expression

Internal Reflector Patterns External Reflector Patterns

Karst • Piecewise continuous to chaotic

• Bowl-shaped 

• Non-parallel, thickening

• Narrow band, lower frequency

• Sediment fill on top

• Disrupted reflectors below

• Edges often fault controlled

• Broad band

Coherence
GLCM Entropy

GLCM Homogeneity

Structural curvature
Bowl shape index 

Reflector convergence
Parallelism

Peak magnitude
Peak frequency

Bandwidth

Voxel-based 
measures: 
I can do this!

Contextual 
setting/scene 
analysis: 
Geez! This is 
tough!

(Cassel, 2018)

Attribute selection based on interpreter insight

Presenter
Presentation Notes
The internal and external patterns of the facies can be delineated using attributes. Here we see the Karst example where we have the listed internal and external features. Each feature can be identified by the corresponding attribute. Karst features contain piecewise continuous to discontinuous reflectors therefore we use coherence and textural attributes to delineate these features. Karst have bowl-like structures which are seen in structure based attributes. Non-parallel thickening can be identified by the reflector convergence and parallelism attributes. The narrow bandwidth and low frequency can be seen in Peak magnitude, Peak frequency, and bandwidth attributes. These attributes can be used to quantify the internal seismic features which can then be used for voxel-by-voxel measurements but the external features of the facies are much more difficult to quantify as they need context and quantification of the difference between the feature of interest and the surrounding facies. (After Cassel, 2018).



Stepwise regression and the danger of too many attributes 
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Presenter
Presentation Notes
Cartoon showing stepwise regression and the danger of attempting to fit training data (in this case the pink circles) with too many attributes. In this example, the goal is to find a simple linear relationship between a log property, L, and one or more attributes, aj. Validation of the multilinear regression is obtained by predicting measurements not used in the original fit (or training step), in this case the data sample represented by the green circle. Predictions using (a) a 2D hyperplane (a line) (b) a 3D hyperplane (a plane), (c) a 4D hyperplane where the error in the validation is proportional to the length of the green line. The length of the green line is shortest (and hence the validation error smallest) for the 3D hyperplane based on two attributes.. In contrast, while the 4D hyperplane based on three attributes exactly fits the four training data points, it usefulness in prediction is poor, as indicated by the large prediction error associated with the green validation data point.
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Presenter
Presentation Notes
The danger of attempting to fit training data (in this case the pink circles) with a too many attributes. In this case, we are looking for simple linear relationships which can be characterized by hyperplanes. To evaluate the validity of our model, we need to use measurements not used in our training, in this case the data sample represented by the green circle. The 3D hyperplane better fits the training data than the 2D hyperplane based on two attributes. It also reduces the prediction error on the validation data set. In contrast, while the 4D hyperplane exactly fits the four training data points, it usefulness in prediction is poor, as indicated by the large prediction error associated with the green validation data point.
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Attribute selection based on statistical analysis

2001

(Hampson et al., 2001)

Stepwise linear regression PNN prediction of porosity
(nonlinear transforms can be applied to the 

data before regression)

Presenter
Presentation Notes
Stepwise linear regression is a well established attribute selection technique. Here the interpreter divides the control information into training and validation subsets. M attributes are ranked by their correlation with the measured result. After the first attribute is selected, it is frozen, and the M-1 remaining attributes evaluated as candidates in a 2-attribute regression. The   pair is frozen, with the remaining M-2 attributes evaluated as candidates in a 3-attribute regression. After each choice, the prediction from the best selected attribute subset is validated using accuracy not used in the training. If the validation error decreases, the process continues.

Hampson et al. (2001) introduce a degree of nonlinearity by transforming the attribute data.
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2004

(Dorrington and Link, 2004)
Correlation of attributes to 

porosity using a genetic algorithm

MLFN prediction of porosity

Attribute selection based on statistical analysis

Presenter
Presentation Notes
Dorrington and Link (2004) used a genetic algorithm to determine which attribute combination best predicts the porosity on the wells used in training. After 50 genetic algorithm simulations they found the best three attributes to be composite envelope difference, instantaneous real amplitude, and average instantaneous amplitude. They then used these attributes an MLFN algorithm to predict porosity, validating at some of the wells not used in training. Low porosities indicate sands and high porosities indicate shales. The 21 wells available for the data set are shown by number and symbol. Black-filled circles indicate wells used for porosity prediction, open circles represent wells with no porosity logs or wells not used for porosity prediction. 
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Three recent workflows, all of which 

• are applied to Gulf of Mexico surveys with the objective of differentiating 
salt, mass transport deposits, and conformal sediments

• began with a list of interpreter-supplied candidate attributes

• benefited by converting each attribute histogram to exhibit approximately 
Gaussian statistics

• used an exhaustive search of the best attribute combination as well as the 
number of attributes used
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(Qi et al., 2019)16-17

Presenter
Presentation Notes
GTM, SOM, GMM, and PNN are all based on Gaussian statistics. For this reason it is important to transform the data from its original units to one that more closely provides a Gaussian distribution. In the examples above, the bandwidth is the only attribute that exhibits a normal distribution. Most of the others benefit by a logarithmic transformation (where their original distribution was more closely log-normal) while coherence, which is biased towards c=1 benefits from the transform log(1-c)



Workflow 1: 

Semi-supervised classification based on generative topographic mapping

Supervision occurs in three ways:
1. Choose attributes that best separate the target facies of interest
2. Select training data biased towards the target facies of interest
Construct a manifold that fits the training data using an “unsupervised” GTM algorithm
Project all data onto the manifold and corresponding latent space
3. Generate a posteriori classification based on the Bhattacharya distance of each 
training facies and each voxel

(Qi et al., 2019)16-18

Presenter
Presentation Notes
Our first workflow is based on papers and presentations by Qi et al. (2019). In principal the method is unsupervised. However, by careful attribute and training data selection, it becomes biased to addressing our target objective of facies differentiation and identification



Step 1: Label the target features of interest on key lines and time slices
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(Qi et al., 2019)16-19

Presenter
Presentation Notes
Vertical slice through seismic amplitude.  Polygons are drawn by the human interpreter. Voxels in the red polygons represent salt, in the green polygons MTD, and in the blue polygon conformal reflector facies.



Step 2: Use experience or geological insight to pick a suite of candidate 
attributes  

Candidate attributes:

1. Coherence
2. Spectral bandwidth
3. Covariance of dip and energy
4. GLCM entropy
5. GLCM variance
6. Energy deviation
7. Spectral roughness
8. Reflector convergence
9. Dip deviation

Subset of candidate 
attributes Salt Mass transport 

deposit (MTD)

Conformal 
sedimentary 
background

Reflector 
convergence

Chaotic, 
nonparallel

Slumps are chaotic, 
rotated blocks 

subparallel

Parallel to 
subparallel

Reflector 
amplitude

Low reflectivity 
(except for noise)

Low to high based 
on impedance 
contrast within 
related blocks, 
generally low 
outside well 

imaged blocks

Low to high based 
on impedance 

contrast

Spectral response Low to moderate 
spectral response

Variable frequency 
different in each 

block

Broadband 
response

Texture High entropy, low 
homogeneity

High entropy, but 
may exhibit high 

homogeneity 
within a rotated 

block

Low entropy, high 
homogeneity

(Qi et al., 2019)16-20

Presenter
Presentation Notes
Given our understanding of the target facies, we selected nine candidate attribute. Facies of interest are salt, conformal reflectors, and MTDs. Our purpose is that find the attribute combination that can best separate each facies from another.



Step 3: Generate a Gaussian Mixture Model for each facies for each of 
the 2N-1 attribute combinations

A given facies can be represented by one or more Gaussian distributions

𝑎𝑎2

𝑎𝑎1

Coherent, rotated blocks in an MTD

Chaotic components of an MTD

(Qi et al., 2019)16-21

Presenter
Presentation Notes
Gaussian mixture models are a probabilistic model for representing normally distributed subpopulations within an overall population. Mixture models in general don't require knowing which subpopulation a data point belongs to, allowing the model to learn the subpopulations automatically. Since subpopulation assignment is not known, this constitutes a form of unsupervised learning.

Gaussian mixture models allow us to represent a seismic facies as probability density functions in multidimensional attribute space. Depending on the attributes used (e.g. energy vs. reflector parallelism), heterogeneous facies such as mass transport deposits (MTDs), progradations, and karst collapse may require more than one Gaussian to represent the data.



Using GMMs to select appropriate 
attributes
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(Qi et al., 2019)

Evaluate the greatest facies separation between the M facies 
(Gaussian overlap) using all possible attribute combinations

16-22

Presenter
Presentation Notes
While GMMs can represent the data, like the single Gaussians used in k-means clustering, there is no order structure that can be assigned to a color palette to show which clusters are similar and which are quite different. In contrast, GMMs provide a framework to determine which attribute combination best separates seismic facies of interest. GMMs N-attributes means the facies live in N-dimensional space.

Extract M picked facies from N input attributes, they are N-dimensional training clusters each picked facies.
Compute GMM clusters for each n attribute combination. There are J(m,n) GMM clusters under each facies for each n-attribute combination.
Compute Bhattacharyya distance between each GMM cluster j(m,n) and each GMM cluster j(l≠m,n).
Compute cumulative Bhattacharyya distance for all facies under each n attribute combination
The best attribute combination will have the highest  𝑂 𝑛 .




4. Choose attributes that provide the greatest cumulative 
Bhattacharyya distance between the Gaussian Mixture Models

...

N=9 input 
attributes

M=3 picked 
facies 𝑎𝑎2

𝑎𝑎1

𝑀𝑀 𝑗𝑗,𝑘𝑘, 𝑙𝑙 = 3

3 facies, each represented by one or more Gaussians

MTDs
Salt

Conformal 
Sediments

(Qi et al., 2019)16-23

Presenter
Presentation Notes
Step 4 is to compute the cumulative Bhattacharyya distance between the Gaussian Mixture Models representing each facies for each of the 2N-1 combinations.



Step 5: Project all voxels onto the manifold and latent space
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Presenter
Presentation Notes
In general, most workers construct the training data for SOM and GTM by either selecting a random or decimated subset of the voxels (e.g. every 5th inline, 5th crossline, and 5th sample). In our workflow, the unsupervised GTM classification includes a degree of supervision in two ways: (1) attributes were selected that best differentiate the facies of interest, and (2) the data used to “train” or construct the manifold is biased towards the three facies of interest. To accommodate other facies that were not targeted in this classification (e.g. turbidites, overpressured shale, dewatering features, and so on) the voxels that were not defined by polygons on each vertical and time slice used to define the target facies.
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(Qi et al., 2019)16-25



Workflow 2: 
Supervised classification based on a random forest decision tree

(Kim et al., 2019)

Finding the relation between two 
continuous variables

Finding the relation between a 
continuous and categorical variables 

Determining which attribute selection 
workflow to use

16-26

Presenter
Presentation Notes
The workflow used to select the attributes used in classification. First, the interpreter supplies candidate attributes. These attributes are then evaluated for mathematical independence using Pearson correlation, rank correlation, mutual information, and distance correlation metrics. Redundant attributes are discarded. After defining target seismic facies of interest, the interpreter than determines which attributes are correlated to the desired output classes. Because the classes are categorical (i.e. we can not “order” salt, MTD, turbidites, progradations, and conformal sediments along an axis) we need to use different correlation measures. Those attributes with low correlations are discarded. With this winnowed subset, we then use Filter, Wrapper, and Embedded algorithms to determine which combination provides the most accurate answer.
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Different types of relations between two continuous variables  

Linear 
Monotonic

Nonlinear
Monotonic

Nonlinear
Nonmonotonic

Mutual information

(Kim et al., 2019)

Presenter
Presentation Notes
Cartoon shown different types of correlations that can be computed between seismic attributes and between a given seismic attribute and a target facies of interest. The Pearson correlation is well know to users of excel and other simple crossplotting packages. Mutual information is new to me, but appears to better identify non only nonlinear but also non monotonic relationships. Yuji Kim’s workflow evaluates all for metrics for all attribute combinations to determine which are independent and which are highly correlated to each other.
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Representative relations between different attribute pairs 

(Kim et al., 2019)

Highly correlated Highly correlated Somewhat correlated

Presenter
Presentation Notes
Many of our attributes are correlated. The RMS energy is square root of the energy within a vertical window measured on a single trace. The total energy is the square of RMS energy over a nine traces and thus follows a y=x2 pattern. The peak magnitude is the maximum value of the all spectral components at a given voxel whereas the envelope is the value of the magnitude of the sum of all complex spectral components. Finally, the variance measures the square of the standard deviation of the amplitude about its mean within an analysis window whereas the GLCM entropy measures the randomness of the a amplitude pattern using a texture analysis measure.
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Attribute-to-attribute correlation analysis

Redundant amplitude attributes

Redundant texture attributes

Mutual information

RMS amplitude – Total energy (0.9)
GLCM entropy – GLCM homogeneity (0.85)
Instantaneous envelope - Peak magnitude (0.74)
RMS amplitude – Instantaneous envelope (0.72)
Total energy – Instantaneous envelope (0.71)
RMS amplitude – Peak magnitude (0.69)
Total energy – Peak magnitude (0.68)

Distance correlation

GLCM entropy – GLCM homogeneity (0.97)
RMS amplitude – Total energy (0.92)
Instantaneous envelope – Peak magnitude (0.87)
RMS amplitude – Instantaneous envelope (0.83)
RMS amplitude – Peak magnitude (0.78)
Total energy – Instantaneous envelope (0.78)
Total energy – Peak magnitude (0.74)

Correlation measures Attributes highly correlated with the other attributes (corr. coeff. > 
0.6)

Pearson correlation

GLCM entropy – GLCM homogeneity (-1.0)
Instantaneous envelope – Peak magnitude (0.96)
RMS amplitude - Instantaneous envelope (0.93)
RMS amplitude – Peak magnitude (0.90)
RMS amplitude – Total energy (0.90)
Total energy – Instantaneous envelope (0.84)
Total energy – Peak magnitude (0.83)
Instantaneous phase – Relative acoustic impedance (0.73)
GLCM entropy – Chaos (0.71)
GLCM entropy – Variance (0.70)
Instantaneous frequency – Peak frequency (0.62)

Rank correlation

GLCM entropy – GLCM homogeneity (-1.0)
RMS amplitude – Total energy (0.99)
Instantaneous envelope – Peak magnitude (0.95)
RMS amplitude – Instantaneous envelope (0.94)
RMS amplitude – Total energy (0.93)
RMS amplitude – Peak magnitude (0.92)
Total energy – Peak magnitude (0.82)
Instantaneous phase – Relative acoustic impedance (0.81)
GLCM entropy – Variance (0.80)
GLCM entropy – Chaos (0.71)
Instantaneous frequency – Peak frequency (0.64)
Instantaneous envelope – GLCM homogeneity (0.62)

(Kim et al., 2019)

Presenter
Presentation Notes
Many attribute pairs are redundant, in this example defined as measures exceeding 60%. 
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Attribute – class correlation analysis

(Kim et al., 2019)

Cyclical attributes

Cyclical attributes

Mutual Information provided better 
correlations

Presenter
Presentation Notes
The correlation of different attributes to the picked target facies. Blue background indicates amplitude while green background indicates texture attributes or the attributes highly correlated with texture attributes. As anticipated, attributes that are cyclical have little to no value in identifying the target facies. 

ANOVA is an analysis tool that splits the variability found in a data set into systematic factors and random factors. If the variation can be explained from systematic factors, then the variable is significant in distinguishing classes.
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Error rate vs. the number of attributes selected for the Wrapper 
(Random Forest Decision Tree Algorithm) 

Noisy attributes (Gaussian noise added)Noise-free attributes

(Kim et al., 2019)

Er
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Number of attributes
Er

ro
r

Number of attributes

Presenter
Presentation Notes
Here, we  use the term ‘error rate’ as mean absolute error (MAE) = average of the absolute errors |ei|=|yi−xi|, where yi is the prediction and xi the true value. We changed the term to “Prediction error” to avoid confusion.​
​
 One key point of observation is that using a larger number of attributes significantly reduces the error rate in the case of noisy data. This implies that if the data are contaminated with noise, using other attributes together (maybe redundant attributes?) can improve classification.​
​



16-35

Predicted facies using subsets with different numbers of attributes

Time slice at t =1.1s
• Rank is computed using wrapper (RF) method
• Learning method for prediction: Random forest
 

(Kim et al., 2019)

1 attribute 3 attributes

7 attributes 20 attributes

MTD
MTD

MTD

MTD

MTD

Salt
Salt

SaltSalt

Salt

1 attribute

2 attributes

7 attributes 20 attributes
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𝑎𝑎𝑚𝑚 : Attribute vector at voxel to be classified
Tnm : Attribute training vectors
𝑀𝑀   : Number of attributes
N : Number of training vectors
r     : Gaussian smoothing parameter (unknown)

Workflow 3: 
Probabilistic Neural Networks
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Training vectors for facies 1

Training vectors for facies 22

36
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Presentation Notes
Probabilistic Neural Networks (PNNs) are feedforward neural networks that use Bayes’s criteria and Parzen windows to estimate the probability density function from random samples. Once the pdf is constructed, the PNN can then assign an unknown data vector into to a specific class (seismic facies) (Specht, 1995; Masters, 1995; Hajmeer and Basheer, 2002). According to Masters (1995), the most common kernel function used in the Parzen method is the Gaussian function.

In order to optimize the Gaussian smoothing parameter r, we use an exhaustive search algorithm. The value of r that best predicts the correct class (seismic facies) of each training vector is the winning value. The error function used is described in the next figure where we address the validation step.
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Stepwise linear regression 
vs exhaustive search 
attribute selection

M = 4 attributes
M+(M-1)+(M-2)+…= 10 combinations

Stepwise regression 
attribute combination

Error

a1 E1

a2 E2

a3 E3

a4 E4

a1, a2 E1,2

a1, a3 E1,3

a1, a4 E1,4

a1, a2 ,a3 E1,2,3

a1, a2 ,a4 E1,2,4

a1, a2 , a3 ,a4 E1,2,3,4

Once attribute a1 is chosen, it 
must be included in all 
subsequent combinations

(Lubo-Robles et al., 2019)38
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Presentation Notes
Stepwise regression finds the best attribute, after which point it must be included in all subsequent combinations. Attributes are renumbered such that this becomes a1. Then we search for the next attribute a2 that when combined with the first attribute provides the smallest validation error. After renumbering the attributes, a1 and a2 must both be included in all subsequent combinations.

In 1990 it was important to minimize the number of attribute combinations to be evaluated. In 2019, our computational power is orders of magnitude greater; furthermore, the evaluation of which attribute combination is best is only computed on the training data which is typically less than 1% of the entire data volume for seismic facies classification. 
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M=4 attributes
2M-1 = 15 combinations

Exhaustive search 
attribute combination

Error

a1 E1

a2 E2

a3 E3

a4 E4

a1, a2 E1,2

a1, a3 E1,3

a1, a4 E1,4

a2 ,a3 E1,3

a2 ,a4 E2,4

a3 ,a4 E3,4

a1, a2 ,a3 E1,2,3

a1, a2 ,a4 E1,2,4

a1, a3, a4 E1,3,4

a2 , a3 ,a4 E2,3,4

a1, a2 , a3 ,a4 E1,2,3,4

Stepwise linear regression 
vs exhaustive search 
attribute selection

(Lubo-Robles et al., 2019)39
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Presentation Notes
In order to initialize the PNN Exhaustive algorithm, we define our first seismic attribute combination and an initial smoothing parameter “r”. We test a suite of values ranging from 0.1 to 15 through the exhaustive search algorithm, and we compute the error E in each iteration. We store the iteration associated with the minimum E and define another seismic attribute combination. After testing all possible combination, we select the combination of seismic attributes and smoothing parameter “r” that provides the minimum E in order to perform our supervised seismic facies classification, and compute the probability of each classes measuring the confidence in the classification.
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Workflow 3: Probabilistic Neural Networks
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class c given the training data T

(Lubo-Robles et al., 2019)

6 Candidate attributes
Coherence
GLCM contrast
GLCM dissimilarity
Total energy
Most-positive curvature (k1)
Most-negative curvature (k2)

40

Presenter
Presentation Notes
A summary of the PNN facies classification workflow. First, we use our geological insight to choose a suite of candidate seismic attributes. Next, we apply 3D Kuwahara median filter to smooth and block the attributes (Qi et al., 2016), preconditioning them for subsequent classification. We also define a group of polygons for each facies which represent the training and validation datasets. We compute the means 𝛍 and covariance matrix 𝐂 from the training data which are used to Z-score normalize the and validation sets in order to avoid any bias related to different units between the seismic attributes. In order to initialize the PNN Exhaustive algorithm, we define our first seismic attribute combination and an initial smoothing parameter “r”. We test a suite of values ranging from 0.1 to 15 through the exhaustive search algorithm, and we compute the error E in each iteration. We store the iteration associated with the minimum E and define another seismic attribute combination. After testing all possible combination, we select the combination of seismic attributes and smoothing parameter that provides the minimum E in order to perform our supervised seismic facies classification, and compute the probability of each classes measuring the confidence in the classification.
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Pitfalls and algorithm limitations

Mulitples
Misclassification

Misclassification

SHapley Additive exPlanations (SHAP) are recent developments that provide insight into 
which attributes push the classification in a given direction

(Lubo-Robles et al., 2020)41
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Conclusions
• Human interpreters and seismic attributes are good at identifying 2D spatial patterns; 

attributes can quantify patterns in 3D (and for AVAz analysis, 4D and 5D).

• Human interactive analysis is limited to about 3 volumes using RGB, CMY, or HLS color 
models, transparency, and/or animation. In contrast, machine learning can analyze 
dozens of attributes at the same time.

• Most shallow learning algorithms look for patterns occurring at the same voxel across 
attribute volumes; We could generalize the workflow to provide adjacent voxels as 
input.

• For normal amounts of training data using modern computers, an exhaustive search for 
the optimum number and combination of attributes is both desirable and feasible.

• I’ve presented three workflows for attribute selection; We do not yet know which is 
best for a given mapping task.
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Machines
• Work 24 hours/day, 7 days/week, and require electricity and cooling
• Are consistent throughout the interpretation task
• Can analyze high dimensional data measured at each voxel
• Can quantitative evaluate the accuracy of their prediction
Humans
• Work 40-hour weeks and expect salary and benefits
• May tire or be distracted throughout the interpretation task
• Easily identify spatial patterns
• Can interpret features within the context of a geologic model
Both machines and humans
•  Increase accuracy with increased experience
• Are susceptible to confirmation bias
• Will benefit by improved seismic facies databases 

Machines vs. humans

Presenter
Presentation Notes
Summary of major points in this fault. (Top image – Robot from When the Earth Stood Still, Bottom image – Homer Simpson running his nuclear reactor).



Some questions:
• Can using redundant attributes help with classifying 

noisy data?

• Is it possible to incorporate contextual information 
like velocity pull up or the recognition of multiples, 
migration artifacts,  and acquisition footprint in 
machine learning driven facies classification?

• Can machine learning exploit constraints like the 
environment of deposition, tectonic style, and limits 
to seismic imaging routinely used by interpreters?
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