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Seismic Attributes - from Interactive Interpretation 
to Machine Learning

Presenter
Presentation Notes
In this section I will summarize those attributes that measure geometry or shape of seismic reflectors. Geometric attributes include volumetric estimates of dip and azimuth, curvature, changes in waveform shape, and lateral changes in seismic amplitude.



Geometric attributes that map reflector configuration 
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1. Dip magnitude and dip azimuth

2. Reflector convergence

3. Reflector nonparallelism

4. Curvature and aberrancy

5. Shape index and curvedness

Presenter
Presentation Notes
The first subset of geometric attributes measures reflector configuration. Coherence measures lateral discontinuities, so can be listed here or in with attributes that are more sensitive to textures as I do in this short course.



After this section you will be able to:

• Use most-positive and most-negative principal curvatures to map folds, flexures, 
and faults that separate blocks exhibiting a lateral change of dip,

• Use aberrancy to define the axes of flexures that may be aligned with faults that 
exhibit offsets that fall below the limits of seismic resolution, and

• Use the strike of curvature or the azimuth of aberrancy to construct hypothesized 
fault or fold sets

Volumetric curvature
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Alternative volumetric measures of curvature

1. 3D derivatives of volumetric vector dip estimates

• Long wavelength estimates obtained by applying a kx-ky filter to the 
derivative operator

2. 2D derivatives of a surface fit to local dip

• Long wavelength estimates obtained by fitting the quadratic surface 
to nine more distant points

• Long wavelength estimates obtained by fitting the quadratic surface 
to all points in a larger patch 
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Presenter
Presentation Notes
There are basically two workflows used to compute volumetric curvature, the details of which are often buried in the proprietary software. 



Sign convention for 2D curvature attributes:
Anticline: k > 0
Plane:      k = 0
Syncline: k < 0
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Presenter
Presentation Notes
Sign convention used to define structural curvature in seismic data. Curvature (k) is the inverse radius of a circle that not only is tangent to the deformed surface but that also fits its lateral changes. When examining the literature, be forewarned that most workers define the z-axis to be positive up. In geosciences, most practitioners define an anticlinal feature as exhibiting positive curvature and a syncline as exhibiting negative curvature. Photo of Lago de Argentina, taken by the author. 



3D Curvature and Biometric Identification of Suspicious Travelers

k2 > 0
k2< 0

k1 < 0

k1 > 0

k2 = 0

k2 > 0
k2< 0

k1 < 0

k1 > 0

k2 = 0

(Marfurt, 2018)5c-6

Presenter
Presentation Notes
Curvature is routinely used in molecular docking studies in pharmaceutical and genome cancer studies. It is always widely used in security, where authorities monitor airports and other locations for suspicious travelers. Marfurt was flagged in several airports, including Intercontinental Airport in Houston during his 2006 DISC tour, during which he used (a) to illustrate concepts of curvature. Interestingly, the shape of his big nose, sunken eyes, and lantern jaw have not changed over the past 12 years, indicating that curvature makes it hard to hide from the law. (b) Regardless of how Marfurt turns his head, the shape of his face remains invariant.  For the same reasons, such invariant measures of shape are excellent candidates for mapping geologic features, where one wants to map such shapes independent of the survey orientation and structural rotation.




Circles in perpendicular planes tangent to a quadratic surface

(Mai et al., 2009)5c-7

n

|kmax|=1/Rmin

|kmin|=1/Rmax

θmax

θmin

Presenter
Presentation Notes
A quadratic surface with the normal, n, defined at point P. The circle tangent to the surface whose radius, R, is minimum defines the magnitude of the maximum curvature: |kmax| ≡ 1/Rmin (in blue). For a quadratic surface, the plane perpendicular to that containing the previously defined blue circle will contain one whose radius is maximum, which defines the magnitude of the minimum curvature: |kmin| ≡ 1/Rmax (in red). Graphically, the sign of the curvature will be negative if it defines a concave surface and positive if it defines a convex surface. For seismic interpretation, we typically define anticlinal surfaces as being convex up, such that kmax has a negative sign and kmin has a positive sign in this image. After Chapter 3, Figure 10 of Mai (2010). Used by permission. 
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Geometry defined by 
the two principal 

curvatures, k1 and k2

(Marfurt, 2018)5c-8

Presenter
Presentation Notes
Wolfram, a scientific calculator product, provides this nice interactive demo of the two principal curvatures k1 and k2, which are equivalent to the eigenvalues λ1 and λ2 of the matrix defining a quadratic surface under http://demonstrations.wolfram.com/EigenvaluesCurvatureAndQuadraticForms/. (a) A suite of (k1, k2) pairs arranged such that anticlinal features correspond to positive values of curvature and synclinal features to negative values of curvature. Note that negative curvature has a positive value for dome-shaped features and positive curvature has negative values for bowl-shaped features. In each case, there is no apparent (Euler) curvature of greater negative or positive value. (b) The same images, but now with the corresponding eigenvectors ψ1 and ψ2 rotated by 90°.



Geometry defined by 
the two principal 

curvatures, k1 and k2
(ψ1 andψ2 rotated by 90°)

k2

k1

(Marfurt, 2018)5c-9



A deeper look:

    The value of volumetric vs. horizon-based attributes
    
     The value of long-wavelength vs. short-wavelength computations
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Presenter
Presentation Notes
A vertical section through a seismic survey from the Forth Worth Basin, Texas, USA, illustrating radii of curvature of approximately 500, 250, 100, and 50 m along the Marble Falls horizon. The data are courtesy of Devon Energy.




(Cooper and Cowan, 2003)

Thermal imagery with sun-shading

(Cooper and Cowan, 2003)5c-12

Presenter
Presentation Notes
In his Ph.D. work at the University of Houston, Saleh al Dossary was inspired by this work on potential field data by Cooper and Cowan (2003). Given any kind of data, the first thing that a potential field person does is take horizontal derivatives of it. So it should come as no surprise that Cooper and Cowan (2003) took derivatives of this image.



(Cooper and Cowan, 2003)

Fractional derivatives with sun-shading

Red=0.75 
Green=1.00
Blue=1.25

(Cooper and Cowan, 2003)5c-13

Presenter
Presentation Notes
Here they have taken three derivatives – a 1st derivative, plotted against green, a 0.75 derivative, plotted against red, and a 1.25 derivative, plotted against blue.



(Cooper and Cowan, 2003)

Volumetric curvature can be computed using first 
derivatives of the dip components, p and q: 
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Will fractional derivatives of p and q 
provide more useful results?
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Presentation Notes
In volumetric curvature, we do not pick any horizons. Instead, we use the volumetric estimates of the dip components p and q, measured in m/m or ft/ft described in a previous lecture. Instead of computing a simple first derivative, can we obtain results like Cooper and Cowan and compute fractional derivatives of p and q?



Early estimates of long wavelength curvature: Fractional derivatives

dp/dx =  F-1[ ikx F(p) ]

Fractional derivative
(or 1st derivative followed by a low pass filter)

dαp/dxα ≈  F-1[i(kx )α F(p) ]

1st derivative

(al-Dossary and Marfurt, 2006)5c-15

Presenter
Presentation Notes
I never learned about fractional derivatives in school, and Cooper and Cowan didn’t give any details in their original paper, but living in Texas, both Saleh and I were comfortable living with ‘cowboy mathematics’. We decided to define the fractional derivatives in the spatial wavenumber domain. Furthermore, we did not take the fractional power of ‘i’ since doing so rotated the phase between images. (After al Dossary and Marfurt, 2006).



Attributes extracted along a geological horizon

5c-16

Presenter
Presentation Notes
In theory, attributes computed from an explicitly picked horizon and one implicitly picked through volumetric dip estimates should be the same. However, the signal-to-noise ratio of volumetric dip estimates using a window of samples will in general be significantly better than those computed from a horizon generated using a single sample per trace.
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Presenter
Presentation Notes
Line BB' through the seismic amplitude volume. The Caddo limestone horizon(in green) is the strongest, most coherent event in the volume. Note the wavy appearance. It turns out the local lows are associated with the karst collapse features in the deeper Ellenburger dolomite (in red).



kmean=1/2(d2T/dx2+d2T/dy2) 
(Caddo horizon calculation)
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Presenter
Presentation Notes
Mean curvature computed from the dip of the picked Caddo horizon. Note the poor quality of the mean curvature estimates derived from the picked horizon in the region of the older 1995 survey (indicated by the yellow rectangle) and the 1997 survey (indicated by the red rectangle). I used mean curvature in this image since I can perform the necessary manipulations in my commercial mapping software (most positive and most negative curvature requires divisions which I cannot do). The data are courtesy of Devon Energy.
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(Caddo horizon slice through volumetric calculation)
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(Chopra and Marfurt, 2007)5c-19

Presenter
Presentation Notes
Mean curvature of dip shown in the previous figures and sliced along the Caddo horizon.  Note the poor quality of the mean curvature estimates derived from the picked horizon in the region of the older 1995 survey (indicated by the yellow rectangle) and the 1997 survey (indicated by the red rectangle). Arrows indicate lineaments that are not seen clearly in the mean curvature image computed from the manually picked horizon. The data are courtesy of Devon Energy.




Caddo horizon slice through coherence volume
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Presenter
Presentation Notes
A horizon slice along the Caddo horizon, through the coherence volume. This image is relatively featureless when compared with the previous figure, which shows the mean curvature. The reason for this difference is geologic rather than algorithmic — the Caddo horizon is highly deformed but not broken, such that it is represented as an undulating, coherent reflection.



Attributes extracted along time slices
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Presenter
Presentation Notes
The concept of different wavelength curvature may be new to you. Let’s examine them when applied to a data volume from the Fort Worth Basin of Texas.
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Presenter
Presentation Notes
Line BB' through the seismic data cube used in the generation of the coherence volume shown earlier.  




Time slice through coherence
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Presenter
Presentation Notes
A principal-component coherence time slice at t = 0.800 s (approximately the Caddo/Atoka level), through a survey from the Fort Worth Basin, Texas, USA. The data are courtesy of Devon Energy.




Time slices through most-negative curvature, k2, at different wavelengths 
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Presenter
Presentation Notes
A time slice at t = 0.800 s corresponding to a previous figure through  most-negative curvature, kneg, computed using the spatial derivative operators shown earlier:  =  1.00, 0.75, 0.50, and 0.25. After al-Dossary and Marfurt (2006).
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Presenter
Presentation Notes
A principal-component coherence time slice at t = 0.800 s (approximately the Caddo/Atoka level), through a survey from the Fort Worth Basin, Texas, USA. The data are courtesy of Devon Energy.
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Presenter
Presentation Notes
A principal-component coherence time slice at t = 1.200 s (approximately the Ellenburger level) through the same data volume shown previously. 




Most negative curvature, k2, (α=0.25)
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Presenter
Presentation Notes
Long-wavelength ( = 0.25) curvature values at t = 1.200 s, corresponding to previous figure, of most-negative curvature kneg . We see that the positive values of kneg correspond to domes. White arrows indicate through-going northeast-southwest lineaments that appear to offset the northwest-southeast lineaments indicated by gray arrows. These lineaments are much clearer here than in the previous figure.  After al-Dossary and Marfurt (2006).
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Later long wavelength curvature operator: Define a filter

5c-28

Presenter
Presentation Notes
Curvature is computed using the first derivatives of the inline and crossline dip components. (a) Because these dip components are measured at discrete traces (in this example, ∆x = 25 m) the derivative can be represented by a high-order central difference operator (in red). (b) The spectrum of this central difference operator approximates ikx, where kx is the wavenumber and the imaginary unit, i, represents the 90° phase. For this reason, curvature enhances short-wavelength (high-wavenumber, kx) features in the data, such as acquisition footprint and migration operator aliasing. To suppress these exacerbated artifacts, we can apply a filter to the data to curvature results[AQ: Are words missing here?]. A computationally more efficient means to achieve the same end is to apply the filter shown in blue in (b) to the finite-difference operator, thereby obtaining a “long-wavelength” derivative operator shown in blue in (a). 
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Presenter
Presentation Notes
Time slice at t = 1.280 s through (a) the most-positive principal curvature attribute volume and (b) the most-negative principal curvature attribute volume. In general, most-positive curvature k1 tends to accentuate anticlinal features, whereas most-negative curvature k2 tends to accentuate synclinal features, although Figure 18 shows that dome-, saddle-, and bowl-shaped features give rise to more complicated curvature expressions.
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Great South Basin, NZ

5c-30
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Presenter
Presentation Notes
Time slice at t = 1.280 s through corendered most-positive and most-negative principal curvature volumes.
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Presenter
Presentation Notes
Time slices at t = 1.280 s through corendered volumes of (a) the most-positive curvature vector (the strike of the most-positive curvature ψ1 modulated by its value, k1) and (b) the most-negative curvature vector (the strike of the most-negative curvature ψ2 modulated by its value, k2). 
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Presentation Notes
K2 strike



1. Compute curvature lineaments
2. Create grids

Generating rose diagrams of curvature and aberrancy lineaments

3. Examine each grid one at a time
4. Map voxels to a rose diagram
5. Represent the rose using the voxels in the grid
6. Export in seismic format

(Mai, 2010)

Presenter
Presentation Notes
Ridge curvedness cr represents the degree of curvedness of ridge-like features, and so where cr is small the feature at the analysis location is flatter and while cr is large, the feature is more likely to be ridge- curved. We represent this curvedness as lightness in 2D color map.



Bidirectional

Interpreting rose diagrams of curvature and aberrancy lineaments



Fault expression on attributes
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(Qi and Marfurt, 2018)5c-40

Presenter
Presentation Notes
Seismic attributes are routinely used to highlight faults. Different attributes highlight different features of the fault system, only some of which are shown here. Examples are as follows. (a) Coherence illuminates faults that have finite offset, such that the waveform does not match across the fault. Faults with syntectonic deposition resulting in packages of different thicknesses across the fault will have a similar response. (b) – (c) The small displacement along multiple conjugate faults adjacent to the larger main fault often gives rise to curvature anomalies. (b) A positive curvature anomaly is seen on the footwall, and a negative curvature anomaly appears on the hanging wall. The conjugate faults themselves fall below seismic resolution, so that feature looks like a flexure. The curvature anomalies bracket the coherence anomaly. If the conjugate faults take up most of the displacement (c), the coherence anomaly disappears. However, we can still “track” the fault by the two bracketing curvature anomalies. (d) A more recent development, aberrancy (sometimes called flexure), measures the change in curvature. In this example, the curvature changes most rapidly about the main fault location. 



Aberrancy: The third derivative of a time-structure map

Astronomy – change in acceleration 
resulting in a deviation from an elliptical orbit  

5c-41



Aberrancy: The third derivative of a time-structure map
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Presenter
Presentation Notes
I took this video of the Tivoli Amusement Park roller coaster after attending the 2018 EAGE meeting in Copenhagen. Note how the riders are jerked to one size after the axis of the loop changes. 






Internal steps in aberrancy computation

(Qi and Marfurt, 20185c-43
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Presenter
Presentation Notes
Due to the nature of aberrancy, it characterizes the third-order surface behavior. Computation of aberrancy involves two main challenges, high order equations and high dimensional calculation. The original aberrancy equation proposed by Di and Gao (2proposed by Di and Gao, (2014) is in a brute search algorithm and therefore computationally expensive. However, in 2016 Di and Gao showed how the equations become more tractable by first flatting the coordinate system about the dip at each surface analysis point. . of  structure, z(x,y), and is therefore limited to picked horizons and quite difficult to implement. However, That is why we have to rotate the coordinate system to simplify the equation (Di and Gao, 2016). By computing volumetric aberrancy in terms of inline dip, p, and crossline dip, q, we both simply the equations but also generate aberrancy estimates at each voxel.



5 km

N

Co-rendered azimuth and magnitude of total aberrancy 

t=1.280 s

Total aberrancy magnitude 

0

Max

Opacity
1000

N

S

EW

Total aberrancy azimuth

-180°

+180°

0°

(Marfurt, 2018)5c-44

Presenter
Presentation Notes
Aberrancy is a very recently introduced geometric attribute, first computed on picked horizons by Di and Gao (2015) and later generalized for volumetric computation by Qi et al. (2017). (a) A time slice at t = 1.280 s is through the total vector aberrancy volume, which is the vector sum of the maximum, intermediate, and minimum aberrancy vectors. (b) The same time slice through the energy ratio coherence volume. Note how the subtle faults (indicated by the white arrow), which exhibit little offset, are illuminated by aberrancy but not by energy ratio coherence . In contrast, coherence delineates the fault indicated by the yellow arrow better, suggesting that it corresponds to the model shown in Figure 29a. 
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Total aberrancy vector co-rendered with energy ratio coherence
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Presenter
Presentation Notes
 (a) Time slices at (a) t = 1.280 s (b) t = 1.456, and (c) t = 1.760 s through the corendered total aberrancy vector volume and the energy-ratio coherence volume. In (a), the correlation of the two anomalies over the larger faults is through geology, not mathematics, because these two attributes are measuring quite different physical properties. In (b), aberrancy shows a broader band of syneresis than does coherence, although we need to determine whether this result is due to greater vertical mixing. In (c), aberrancy shows the change in shape within the higher-coherence channels. This change is either due to incisement or to differential compaction. Note the better delineation of the faults indicated by the magenta arrows.



Total aberrancy vector co-rendered with energy ratio coherence
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Total aberrancy vector co-rendered with energy ratio coherence
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Presenter
Presentation Notes
Because each aberrancy anomaly is described by a magnitude and an azimuth, one can generate a suite of “fault sets” by either explicitly filtering the attribute volumes, or as shown in this suite of six images at 30° increments, using opacity resulting in image that show faults trending at (a) 0° and -180°, (b) 30° and -150°, (c) 60° and -120°, (d) 90° and -90°, (e) 120° and -60°, and (f) 150° and -30°.
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3D Visualization of Polygonal Faults using Aberrancy

(Marfurt, 2018)5c-56

Presenter
Presentation Notes
 A 3D view of polygonal faults within a 0.3-s window, using a geoprobe, and setting faults with a low value of aberrancy magnitude to be transparent.



Pitfalls and algorithm limitations
Differences between volume- and horizon-based curvature

Normal fault seen by curvature Strike slip fault not seen by curvature

5c-57 (Chopra and Marfurt, 2008)

Presenter
Presentation Notes
Attribute sensitivity to faults, where the amount of fault throw is measured in terms of a seismic wavelet. (a) An idealized growth fault. This fault will be seen on both curvature and on coherence-attribute volumes. (b) An idealized strike-slip fault. This fault will be seen on a coherence volume but not on a curvature-attribute volume.
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Pitfalls and algorithm limitations
 Acquisition footprint

“U-shape” anomalies probably caused by overcorrecting with velocity 
that is too slow for far offsets

(Marfurt and Alvez, 2015)5c-58

Presenter
Presentation Notes
Errors in the velocity and the irregular (but repetitive) number of offsets in a given CMP bin give rise to “U-shaped” structural features (magenta “U”s) that give rise to the false curvature anomalies. (Data courtesy of Marathon Oil Co.). (
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Footprint dominates shallow section at t=0.4 s

(Marfurt and Alvez, 2015)5c-59

Pitfalls and algorithm limitations
 Acquisition footprint

Presenter
Presentation Notes
The shallower time slice at t=0.400 s shows what is commonly called acquisition footprint.
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Footprint contaminates geology at Yates level at t=0.8 s

(Marfurt and Alvez, 2015)5c-60

Pitfalls and algorithm limitations
 Acquisition footprint

Presenter
Presentation Notes
An intermediate time slice at t=0.800 s shows a mix of geologic features and acquisition footprint. Since natural fractures are one of the primary targets in the Vacuum field platform, an interpreter who had not previously examined the time slice at t=0.400 s could fall into the pit. Note that the structural artifacts can be at 450 to the acquisition survey, as seen in the southern part of this time slice. 
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(Marfurt and Alvez, 2015)

Geologic deformation unaffected by footprint  deep in the section at t=1.724 s
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Pitfalls and algorithm limitations
 Acquisition footprint

Presenter
Presentation Notes
 An example showing true vs. false structural curvature.  The two vertical slices show seismic amplitude while the time slices show coherence. All three slices are co-rendered with most-positive curvature, k1, and most-negative curvature, k2.  (a) The deeper time slice at t=1.724 s shows complex folding over deeper salt where positive curvature anomalies (in red) correlate to anticlinal features and negative curvature anomalies (in blue) correlate to synclinal features.
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Figure 3a (Marfurt and Alvez, 2015)

Overlying high velocity carbonate reefs give rise to false structure
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Pitfalls and algorithm limitations
 Velocity pullup and pushdown

Presenter
Presentation Notes
Examples of large velocity pull-ups on seismic data. Curvature data showing structural 'fabric' and ‘horsts’ generated at depth by velocity contrasts above between strata in carbonate-buildups and evolving siliciclastic units of the Browse Basin, NW Australia. These significance of the imaged subcircular “fabric” is further increased when they are observed in regions where real faults bound the continental shelf. (Data courtesy of Geosciences Australia).
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Pitfalls and algorithm limitations
 Errors introduced in conversion to 8-bit data

1 km

1. 32-bit zeroes are not converted 
to a non-zero 8-bit value

2. In the absence of headers in 
interpretation software, dead 
traces cannot be flagged and 
mutes cannot be set

3. There is rapid change in dip 
from the live data zone to the 
dead data zone

4. Such rapid changes give rise to 
a curvature impulse response

(Chopra and Marfurt, 2024)



In Summary:

•  The most negative and most positive principal curvatures appear  to be the most unambiguous of the 
curvature images in illuminating folds and flexures.

• Curvature and aberrancy measure strain, and are a good indicator of paleo rather than present-day stress 
regimes. 

• Open fractures are a function of the strike of curvature and aberrancy lineaments and the strike of minimum 
horizontal stress. 

• Curvature and aberrancy are vectors, allowing the interpreter to define hypothesized fault and fold systems.

Curvature and Aberrancy

5c-64
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