Seismic Attributes - from Interactive Interpretation to Machine Learning

David Lubo-Robles

Explainable Artificial Intelligence (AI) techniques (SHAP and LIME)

1

Explainable Al

Local Interpretable Model-Agnostic Explanations

(LIME) Ribeiro et al. (2016)

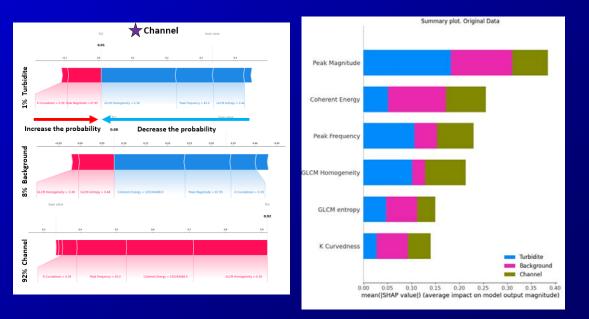
- Works for any ML method.
- Approximates a model by maximizing interpretability and local fidelity to make explanations.
- Provide only local explanations.

91.6% Channel PM GH CE PF GE K

Shapley additive explanations (SHAP)

Lundberg and Lee (2017), Lundberg et al. (2018) Seismic detailed example – Lubo-Robles et al. (2022)

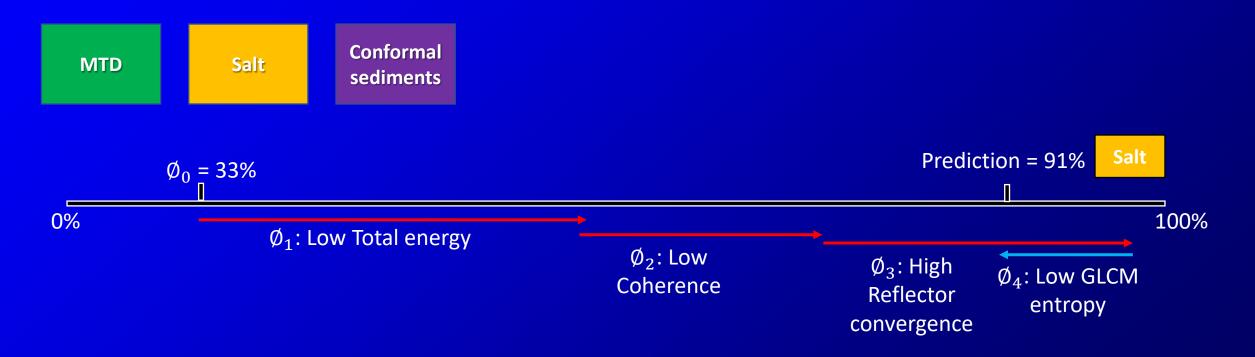
- Works for any ML method.
 - Faster for tree ensemble architectures (e.g., random forest, XGBoost, etc.)
- Computes Shapley values to measure contribution of individual features.
 - Linear model combining SHAP values and input features matches the final model prediction



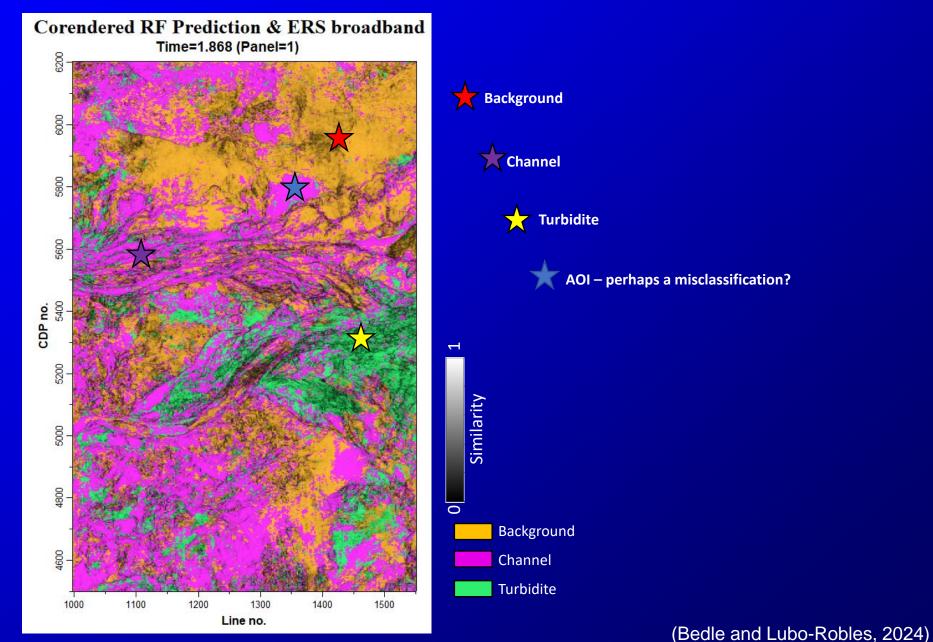
(Bedle and Lubo-Robles, 2024)

Shapley additive explanations (SHAP)

- Following Lundberg and Lee (2017), Lundberg et al. (2018):
 - SHAP are a recent development that enable quantitative estimation of model interpretability.



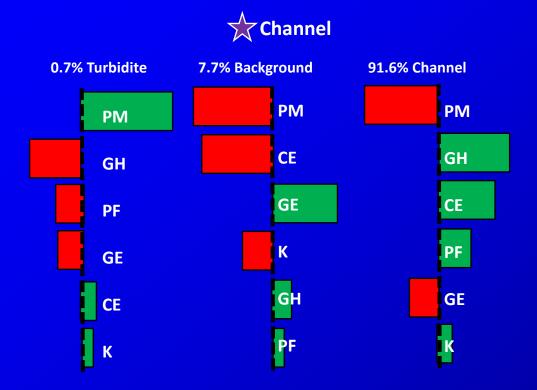
Case 1: Random Forest results in the Canterbury Basin, NZ



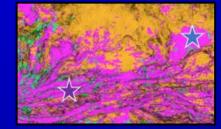
LIME (local interpretability)

•Reveals relative importance of attribute for each class in the ML classification

•Also allows insight into the ML's cutoff ranges for each class



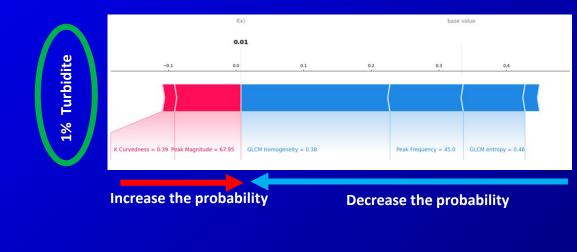
Green: Attribute value is lending toward that class. **Red**: Attribute value not in the class cutoffs

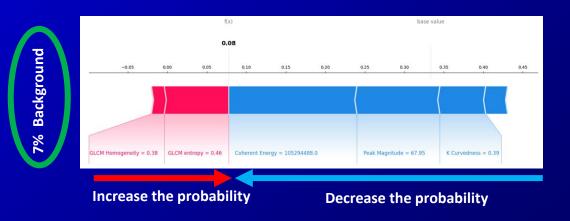


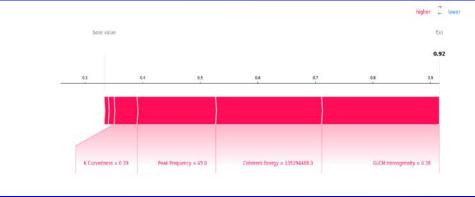
<u>Attribute</u>	<u>Cutoff</u>
CE = Coherent Energy	> 0.07
K = Curvedness	> 0.21
GE = GLCM entropy	<= 0.70
GH = GLCM homogeneity	> 0.40
PF = Peak Freq. CWT	0.24 <pf <="0.47</td"></pf>
PM = Peak Mag. CWT	>0.29

(Bedle and Lubo-Robles, 2024)

SHAP Force Plots (local interpretability)



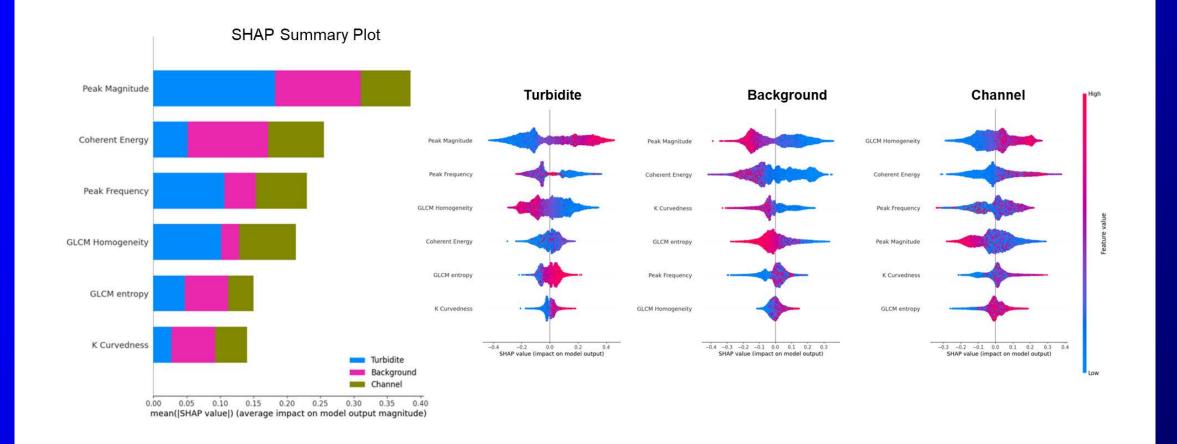




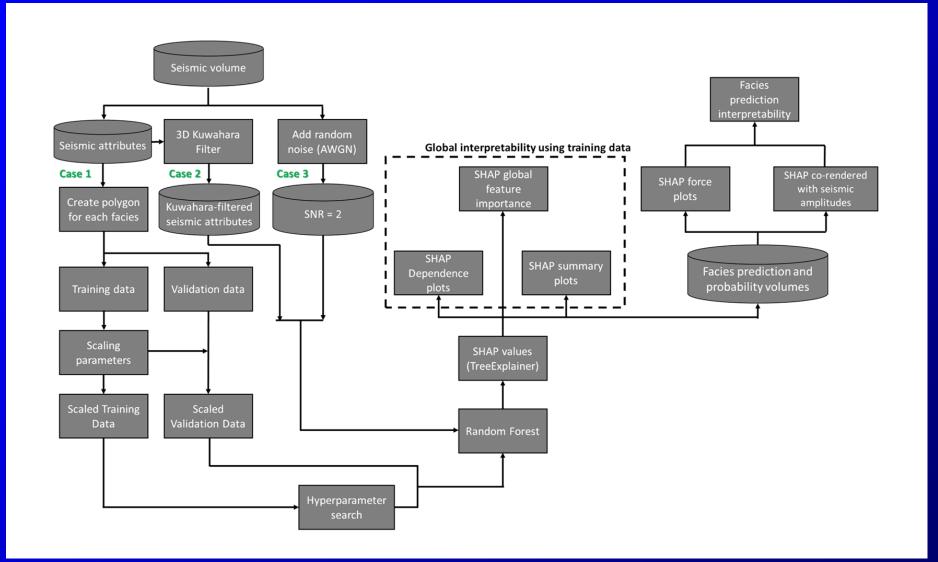
Value of all 6 attributes at this voxel increase the probability

(Bedle and Lubo-Robles, 2024)

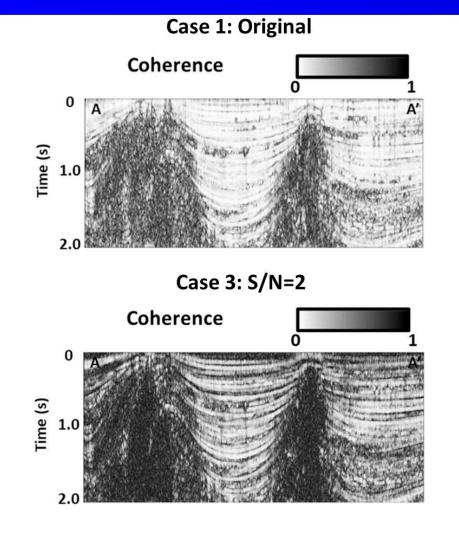
SHAP Summary Plots (global interpretability)



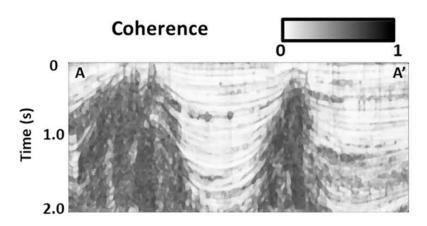
Case 2: SHAP for ML interpretability in the Gulf of Mexico



Kuwahara blocks and smooths the response. Bandlimited AWGN decreases facies separation



Case 2: Kuwahara



- Additive white Gaussian noise (AWGN)
- 9 candidate seismic attributes:
 - Coherence 1.

3.

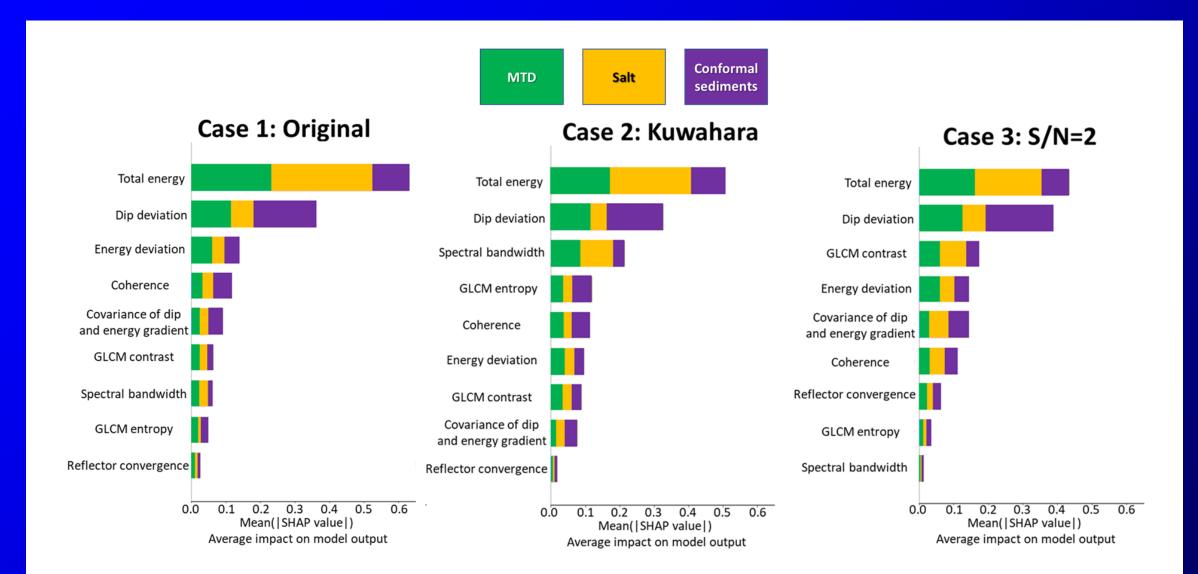
7. Dip deviation

- Total energy 2.
 - GLCM entropy
- Reflector convergence 9. Covariance of 4.
- 5. Spectral bandwidth
- 6. GLCM contrast

- 8. Energy
 - deviation

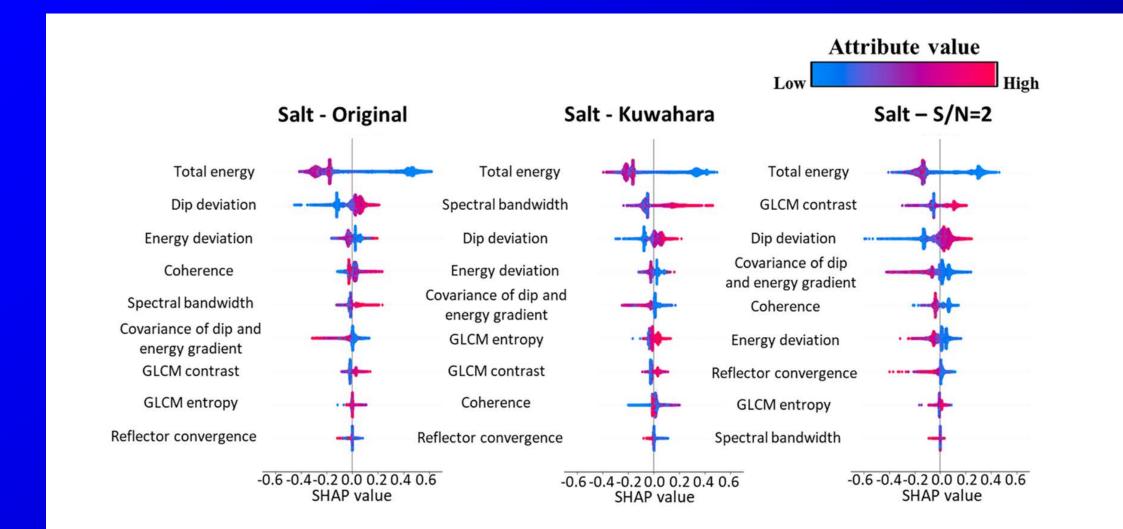
 - dip and energy
 - gradient

Total energy and dip deviation show the largest impact for all cases



(Lubo-Robles et al., 2022)

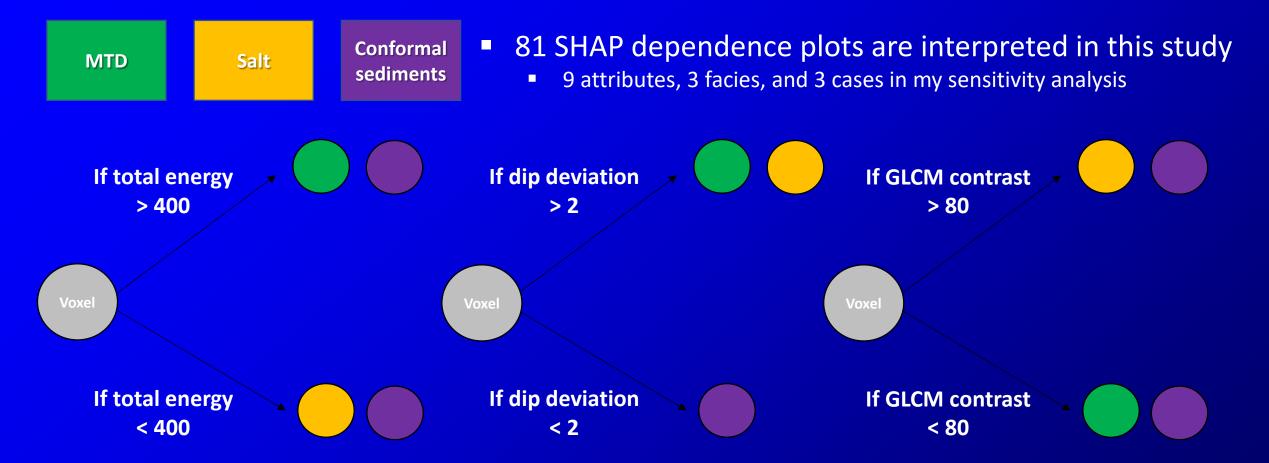
SHAP summary plots



Rules "learned" by the ML model

Attribute	MTD trend 1	MTD trend 2	Salt	Conformal sediments trend 1	Conformal sediments trend 2
Total energy	> 400	> 400	< 400	< 400-500	> 400-500
Dip deviation	> 2	> 2	> 2.5	2.5-4	< 2.5
Energy deviation	> 2.5	> 2.5	< 2.5 < 4.0 (S/N=2)	> 2.5	< 2.5
Coherence	<0.9 0.4 – 0.9 (Kuwahara) 0.35-0.9 (S/N=2)	<0.9 0.4 – 0.9 (Kuwahara) 0.35-0.8 (S/N=2)	< 0.85 (original and Kuwahara) < 0.3 (SNR=2)	< 0.85 <0.45 (Kuwahara) <0.4 (S/N=2)	> 0.85 > 0.85 (Kuwahara) > 0.4 (S/N=2)
Covariance of dip and energy gradient	< 0.15	> 0.15	< 0.15-0.2	> 0.1-0.2	< 0.1-0.2
GLCM contrast	< 90 <140 (S/N=2)	< 90 <140 (S/N=2)	> 75-80 > 140 (S/N=2)	> 75-80 > 100-110 (S/N=2)	< 75-80 < 100-110 (S/N=2)
Spectral bandwidth	<60-65 Hz.	<60-65 Hz.	> 65-70 Hz.	60-70 Hz	< 60-65 Hz.
GLCM entropy	> 0.5	> 0.5	> 0.5	> 0.5	< 0.5
Reflector convergence	< 0.25-0.3	> 0.25-0.3	< 0.3	> 0.2	< 0.2

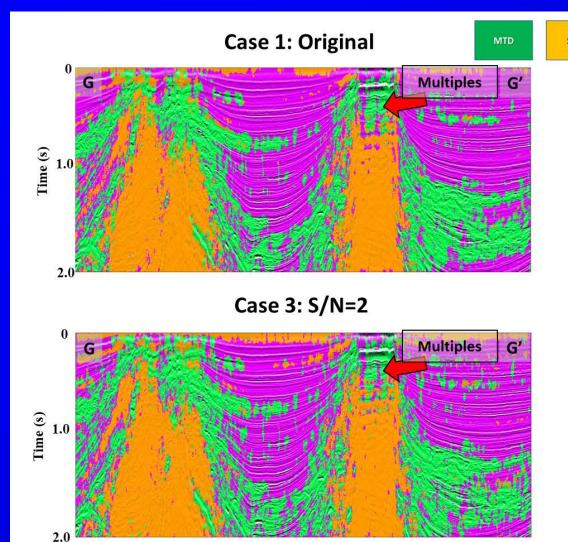
The ML model "learns" a set of rules in multi-attribute space

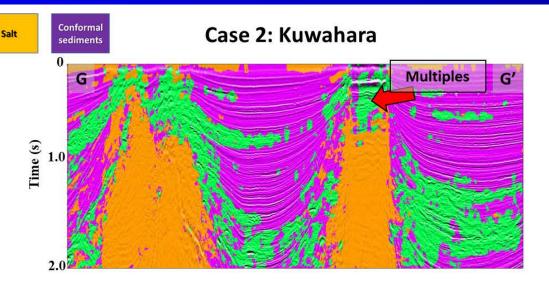


 Using multiple attributes as input represents a good approach for seismic facies classification

 It allows to discriminate among seismic facies that might have similar seismic responses in some attributes but better differentiation when considering other attributes.

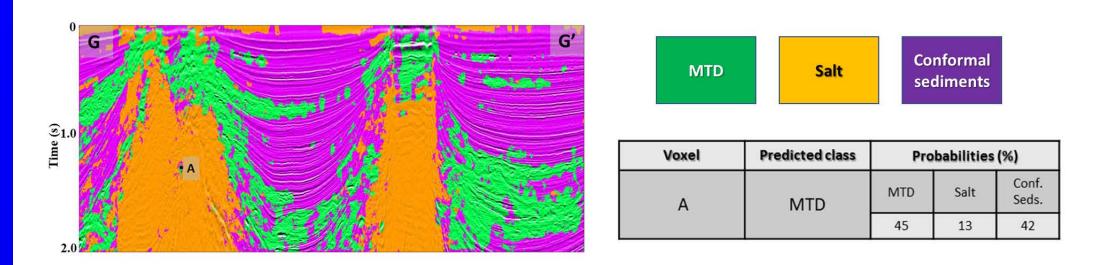
Kuwahara filtering offers better classification than other cases





- Kuwahara filtering shows a smoother facies response, sharper edges, and better classification of previously unseen/unlabeled data than other cases.
- High amplitude, parallel conformal reflectors tend to be well classified in all cases.
 - MTDs and conformal sediments show more overlap when adding band-limited AWGN or using the original attributes.

Voxel A matches MTD response with 45% probability



MTD:

ML model correctly classifies between facies. Some overlap might exist

