

Seismic Attributes - from Interactive Interpretation to Machine Learning

David Lubo-Robles and Kurt J. Marfurt

Supervised Multiattribute Classification Probabilistic Neural Networks

Multiattribute Analysis Tools

Interpreter-Driven Multiattribute Analysis

Visual Decision Making

- Crosscorrelation Maps
- Corendering
- Spreadsheets
- Crossplotting and Geobodies
- Connected Component Labeling

Projection Techniques

- Principal Component Analysis
- Independent Component Analysis

Statistical Analysis

- Analysis of Variance (ANOVA, MANOVA)
- Multilinear Regression
- Kriging with external drift
- Collocated co-kriging

Machine Learning Multiattribute Analysis

Unsupervised Learning

• K-means

- Gaussian Mixture Models
- Kohonen Self-Organizing Maps
- Generative Topographical Maps

Supervised Learning

• Probabilistic Neural Networks

- Multilinear Feedforward Neural Networks
- Support Vector Machines
- Random Forest Decision Trees
- Generative Adversarial Networks

Objective: From continuous input measurements (e.g. seismic attributes):

- Predict a continuous output (e.g. porosity)
- Predict discrete lithologies (e.g. wet sand, gas sand, limestone, shale,...)

Example 1: Predicting Seismic Facies from Seismic Attributes

Parzen Method:

Estimate the probability density function

$$g_{c}(\mathbf{a}_{k}) = \frac{1}{N} \sum_{n=1}^{N} \exp\left[-\frac{\|\mathbf{a}_{k} - \mathbf{T}_{nc}\|^{2}}{2r_{j}^{2}}\right]$$

- \mathbf{T}_{nc} The n^{th} training vector for class c
- \mathbf{a}_k The attribute vector at the k^{th} voxel
- r_j Scaling parameter of the j^{th} attribute
- *N* Total number of training samples

(Specht, 1988; Masters, 1995)

$$g_{c}(\mathbf{a}_{k}) = \frac{1}{N} \sum_{n=1}^{N} \exp\left[-\sum_{m=1}^{M} \frac{\left(a_{mk} - T_{nmc}\right)^{2}}{2r_{j}^{2}}\right]$$

A two-attribute example

- \mathbf{a}_k : Attribute vector at voxel k to be classified $g_c(\mathbf{a}_k)$: Probability of \mathbf{a}_k being in class c
- T_{nmc} : Attribute training vectors for class c
- *M* : Number of attributes
- *N* : Number of training vectors
 - : Gaussian smoothing parameter (unknown)

 r_{j}

Validation of PNN prediction for a given set of *K* attribute vectors and Gaussian smoothing parameter r_i

Attribute #1

Salt Not Salt

Facies probability

Facies prediction

- PNN classifies correctly between salt and non-salt seismic facies.
- Salt diapir #2 used as blind test is also correctly classified.
- Salt facies are associated with very high probabilities ranging from 75 to 80%

XL 519

IL 35 0 salt #2 Time (s) Salt #1 3 20 km t = 2.8 s

Image of PNN salt probability > 70%.

Example 2: TOC prediction

Step 1: Calibrate TOC prediction from logs using ANN or Passey's equation

Step 2: Predict measured logs from seismic attributes about the well (train network)

Step 4: Use logs from

hundreds of wells as

ground truth

(Marfurt, 2018)

Prediction of a gamma ray volume from seismic attributes

(Verma et al., 2012)

(Verma et al., 2016)

Prediction of TOC from seismic attributes

(Verma et al., 2016)

Time

(s)

1.440

1.340

Pitfalls and algorithm limitations: Misclassification

In this example, we did not use steeply dipping conformal reflectors in the conformal sediment training data Possible solutions: "Online learning" -> add more training data and if needed more attributes

Voxel-based classifiers cannot "see" the periodicity of multiples that few interpreters will misinterpret. Deep-learning algorithm would need abundant training data. Few human interpreters would be fooled by these simple multiples

Supervised Multiattribute Classification – Probabilistic Neural Networks

In Summary:

- Because PNN is based on Gaussian statistics:
 - PNN is one of the easiest machine learning techniques to understand
 - PNN provides an estimate of confidence in its predictions
- As with interactive interpretation, the correct choice of attributes is critical to accurate prediction
- A good neural network application will mimic the interpreter who trains it.
- Don't ask a poor interpreter to train a neural network!