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In this section, we will describe the motivation, theory, and application of one of the easiest-to-understand supervised learning techniques – probabilistic neural networks.



Multiattribute Analysis Tools
Interpreter-Driven Multiattribute Analysis

• Crosscorrelation Maps

• Corendering

• Spreadsheets

• Crossplotting and Geobodies

• Connected Component Labeling

Visual Decision Making

• K-means

• Gaussian Mixture Models

• Kohonen Self-Organizing Maps

• Generative Topographical Maps

Unsupervised Learning

Machine Learning Multiattribute Analysis

• Probabilistic Neural Networks

• Multilinear Feedforward Neural Networks

• Support Vector Machines

• Random Forest Decision Trees

• Generative Adversarial Networks

Supervised Learning

• Analysis of Variance (ANOVA, MANOVA)

• Multilinear Regression

• Kriging with external drift

• Collocated co-kriging

Statistical Analysis

• Principal Component Analysis

•  Independent Component Analysis

Projection Techniques
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We have a broad range of tools for integrating the information provided by seismic attributes. These can be subdivided based upon the mechanism for decision making (computer or interpreter). Interactive decision making can be divided into visual and numerical techniques while machine learning techniques can be divided into supervised and unsupervised techniques.



Artificial Neural Nets (ANN)

Objective: From continuous input measurements (e.g. seismic 
attributes):

• Predict a continuous output (e.g. porosity)

• Predict discrete lithologies (e.g. wet sand, gas sand, limestone, shale,…)
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The objective of an artificial neural network can be to define discrete or continuous output.



Example 1: Predicting Seismic Facies from Seismic Attributes
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Probabilistic neural networks

Parzen Method:

Estimate the probability density function

Tnc   The nth training vector for class c 

ak  The attribute vector at the kth voxel

𝑟𝑟j    Scaling parameter of the jth attribute

N    Total number of training samples
T1 T2 T3 T4 T5 T6
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(Specht, 1988;Masters, 1995) 

A one-attribute example
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In PNN, the probability density function 𝑓(𝐱) is calculated by summing over the Gaussian distributions of each training sample, xn. The scaling factor, σ, defines the with of the Gaussians and is also calculated to best differentiate the classes within the training data. Figure courtesy of Diana Salazar and Heather Bedle, OU.
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𝐚𝐚𝑘𝑘     : Attribute vector at voxel k to be classified
gc(ak): Probability of ak being in class c
Tnmc    : Attribute training vectors for class c
𝑀𝑀       : Number of attributes
N : Number of training vectors
rj         : Gaussian smoothing parameter (unknown)

Probabilistic Neural Networks
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(Lubo-Robles et al., 2019)

Training vectors for facies 1

Training vectors for facies 22

A two-attribute example

6

Presenter
Presentation Notes
Probabilistic Neural Networks (PNNs) are feedforward neural networks that use Bayes’s criteria and Parzen windows to estimate the probability density function from random samples. Once the pdf is constructed, the PNN can then assign an unknown data vector into to a specific class (seismic facies) (Specht, 1995; Masters, 1995; Hajmeer and Basheer, 2002). According to Masters (1995), the most common kernel function used in the Parzen method is the Gaussian function.In order to optimize the Gaussian smoothing parameter r, we use an exhaustive search algorithm. The value of r that best predicts the correct class (seismic facies) of each training vector is the winning value. The error function used is described in the next figure where we address the validation step.
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Validation of PNN prediction for a given set of K attribute vectors and 
Gaussian smoothing parameter rj
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Following Masters (1995), in order to classify an unknown sample, the PNN starts by computing the distance between the validation attributes and the training attributes, then it inputs that distance into the Gaussian activation function. In the summation layer, it computes the average estimated density function gc(a) for each class. Finally, in the output layer, the PNN decides to what class the unknown sample belongs based on what gc (a) is maximum.
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Training Data

Validation Data

Salt Not Salt

IL 521

IL 451

t = 2s

5 km

Probabilistic Neural Networks
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(Lubo-Robles et al., 2019)8
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To generate our training and validation sets, we pick a suite of polygons enclosing the salt and non-salt facies. We use inline 521 and time slice at t=2 s to extract the training voxels of the salt (green polygon) and not-salt (red polygons) seismic facies from the six seismic attributes used as input in the Exhaustive PNN workflow.  We perform a similar analysis in inline 451, but in this case the extracted voxels from the seismic attributes enclosing the two target seismic facies are used as validation samples for training the neural network by minimizing the error E. Also, we only extract our training and validation sets from the Salt #1 diapir in order to leave the Salt #2 diapir as a blind test to further evaluate the performance of the PNN. We maintain a similar number of voxels for each class in order to avoid any type of bias towards one of the facies
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Facies probability

• PNN classifies correctly 
between salt and non-salt 
seismic facies.

• Salt diapir #2 used as blind 
test is also correctly 
classified.

• Salt facies are associated 
with very high 
probabilities ranging from 
75 to 80%

Salt #1

Facies prediction

Salt #1

Salt

Not Salt
t = 1.78s

Salt #1

100

0

Probability (%)Salt #1
t = 1.78s

Probabilistic Neural Networks

(Lubo-Robles et al., 2019)9
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We show the results obtained after applying the Exhaustive PNN in all the Eugene Island seismic survey using the coherence and most-positive (k1) curvature attributes and “r” of 1.9. Analyzing the PNN facies prediction co-rendered with the seismic amplitude along inline 391, we note that the neural network classifies correctly between the salt (red arrow) and non-salt seismic facies. Also, we are able to compute the PNN Salt probability volume which provide the confidence of the classification. We observe that the algorithm classifies the extracted orange facies as salt with very high probabilities ranging from 75 to 80%. It is important to highlight that some orange facies visible on the top of the seismic volume are associated with missing or noisy data in the edges of the survey with little interpretational value.We show the PNN Facies prediction co-rendered with the seismic amplitude volume at time slice 1.78 s. We observe that the Salt #1 (red arrow) diapir is still correctly classified by the Exhaustive PNN algorithm. Moreover, the Salt #2 diapir used as a blind test during the training of our neural network, is also correctly classified by our algorithm as a salt facies (red arrow). Finally, Salt #1 and Salt #2 diapirs (red arrows) show a high probability of being salt ranging from 75 to 80%. 
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Probabilistic Neural Networks

(Lubo-Robles et al., 2019)10
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3D seismic facies prediction for the Eugene Island data volume using PNN.



Example 2: TOC prediction
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Step 1: Calibrate TOC prediction  from 
logs using ANN or Passey’s equation

Attribute 1 Attribute 2 Attribute n

Logs

Step 2: Predict measured logs from seismic 
attributes about the well (train network)

Logs

Logs

Trained 
neurons

(Marfurt, 2018)7a-12
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Cartoon showing the flow used to volumetrically predict TOC. (a) Step 1 is to calibrate the coefficients used in Passey’s equation (Passey et al., 1990) to predict TOC from well logs to actual TOC measurements made from core. (b) In step 2, one trains a neural network that allows one to predict measured well logs from seismic attributes extracted about the well. These predictions are then validated using other wells not used in the training. (c) In step 3, the trained neural network is used to compute a first approximation of the well log properties.  (d) Optional step 4 exploits the fact that many resource plays, seismic surveys have hundreds of logged wells, providing “ground truth” which can then be integrated with the neural network prediction using co-located co-kriging. (e) Finally, in step 5 these volumetric estimates of log properties are used to predict TOC, either statistically, or using Passey’s equation.



Step 5: Use Passey’s 
equation to generate 

volumetric estimates of TOC

Attribute 1 Attribute 2 Attribute n

Hundreds of well logs

Step 3: Generate volumetric estimates 
of log volumes

Density Porosity Resistivity

Trained 
neurons

Step 4: Use logs from 
hundreds of wells as 

ground truth

TOC

(Marfurt, 2018)7a-13



Prediction of a  gamma ray volume from seismic attributes

(Verma et al., 2012)
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Predicted gamma ray volume obtained using artificial neural networks. In the lower Barnett high gamma ray values are possible zones of high TOC, indicated by orange to red in the figure; relatively low gamma zones are areas of high quartz and in general are more easily hydraulically fractured. Hence, wells are needed to be placed in the zones with relatively low gamma ray, and are closely associated with high gamma ray, so that the fracture can be initiated in the rock drilled and then fractures can propagate into the high TOC zones so that the well can produce hydrocarbon. (After Verma et al., 2012; Data courtesy of Devon Energy). �
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Crossplot between core-measured TOC and neural network-estimated TOC. (a) Well A, which was used to train the neural network, and (b) another cored well B. (c) Location of cored wells with respect to the seismic survey. (After Verma et al., 2016).
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(s)

1.340

1.440
Prediction of TOC from 
seismic attributes

(Verma et al., 2016)7a-16
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Presentation Notes
 (a) Crossplot between predicted TOC using a neural network and TOC well log with 30 wells used in neural network training. (b )Vertical slice along the line XX′ through estimated TOC volume. Note the estimated TOC volume shows a good match at the blind wells x, y, and z (70% correlation). (c) Map of top of Lower Barnett Shale showing location of line XX’ and wells used the analysis. The wells without circles were used in training while circled wells were used in validation. (After Verma et al., 2016).  
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Pitfalls and algorithm limitations: Misclassification

Mulitples
Misclassification

Misclassification

(Lubo-Robles et al., 2020)

Salt

Mass Transport 
Deposits

Conformal 
Sediments

In this example, we did not use steeply dipping conformal reflectors in the conformal sediment training data
Possible solutions: “Online learning” -> add more training data and if needed more attributes

Voxel-based classifiers cannot “see” the periodicity of multiples that few interpreters will misinterpret.
Deep-learning algorithm would need abundant training data.
Few human interpreters would be fooled by these simple multiples



Supervised Multiattribute Classification – Probabilistic Neural Networks

In Summary:

• Because PNN is based on Gaussian statistics:
• PNN is one of the easiest machine learning techniques to understand
• PNN provides an estimate of confidence in its predictions

• As with interactive interpretation, the correct choice of attributes is critical to 
accurate prediction

• A good neural network application will mimic the interpreter who trains it.

• Don’t ask a poor interpreter to train a neural network!
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